Please write out the honor pledge and sign it:

NAME (print): __________________________

MAT 203 – Quiz 4
Due April 13, 2011

Information
Please read and sign the exam conditions first before turning the page:

• No books / notes / calculators / collaborations are allowed.
• The quiz has to be completed in a single time stretch of 90 min. No interruptions!
• Hand-in is on Wednesday, Apr. 13 in class. Please STAPLE your answer sheets, with this problem sheet as the front page. Write your full name legibly on every sheet.

I have read these conditions and will follow them (initials): ____________

Score:
Problem 1: ____________ points
Problem 2: ____________ points
Problem 3: ____________ points
Problem 4: ____________ points
Problem 5: ____________ points
1. Problem (12 points)

For the body

\[B = \{(x, y, z) : x^2 + y^2 + z^4 \leq 1, z \geq 0\} \]

with uniform density one, calculate

(i) the total mass,

(ii) the center of mass,

(iii) the moment of inertia about the z-axis, and

(iv) the moment of inertia about the vertical line defined by \(x = 1 \) and \(y = 0 \).

2. Problem (6 points)

Consider the parametric curve

\[c : [1, 2] \to \mathbb{R}^2 : t \mapsto (t, t^{-1}). \]

(i) Evaluate the path integral \(\int_c \sqrt{1 + y^4} \, ds \).

(ii) Evaluate the line integral \(\int_c (x^{-1}, y^{-1}) \cdot ds \).

3. Problem (8 points)

Consider the transformation

\[T : \{(u, v) \in \mathbb{R}^2 : u > 0, v > 0\} \to \{(x, y) \in \mathbb{R}^2 : x \geq 2y > 0\} : \]

\[(u, v) \mapsto (x, y) = (u^2 + v^2, uv). \]

(i) Is \(T \) one-one? Is \(T \) onto?

(ii) If we replace the domain of \(T \) with

\[\{(u, v) \in \mathbb{R}^2 : u > v > 0\}, \]

is \(T \) then one-one? Is it then onto?

4. Problem (12 points)

(i) Determine if the improper double integral

\[\iint_{x>y>0} e^{-x} \, dA \]

exists. Evaluate it if it does exist.
(ii) Let $\alpha > 0$ be any constant. Determine if the iterated improper integral
\[
\int_0^\infty \int_y^\infty e^{-x} \cos\left(\frac{\alpha y}{x}\right) \, dx \, dy
\]
exists. Evaluate it (in terms of α) if it does exist.

(If your evaluations involve any abstract theorems, remember to verify the conditions needed.)

5. Problem (4 points)

Find the volume of
\[
E = \{(x, y, z) : x^2 + xy + y^2 + yz + z^2 \leq 1\}.
\]