Please write out the honor pledge and sign it:

NAME (print): ____________________________

MAT 203 – Quiz 2
Due February 28, 2011

Information
Please read and sign the exam conditions first before turning the page:

• No books / notes / calculators / collaborations are allowed.

• The quiz has to be completed in a single time stretch of 60 min. No interruptions!

• Hand-in is on Monday, Feb. 28 in class. Please **STAPLE** your answer sheets, with this problem sheet as the front page. Write your full name legibly on every sheet.

I have read these conditions and will follow them (initials): ______________

Score:

Problem 1: ____________ points
Problem 2: ____________ points
Problem 3: ____________ points
Problem 4: ____________ points
1. Problem (12 points)
Mark T (True) or F (False) in each of the statements. No justifications are required.

i) T F Every critical point of \(f(x, y) = x^2 - 4xy + x^4e^x \) is of saddle type.

ii) T F No critical point of \(f(x, y) = -3x + x^3 + y^2 \) is a local minimum.

iii) T F The function \(f(x, y, z) = xyz \) attains its maximal value over the set \(D = \{(x, y, z) : x^2 + y^2 + 2z^2 \leq 3\} \) at some boundary point(s) of \(D \).

iv) T F The function \(f(x_1, x_2, x_3, x_4) = x_1x_3 - x_2^2x_4 \) increases in the direction \((0, 1, 2, 3)\) at the point \((1, 1, 1, 1)\).

2. Problem (6 points)
Suppose \(f(x, y) \) is a \(C^2 \) function satisfying the partial differential equation \(f_{xx} + f_{yy} = 0 \). Verify that the function \(g(u, v) = f(u^2 - v^2, 2uv) \) satisfies the similar equation \(g_{uu} + g_{vv} = 0 \).

3. Problem (12 points)
Consider the curve parameterized by \(c(t) = (\cos t, \sin t, t^3) \) and the surface described by \(z^3 = 2 - x^2 - y^2 \) in \(\mathbb{R}^3 \).

i) Find the point \(P \) where the curve and the surface intersect.

ii) Find an equation for the tangent line \(L \) to the curve at \(P \).

iii) Find an equation of the form \(ax + by + cz = d \) (where \(a, b, c, d \) are constants) for the tangent plane \(E \) to the surface at \(P \).

iv) Let \(\theta \) be the intersection angle between \(L \) and \(E \). Calculate \(\sin \theta \).

4. Problem (6 points)
Let
\[
f(x, y) = \begin{cases}
 \frac{x^2y^2}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\
 0, & \text{if } (x, y) = (0, 0)
\end{cases}
\]

i) Write down the linear approximation of \(f(x, y) \) at \((0, 0)\).

ii) Determine if \(f(x, y) \) is differentiable at \((0, 0)\).