A Theorem About Uniform Distribution

Yakov Sinai*

Dedicated to: F. Dyson

[^0]Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be a sequence of independent random variables taking positive integer values and $P\left\{\xi_{j}=k\right\}=\frac{1}{2^{k}}, k \geq 1$. We put $\delta_{j}=-1$ if k_{j} is odd, $\delta_{j}=+1$ if k_{j} is even, $c_{j}=c\left(k_{j}, \delta_{j-1}\right)=\frac{2^{k_{j}} \delta_{j}-1-3 \delta_{j-1}}{6}$ and consider the expression

$$
\begin{aligned}
& \sum_{n}=\sum\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \delta_{0}\right)= \\
& =3^{n-1} c_{1}+3^{n-2} c_{2} 2^{\xi_{1}}+3^{n-3} \cdot c_{3} 2^{\xi_{2}+\xi_{1}}+ \\
& +\ldots+3 c_{n-1} \cdot 2^{\xi_{n-2}+\xi_{n-3}+\ldots+\xi_{1}}+c_{n} 2^{\xi_{n-1}+\ldots+\xi_{1}}
\end{aligned}
$$

Clearly, \sum_{n} is an integer-valued random variable and for each $\sigma, 0 \leq \sigma<3^{n}$, we consider $\sum_{n} \equiv \sigma\left(\bmod 3^{\mathrm{n}}\right)$ and put $\mu_{n}\left(\frac{\sigma}{3^{n}}\right)=\sum_{\sum_{n} \equiv \sigma\left(\bmod 3^{\mathrm{n}}\right)} \frac{1}{2^{k_{1}+k_{2}+\ldots+k_{n}+1}}$.

The last summation goes over all values of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ and δ_{0} which give $\sigma\left(\bmod 3^{\mathrm{n}}\right)$. μ_{n} is a probability measure on the interval $[0,1]$. The main result of this paper is the following Theorem.

Main Theorem. \quad As $n \longrightarrow \infty$ the measures μ_{n} converge weakly to the uniform measure.

The strongest version of this theorem where individual probabilities $\mu_{n}\left(\frac{\sigma}{3^{n}}\right)$ converge to $\frac{1}{3^{n}}$ is wrong. Indeed, one can write down the probability distribution of the first digits in the triadic expansion of \sum_{n} and see that it is not uniform. A more deep analysis of the distribution of σ_{n} can be crucial for the progress in the famous $(3 x+1)$-problem.

Proof. The statement of the theorem will follow if we prove that for any integer $\lambda \neq 0$

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k_{1}, \ldots, k_{n}, \delta_{0}} \frac{1}{2^{k_{1}+\ldots+k_{n}+1}} \exp \left\{2 \pi i \frac{\sum_{n}}{3^{n}} \lambda\right\}=0 \tag{1}
\end{equation*}
$$

In this expression $k_{1}, k_{2}, \ldots, k_{n}$ are the values of $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$. We may assume that λ is not divisible by 3 and n is even. Other cases require trivial changes.

Denote $k^{(j)}=k_{1}+k_{2}+\ldots+k_{2 j}, \ell^{(j)}=k^{(j)}-k^{(j-1)}=k_{2 j-1}+k_{2 j}$. Fix the values of $\delta_{0}, \delta_{1}, \ldots, \delta_{n}$ and of all $k^{(j)}, j=1, \ldots, \frac{n}{2}$. With respect to the induced conditional distribution all pairs $\left(k_{2 j-1}, k 2 j\right)$ are mutually independent and we can write

$$
\begin{aligned}
& \sum_{k_{1}, \ldots, k_{n}, \delta_{0}} \frac{1}{2^{k_{1}+\ldots+k_{n}+1}} \exp \left\{2 \pi i \frac{\sum_{n}}{3^{n}} \lambda\right\}= \\
= & \sum_{\substack{\delta_{0}, \delta_{1}, \ldots, \delta_{n} \\
k(1), k^{(2)}, \ldots, k^{(n / 2)}}} P\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{n} ; k^{(1)}, k^{(2)}, \ldots, k^{(n / 2)}\right\} \prod_{j=1}^{n / 2} \varphi_{j}(\lambda)
\end{aligned}
$$

where $\varphi_{j}(\lambda)$ is the conditional characteristic function,

$$
\begin{align*}
& \varphi_{j}(\lambda)=\sum_{\text {admissible } \mathbf{k}_{2 \mathrm{j}-1}, \mathrm{k}_{2 \mathrm{j}}} \pi\left(k_{2 j-1}, k_{2 j} \mid \delta_{2 j-2}, \delta_{2 j-1}, \ell^{(j)}\right) \cdot \\
& \cdot \exp \left\{2 \pi i \frac{2^{(j-1)}}{3^{(j-2}} \lambda\left(\frac{c_{2 j-1}}{3}+\frac{c_{2 j} 2^{k_{2 j-1}}}{3^{2}}\right)\right\}, \tag{2}
\end{align*}
$$

$\pi\left(k_{2 j-1}, k_{2 j} \mid \delta_{2 j-2}, \delta_{2 j-1}, \delta_{2 j}, \ell^{(j)}\right)$ are the corresponding conditional probabilities. Since $\delta_{2 j-1}, \delta_{2 j}$ are fixed the set of possible pairs $\left(k_{2 j-1}, k_{2 j}\right)$ is a subset of the whole set of pairs for which $k_{2 j-1}+k_{2 j}=k^{(j)}-k^{(j-1)}=\ell^{(j)}$ is given and the conditional distribution is uniform on this subset.

The tables on pages 4 and 5 show these subsets and $c_{2 j-1}, c_{2 j}$ for several first value of $\ell^{(j)}$.

For given $\delta_{0}, \delta_{1}, \ldots, \delta_{n}$ and $k^{(1)}, \ldots, k^{(n / 2)}$ the index j is called good if $\left|\varphi_{j}(\lambda)\right| \leq 1-\frac{1}{n^{\gamma_{0}}}$ where $\gamma_{0}>0$ is a constant which will be specified later. Otherwise it is called bad. $I^{(g)}$ is the notation for the set of good indices, $I^{(b)}=I \backslash I^{(g)}$.

A sequence $\left\{\delta_{j}, 0 \leq j \leq n\right\},\left\{k^{(j)}, 1 \leq j \leq n\right\}$ is called good if $\left|I^{(g)}\right| \geq n^{\gamma_{1}}$, where γ_{1} is another constant, $\gamma_{1}>\gamma_{0}$. Otherwise, it is called bad.

For good sequences

$$
\prod_{j=1}^{n / 2}\left|\varphi_{j}(\lambda)\right| \leq \prod_{j \in I^{(g)}}\left|\varphi_{j}(\lambda)\right| \leq\left(1-\frac{1}{n^{\gamma_{0}}}\right)^{n^{\gamma_{1}}} \leq \exp \left\{- \text { const } n^{\gamma_{1}-\gamma_{0}}\right\}
$$

The case of bad sequences for which $\left|I^{(g)}\right| \leq n^{\gamma_{1}}$ or $\left|I^{(b)}\right| \geq n-n^{\gamma_{1}}$ should be studied in detail.

$\ell^{(j)}$	$\delta_{2 j-1}$,	$\delta_{2 j}$	$k_{2 j-1}$,	$k_{2 j}$	$c_{2 j-1}$,	$c_{2 j}$	$\frac{c_{2 j-1}}{3}+\frac{c_{2 j^{2}}{ }^{k 2 j-1}}{3^{2}}$
2	-1	-1	1	1	0	0	0
3	-1	1	1	2	0	1	$\frac{1}{9}$
	1	- 1	2	1	1	0	$\frac{1}{3}$
4	- 1	-1	1	3	0	-1	$-\frac{2}{9}$
	-1	-1	3	1	- 1	0	$-\frac{1}{3}$
	1	1	2	2	1	0	$\frac{1}{3}$
5	- 1	1	1	4	0	3	$\frac{2}{3}$
	1	-1	2	3	1	-2	$-\frac{5}{9}$
	- 1	1	3	2	-1	1	$-\frac{5}{9}$
	1	-1	4	1	3	-1	$\frac{1}{9}$
6	-1	-1	1	5	0	-5	$-\frac{10}{9}$
	1	1	2	4	0	2	$\frac{8}{9}$
	-1	-1	3	3	-1	-1	$-\frac{11}{9}$
	1	1	4	2	3	0	1
	- 1	-1	5	1	-5	0	$-\frac{5}{3}$
7	-1	1	1	6	0	11	$\frac{22}{9}$
	1	-1	2	5	1	-6	-1
	- 1	1	3	4	-1	3	$\frac{7}{3}$
	1	-1	4	3	3	-2	$-\frac{23}{9}$
	- 1	1	5	2	- 5	1	$\frac{17}{9}$
	1	-1	6	1	11	-1	$-\frac{31}{9}$

TABLE 2. $\quad \delta_{2 j-2}=1$.

$\ell^{(j)}$	$\delta_{2 j-1}$,	δ_{2};	$k_{2 j-1}$,	$k_{2 j}$	$c_{2 j-1}$,	$c_{2 j}$	$\frac{c_{2 j-1}}{3}+\frac{c_{2 j}-2^{k 2 j-1}}{3^{2}}$
2	-1	-1	1	1	-1	0	$\frac{1}{3}$
3	-1	1	1	2	-1	1	$-\frac{1}{9}$
	1	-1	2	1	0	-1	$-\frac{4}{9}$
4	- 1	-1	1	3	-1	-1	$-\frac{5}{9}$
	-1	-1	3	1	-2	0	$\frac{1}{3}$
	1	1	2	2	0	0	0
5	- 1	1	1	4	-1	3	$-\frac{1}{9}$
	1	-1	2	3	0	-2	$-\frac{8}{9}$
	-1	1	3	2	-2	1	$\frac{2}{9}$
	1	-1	4	1	2	-1	$\frac{10}{9}$
6	-1	-1	1	5	-1	-5	$-\frac{13}{9}$
	1	1	2	4	0	2	$\frac{8}{9}$
	-1	-1	3	3	-2	-2	-3
	1	1	4	2	2	0	$\frac{2}{3}$
	-1	-1	5	1	-6	0	-2
7	-1	1	1	6	- 1	11	$\frac{19}{9}$
	1	-1	2	5	0	-6	$-\frac{24}{9}$
	-1	1	3	4	-2	3	2
	1	-1	4	3	2	-2	$-\frac{26}{g}$
	-1	1	5	2	-6	1	$\frac{46}{9}$
	1	-1	6	1	10	-1	$-\frac{34}{9}$.

We have

$$
\begin{aligned}
& \varphi_{j}\left(\lambda=\sum_{\text {admissible }\left(\mathrm{k}_{2 j-1}, \mathrm{k}_{2 j}\right)} \exp \left\{\frac{2 \pi i 2^{k^{(j-1)}} \lambda}{3^{2 j-2}}\left(\frac{c_{2 j-1}}{3}+\frac{c_{2 j} 2^{k_{2 j-1}}}{3^{2}}\right)\right\}\right. \\
& \cdot \pi\left(k_{2 j-1}, k_{2 j} \mid \delta_{2 j-2}, \delta_{2 j-1}, \delta_{2 j}, \ell^{(j)}\right)= \\
& =1-\sum_{\text {admissible }\left(\mathrm{k}_{2 \mathrm{j}-1}, \mathrm{k}_{2 \mathrm{j}}\right)}\left(1-\exp \left\{2 \pi i \frac{2^{k^{(j-1)} \lambda}}{3^{2 j-2}}\left(\frac{c_{2 j-1}}{3}+\frac{c_{2 j} 2^{k_{2 j-1}}}{3^{2}}\right)\right\}\right) . \\
& \cdot \pi\left(k_{2 j-1}, k_{2 j} \mid \delta_{2 j-2}, \delta_{2 j-1}, \delta_{2 j}, \ell^{(j)}\right)
\end{aligned}
$$

All expressions $1-\exp \left\{2 \pi i \frac{2^{k^{(j-1)}} \lambda}{3^{2 j-2}}\left(\frac{c_{2 j-1}}{3}+\frac{c_{22^{k} 2^{k j-1}}}{3^{2}}\right)\right\}$
have positive real parts. Therefore, if j is bad and $2 \leq \ell^{(j)} \leq 7$ then there should be

$$
\begin{equation*}
\left|\exp \left\{2 \pi i \frac{2^{k^{(j-1)}} \lambda}{3^{2 j-2}}\left(\frac{c_{2 j-1}}{3}+\frac{c_{2 j} 2^{k_{2 j-1}}}{3^{2}}\right)\right\}-1\right| \leq \frac{\text { const }}{n^{\gamma_{0}}} \tag{3}
\end{equation*}
$$

Here and further const is an absolute constant whose exact value plays no role in the proof.

Let us write

$$
\frac{2^{k^{(j-1)}} \lambda}{3^{2 j-2}}=3^{s} m_{2}^{(j-1)}+3 m_{1}^{(j-1)}+m_{0}^{(j-1)}+\theta_{j}
$$

where $s \geq 2, m_{0}^{(j-1)}$ and $m_{1}^{(j-1)}$ are integers, $0 \leq m_{0}^{(j-1)}, m_{1}^{(j-1)} \leq 2, m_{2}^{(j-1)}$ is not divisible by 3 and $\left|\theta_{j}\right| \leq \frac{1}{2}$.

Denote by $A_{1}\left(\left\{\delta_{j}, 0 \leq j \leq n\right\},\left\{k^{(j)}, 1 \leq j \leq n\right\}\right)$ the set of indices j for which $\delta_{2 j-2}=-1, \delta_{2 j-1}=1 \delta_{2 j}=-1, \ell^{(j)}=5$ or $\delta_{2 j-2}=1, \delta_{2 j-1}=-1, \delta_{2 j}=1, \ell^{(j)}=5$. In both cases one term in the expression for $\varphi_{j}(\lambda)$ has $k_{2 j-1}, k_{2 j}$ with $\frac{c_{2 j-1}}{3}+\frac{c_{22^{2}}{ }^{k} 2 j-1}{3^{2}}= \pm \frac{1}{9}$ (see Tables 1 and 2). Therefore,

$$
\left(3 m_{1}^{(j-1)}+m_{0}^{(j-1)}+\theta_{j}\right)\left(\frac{c_{2 j-1}}{3}+\frac{c_{2 j} 2^{k_{2 j-1}}}{3^{2}}\right)= \pm\left(3 m_{1}^{(j-1)}+m_{0}^{(j-1)}+\theta_{j}\right) \frac{1}{9}
$$

and in order that (3) were valid for this term we should have $m_{0}^{(j-1)}=m_{1}^{(j-1)}=0$, $\left|\theta_{j}\right| \leq \frac{\text { const }}{n^{\gamma} 0}$.

Denote by B_{1} the set of sequences $\left\{\delta_{j}, 0 \leq j \leq n\right\},\left\{k^{(j)}, 1 \leq j \leq n\right\}$ for which $\left|A_{1}\right| \geq b_{1} n$. The probability of the complement to B_{1} is exponentially small if b_{1} is sufficiently small.

Since we consider bad sequences the majority of $j \in A_{1}\left(\left\{\delta_{j}, 0 \leq j \leq n\right\}\right.$, $\left.\left\{k^{(j)}, 1 \leq j \leq \frac{n}{2}\right\}\right)$ consists of bad j. For bad $j \in A_{1}\left(\left\{\delta_{j}, 0 \leq j \leq n\right\},\left\{k^{(j)}, 1 \leq j \leq \frac{n}{2}\right\}\right)$ we have the representation (3) with $m_{0}=m_{1}=0$ and $\left|\theta_{j}\right| \leq \frac{\text { const }}{n^{\gamma} 0}$.

Assume that

$$
\begin{equation*}
\frac{2^{k^{(j-1)}} \lambda}{3^{2 j-2}}=3^{s} m_{2}^{(j-1)}+\theta_{j} \tag{4}
\end{equation*}
$$

for some integer $m_{2}^{(j-1)} \geq 1$ not divisible by $3, s \geq 2,\left|\theta_{j}\right| \leq \frac{\text { const }}{n^{\gamma 0}}$. Then

$$
\begin{equation*}
\frac{2^{k^{(j)}} \lambda}{3^{2 j}}=3^{s-2} \cdot 2^{\ell^{(j)}} m_{2}^{(j-1)}+\frac{2^{\ell^{(j)}}}{3^{2}} \theta_{j} \tag{5}
\end{equation*}
$$

Thus (5) gives the same representation as (4) for $\frac{2^{k^{(j)}} \lambda}{3^{2 j}}$ with $s^{\prime}=s-2, m_{2}^{(j)}=2^{\ell^{(j)}}$. $m_{2}^{(j-1)}, \theta_{j+1}=\frac{2^{\ell^{(j)}}}{3^{2}} \theta_{j}$.

A sequence of indices $j, j_{1} \leq j \leq j_{2}$, is called a cycle if
i) for all $j, j_{1} \leq j \leq j_{2}$, the representation

$$
\frac{2^{k^{(j)}} \lambda}{3^{2 j}}=3^{s_{j}} m_{2}^{(j)}+\theta_{j}
$$

with $s_{j} \geq 2,\left|\theta_{j}\right| \leq b_{2}$ is valid where b_{2} is another sufficiently small constant (see below);
ii) for $j=j_{1}-1$ and $j=j_{2}+1$ it is not valid and $\delta_{2 j_{2}}, \delta_{2 j_{2}+1}, \delta_{2 j_{2}+2}, \ell^{\left(j_{2}+1\right)}$ are such that $\ell^{\left(j_{2}+1\right)} \leq 7$ and at least one term in (2) is such that $\frac{c_{2 j_{2}}+1}{3}+\frac{c_{2 j_{2}} 2^{k_{2 j_{2}}+1}}{3^{2}}=\frac{t}{3^{2}}$ where t is an integer not divisible by 3 (see Tables 1 and 2).

Lemma 1. There exists a constant $\alpha, 0<\alpha<1$, such that for any cycle $\left[j_{1}, j_{2}\right]$

$$
\left|\varphi_{j_{2}+1}(\lambda)\right| \leq 1-\alpha
$$

Proof. A point j_{2} can be the right end of a cycle by one of the following two reasons.

1. For $j=j_{2}$

$$
\frac{2^{k^{\left(j_{2}\right)}} \lambda}{3^{2 j_{2}}}=3^{2} m_{2}^{\left(j_{2}\right)}+\theta_{j_{2}} \text { or } \frac{2^{k^{\left(j_{2}\right)}}}{3^{2 j_{2}}}=3^{3} \cdot m_{2}^{(j)}+\theta_{j_{2}}
$$

with $\left|\theta_{j_{2}}\right| \leq b_{2}$. Then
$\frac{2^{k^{\left(j_{2}+1\right)}} \lambda}{3^{2\left(j_{2}+1\right)}}=2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}+\theta_{j_{2}} \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}$ or $\frac{2^{k^{\left(j_{2}+1\right)}} \lambda}{3^{2\left(j_{2}+1\right)}}=3 \cdot 2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}+\theta_{j_{2}} \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}$.
Since $\ell^{\left(j_{2}+1\right)} \leq 7$ we have $\left|\theta_{j_{2}} \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}\right| \leq$ const b_{2}. Any product $2^{\ell\left(j_{2}+1\right)} \cdot m_{2}^{\left(j_{2}\right)}$ or $3 \cdot 2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}$ is not divisible by 9 . In view of ii) both products

$$
2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}\left(\frac{c_{2 j+1}}{3}+\frac{c_{2 j+2} 2^{k_{2 j+1}}}{3^{2}}\right) \text { or } 3 \cdot 2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}\left(\frac{c_{2 j+1}}{3}+\frac{c_{2 j+1} 2^{k_{2 j+1}}}{3^{2}}\right)
$$

are fractions with the denominator 3 or 9 . If b_{2} is small enough then

$$
\left|1-\exp \left\{2 \pi i \frac{2^{k^{\left(j_{2}+1\right)}} \lambda}{3^{2\left(j_{2}+1\right)}}\left(\frac{c_{2 j+1}}{3}+\frac{c_{2 j+2} 2^{k_{2 j+1}}}{3^{2}}\right)\right\}\right| \geq \alpha_{1}
$$

for some constant $\alpha_{1}>0$. This gives the statement of the lemma in this case.
2. For $j=j_{2}$

$$
\frac{2^{k^{\left(j_{2}\right)}} \lambda}{3^{2 j_{2}}}=3^{s} m_{2}^{\left(j_{2}\right)}+\theta_{j_{2}}
$$

where $s \geq 3,\left|\theta_{j_{2}}\right| \leq b_{2}$ and

$$
\frac{2^{k^{\left(j_{2}+1\right)} \lambda}}{3^{2\left(j_{2}+1\right)}}=3^{s-2} \cdot 2^{\ell\left(j_{2}+1\right)} m_{2}^{\left(j_{2}\right)}+\theta_{j_{2}} \cdot \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}
$$

with $\left|\theta_{j_{2}} \cdot \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}\right| \geq b_{2}$. Since $\ell^{\left(j_{2}+1\right)} \leq 7$ we have $\left|\theta_{j_{2}} \cdot \frac{2^{\ell\left(j_{2}+1\right)}}{3^{2}}\right| \leq b_{2}$ const. In this case

$$
\begin{aligned}
& \left|\exp \left\{2 \pi i \frac{2^{k^{\left(j_{2}+1\right)}} \lambda}{3^{2\left(j_{2}+1\right)}}\left(\frac{c_{2 j+1}}{3}+\frac{c_{2 j+2}}{3^{2}} \cdot 2^{k_{2 j+1}}\right)\right\}-1\right| \\
= & \left|\exp \left\{2 \pi i \theta_{j_{2}} \cdot \frac{2^{\ell^{\left(j_{2}+1\right)}}}{3^{2}} \cdot\left(\frac{c_{2 j+1}}{3}+\frac{c_{2 j+2}}{3^{2}} 2^{k_{2 j+1}}\right)\right\}-1\right| \geq \alpha_{2}
\end{aligned}
$$

for another constant $\alpha_{2}>0$. Lemma is proven.

We shall prove that with probability tending to 1 as $n \longrightarrow \infty$ the number of cycles is not less than $\alpha_{3} \ell n n$ for another constant α_{3}. In view of Lemma 1, this gives the estimate $\left|\prod_{j=1}^{n / 2} \varphi_{j}(\lambda)\right| \leq(1-\alpha)^{\alpha_{3} \ln n}=\frac{1}{n^{\gamma_{2}}}$ with $\gamma_{2}=-\alpha_{3} \ln (1-\alpha)$.

A segment $\left[j_{1}, j_{2}\right]$ is called pre-cycle if for all $j, j_{1} \leq j \leq j_{2}$
$\left.i^{\prime}\right)$ the representation

$$
\frac{2^{k^{(j)}} \lambda}{3^{2 j}} 3^{s_{j}} m_{2}^{(j)}+\theta_{j}
$$

with $s_{j} \geq 2$ and $m_{2}^{(j)}$ not divisible by $3,\left|\theta_{j}\right| \leq b_{2}$ is valid.
ii') for $j=j_{1}-1, j=j_{2}+1$ it is not valid. Any point j with the property i^{\prime}) can be included in a unique way in a pre-cycle. The difference $j_{2}-j_{1}=d\left(\left[j_{1}, j_{2}\right]\right)$ is called the length of the pre-cycle. It is clear that $\theta_{j}=\frac{2^{k^{(j)}-k^{\left(j_{1}\right)}}}{3^{2\left(j-j_{1}\right)}} \theta_{j_{1}}$ for $j \in\left[j_{1}, j_{2}\right]$ and $\left|\theta_{j_{1}}\right| \geq \frac{1}{3^{3_{1}}}$. Therefore the following lemma holds.

Lemma 2. There exist positive constants α_{4}, α_{5} such that for given j_{1}, the conditional probability that $d\left(\left[j_{1}, j_{2}\right]\right) \geq \alpha_{4} j_{1}$ is less than $\exp \left\{-\alpha_{5} j_{1}\right\}$.

Proof. Assuming that α_{4} is chosen consider the situation $d\left(\left[j_{1}, j_{2}\right]\right) \geq \alpha_{4} j_{1}$. Then for $j-j_{1}=\left[\alpha_{4} j_{2}\right]$

$$
\frac{2^{k^{(j)}-k^{\left(j_{1}\right)}}}{3^{2\left(j-j_{1}\right)}} \cdot\left|\theta_{j_{1}}\right| \leq b_{2}
$$

which implies

$$
2^{k^{(j)}-k^{\left(j_{1}\right)}} \leq \frac{b_{2} \cdot 3^{2\left(j-j_{1}\right)}}{\left|\theta_{j_{1}}\right|} \leq b_{2} \cdot 3^{2 j}
$$

since $\left|\theta_{j_{1}}\right| \geq \frac{1}{3^{2 j_{1}}}$. This gives

$$
\begin{align*}
& k^{(j)}-k^{\left(j_{1}\right)} \leqq \frac{\ln b_{2}+2 j \ln 3}{\ln 2}=\frac{\ln b_{2}+2 j_{1} \ln 3+2 \alpha_{4} j_{1} \ln 3+O(1)}{\ln 2}= \\
& =\frac{j_{1}\left(2 \ln 3+2 \alpha_{4} \ln 3\right)+\ln b_{2}+O(1)}{\ln 2} \tag{6}
\end{align*}
$$

In a typical situation $k^{(j)}-k^{\left.j_{1}\right)}$ grows as $2\left(j-j_{1}\right)$ which is equivalent to $4 \alpha_{4} j_{1}$ while the main term in the last expression grows as $\frac{2 \ell n 3+2 \alpha_{4} \ell n 3}{\ell n 2} \cdot j_{1}$. Therefore, for large enough α_{4} we have the inequality $\frac{2 \ln 3+2 \alpha_{4} \ln 3}{\ln 2}<4 \alpha_{4}$ and the probability of the sequences
$k^{(j)}-k^{\left(j_{1}\right)}$ satisfying (6) can be estimated with the help of the usual methods in the theory of probabilities of large deviations. Lemma is proven.

Consider the segment $\left[n^{\gamma_{3}}, n\right]$ for any $\gamma_{3}, 0<\gamma_{3}<1$. The value of γ_{3} will determine the estimate of some probabilities below. It follows easily from Lemma 2 and from the fact that the majority of the indices j is bad that with probability tending to 1 the number of pre-cycles which intersect $\left[n^{\gamma_{3}}, n\right]$ is greater than $\alpha_{6} \ln n$ for another constant $\alpha_{6}>0$.

The difference between pre-cycles and cycles is in the behavior at the right endpoint. Suppose that j_{1} is the beginning of a pre-cycle, $m_{2}\left(j_{1}\right), \theta_{j_{1}}$ are the corresponding parameters of the initial point. Under this condition the conditional probability that a pre-cycle is a cycle is greater than some constant $\alpha_{7}>0$. By this reason with probability tending to 1 the number of cycles is greater than $\alpha_{8} \ln n$ for some constant $\alpha_{8}>0$. This implies (1). Theorem is proven.

The proof presented in this paper is an improvement of the proof of a similar statement given in [1]. It gives the power-like decay of the conditional characteristic function. However, presumably its actual decay is exponential.

The same methods allow to prove the main theorem for conditional distributions of $\xi_{1} \ldots \xi_{n}$ under conditions $\xi_{1}+\xi_{2}+\ldots+\xi_{n}=k,|k-2 n|=O(\sqrt{n})$.

The financial supports from NSF, grant DMS-0070698 and RFFI, grant 99-01-00314 are highly appreciated.

Reference

1. Ya. G. Sinai, "Uniform Distribution in the $(3 x+1)$-Problem," Moscow Mathematical Journal, in press.

[^0]: *Mathematics Department of Princeton University \& Landau Institute of Theoretical Physics

