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Let ξ1, ξ2, . . . , ξn be a sequence of independent random variables taking positive in-
teger values and P{ξj = k} = 1

2k , k ≥ 1. We put δj = −1 if kj is odd, δj = +1 if kj is

even, cj = c(kj, δj−1) =
2kj δj−1−3δj−1

6
and consider the expression

∑
n =

∑
(ξ1, ξ2, . . . , ξn, δ0) =

= 3n−1c1 + 3n−2c22
ξ1 + 3n−3 · c3 2ξ2+ξ1 +

+ . . . + 3cn−1 · 2ξn−2+ξn−3+...+ξ1 + cn2ξn−1+...+ξ1

Clearly,
∑

n is an integer-valued random variable and for each σ, 0 ≤ σ < 3n, we

consider
∑

n ≡ σ(mod 3n) and put μn

(
σ
3n

)
=

∑
∑

n
≡σ(mod 3n)

1

2k1+k2+...+kn+1
.

The last summation goes over all values of ξ1, ξ2, . . . , ξn and δ0 which give σ(mod3n).

μn is a probability measure on the interval [0, 1]. The main result of this paper is the
following Theorem.

Main Theorem. As n −→ ∞ the measures μn converge weakly to the uniform

measure.

The strongest version of this theorem where individual probabilities μn

(
σ
3n

)
converge

to 1
3n is wrong. Indeed, one can write down the probability distribution of the first digits

in the triadic expansion of
∑

n and see that it is not uniform. A more deep analysis of
the distribution of σn can be crucial for the progress in the famous (3x + 1)-problem.

Proof. The statement of the theorem will follow if we prove that for any integer λ �= 0

lim
n−→∞

∑
k1,...,kn,δ0

1

2k1+...+kn+1
exp

{
2πi

∑
n

3n
λ
}

= 0 . (1)

In this expression k1, k2, . . . , kn are the values of ξ1, ξ2, . . . , ξn. We may assume that λ is
not divisible by 3 and n is even. Other cases require trivial changes.

Denote k(j) = k1 + k2 + . . . + k2j, �(j) = k(j) − k(j−1) = k2j−1 + k2j . Fix the values

of δ0, δ1, . . . , δn and of all k(j), j = 1, . . . , n
2
. With respect to the induced conditional

distribution all pairs (k2j−1, k2j) are mutually independent and we can write
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∑
k1,...,kn,δ0

1

2k1+...+kn+1
exp

{
2πi

∑
n

3n
λ
}

=

=
∑

δ0,δ1,...,δn

k(1),k(2),...,k(n/2)

P
{
δ0, δ1, . . . , δn; k(1), k(2), . . . , k(n/2)

} n/2∏
j=1

ϕj(λ)

where ϕj(λ) is the conditional characteristic function,

ϕj(λ) =
∑

admissible k2j−1,k2j

π
(
k2j−1, k2j|δ2j−2, δ2j−1, �

(j)
)
·

· exp

{
2πi 2k

(j−1)

32j−2 λ
(

c2j−1

3
+

c2j2
k2j−1

32

)}
,

(2)

π(k2j−1, k2j|δ2j−2, δ2j−1, δ2j , �
(j)) are the corresponding conditional probabilities. Since

δ2j−1, δ2j are fixed the set of possible pairs (k2j−1, k2j) is a subset of the whole set of pairs

for which k2j−1 + k2j = k(j) − k(j−1) = �(j) is given and the conditional distribution is
uniform on this subset.

The tables on pages 4 and 5 show these subsets and c2j−1, c2j for several first value

of �(j).

For given δ0, δ1, . . . , δn and k(1), . . . , k(n/2) the index j is called good if |ϕj(λ)| ≤ 1− 1
nγ0

where γ0 > 0 is a constant which will be specified later. Otherwise it is called bad. I(g)

is the notation for the set of good indices, I(b) = I � I(g).

A sequence {δj , 0 ≤ j ≤ n}, {k(j), 1 ≤ j ≤ n} is called good if |I(g)| ≥ nγ1 , where γ1

is another constant, γ1 > γ0. Otherwise, it is called bad.

For good sequences

n/2∏
j=1

|ϕj(λ) | ≤ ∏
j∈I(g)

|ϕj(λ) | ≤
(
1 − 1

nγ0

)nγ1

≤ exp
{
− const nγ1−γ0

}
.

The case of bad sequences for which |I(g)| ≤ nγ1 or |I(b)| ≥ n − nγ1 should be studied
in detail.
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Table 1. δ2j−2 = −1.

�(j) δ2j−1, δ2j k2j−1, k2j c2j−1, c2j
c2j−1

3 + c2j2
k2j−1

32

2 -1 -1 1 1 0 0 0

3 -1 1 1 2 0 1 1
9

1 - 1 2 1 1 0 1
3

4 - 1 - 1 1 3 0 - 1 − 2
9

-1 -1 3 1 - 1 0 − 1
3

1 1 2 2 1 0 1
3

5 - 1 1 1 4 0 3 2
3

1 - 1 2 3 1 -2 − 5
9

- 1 1 3 2 -1 1 − 5
9

1 - 1 4 1 3 - 1 1
9

6 -1 -1 1 5 0 -5 − 10
9

1 1 2 4 0 2 8
9

-1 -1 3 3 -1 -1 − 11
9

1 1 4 2 3 0 1

- 1 - 1 5 1 -5 0 − 5
3

7 -1 1 1 6 0 11 22
9

1 - 1 2 5 1 -6 -1

- 1 1 3 4 -1 3 7
3

1 - 1 4 3 3 - 2 − 23
9

- 1 1 5 2 - 5 1 17
9

1 - 1 6 1 11 -1 − 31
9
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Table 2. δ2j−2 = 1.

�(j) δ2j−1, δ2; k2j−1, k2j c2j−1, c2j
c2j−1

3 + c2j−2k2j−1

32

2 -1 -1 1 1 -1 0 1
3

3 -1 1 1 2 -1 1 − 1
9

1 -1 2 1 0 -1 − 4
9

4 - 1 -1 1 3 -1 -1 − 5
9

-1 -1 3 1 -2 0 1
3

1 1 2 2 0 0 0

5 - 1 1 1 4 -1 3 − 1
9

1 -1 2 3 0 -2 − 8
9

-1 1 3 2 -2 1 2
9

1 -1 4 1 2 -1 10
9

6 -1 -1 1 5 -1 -5 − 13
9

1 1 2 4 0 2 8
9

-1 -1 3 3 -2 -2 -3

1 1 4 2 2 0 2
3

-1 -1 5 1 -6 0 -2

7 -1 1 1 6 - 1 11 19
9

1 - 1 2 5 0 -6 − 24
9

-1 1 3 4 -2 3 2

1 -1 4 3 2 -2 − 26
g

-1 1 5 2 -6 1 46
9

1 -1 6 1 10 -1 − 34
9 .
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We have

ϕj(λ =
∑

admissible (k2j−1,k2j)

exp

⎧⎨
⎩2πi 2k(j−1)

λ

32j−2

(
c2j−1

3
+

c2j 2k2j−1

32

)⎫⎬
⎭ ·

·π
(
k2j−1, k2j | δ2j−2, δ2j−1, δ2j , �(j)

)
=

= 1 − ∑
admissible (k2j−1,k2j)

(
1 − exp

{
2πi 2k(j−1)

λ
32j−2

(
c2j−1

3
+

c2j2
k2j−1

32

)})
·

·π
(
k2j−1, k2j | δ2j−2, δ2j−1, δ2j , �

(j)
)

.

All expressions 1 − exp
{
2πi 2k(j−1)

λ
32j−2

(
c2j−1

3
+

c2j2
k2j−1

32

)}

have positive real parts. Therefore, if j is bad and 2 ≤ �(j) ≤ 7 then there should be

∣∣∣∣∣∣exp

⎧⎨
⎩2πi

2k(j−1)
λ

32j−2

(
c2j−1

3
+

c2j2
k2j−1

32

)⎫⎬
⎭ − 1

∣∣∣∣∣∣ ≤
const

nγ0
(3)

Here and further const is an absolute constant whose exact value plays no role in the

proof.

Let us write
2k(j−1)

λ

32j−2
= 3s m

(j−1)
2 + 3 m

(j−1)
1 + m

(j−1)
0 + θj

where s ≥ 2, m
(j−1)
0 and m

(j−1)
1 are integers, 0 ≤ m

(j−1)
0 , m

(j−1)
1 ≤ 2, m

(j−1)
2 is not

divisible by 3 and |θj | ≤ 1
2
.

Denote by A1({δj , 0 ≤ j ≤ n}, {k(j), 1 ≤ j ≤ n}) the set of indices j for which

δ2j−2 = −1, δ2j−1 = 1 δ2j = −1, �(j) = 5 or δ2j−2 = 1, δ2j−1 = −1, δ2j = 1, �(j) = 5. In

both cases one term in the expression for ϕj(λ) has k2j−1, k2j with
c2j−1

3
+

c2j2
k2j−1

32 = ±1
9

(see Tables 1 and 2). Therefore,

(
3m

(j−1)
1 + m

(j−1)
0 + θj

)(c2j−1

3
+

c2j2
k2j−1

32

)
= ±

(
3m

(j−1)
1 + m

(j−1)
0 + θj

) 1

9

and in order that (3) were valid for this term we should have m
(j−1)
0 = m

(j−1)
1 = 0,

|θj | ≤ const
nγ0

.
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Denote by B1 the set of sequences {δj , 0 ≤ j ≤ n}, {k(j), 1 ≤ j ≤ n} for which
|A1| ≥ b1n. The probability of the complement to B1 is exponentially small if b1 is

sufficiently small.

Since we consider bad sequences the majority of j ∈ A1({δj , 0 ≤ j ≤ n},
{k(j), 1 ≤ j ≤ n

2
}) consists of bad j. For bad j ∈ A1({δj , 0 ≤ j ≤ n}, {k(j), 1 ≤ j ≤ n

2
})

we have the representation (3) with m0 = m1 = 0 and |θj | ≤ const
nγ0

.

Assume that
2k(j−1)

λ

32j−2
= 3s m

(j−1)
2 + θj (4)

for some integer m
(j−1)
2 ≥ 1 not divisible by 3, s ≥ 2, |θj | ≤ const

nγ0
. Then

2k(j)
λ

32j
= 3s−2 · 2�(j) m

(j−1)
2 +

2�(j)

32
θj . (5)

Thus (5) gives the same representation as (4) for 2k(j)
λ

32j with s′ = s − 2, m
(j)
2 = 2�(j)·

m
(j−1)
2 , θj+1 = 2�(j)

32 θj .

A sequence of indices j, j1 ≤ j ≤ j2, is called a cycle if

i) for all j, j1 ≤ j ≤ j2, the representation

2k(j)
λ

32j
= 3sj m

(j)
2 + θj

with sj ≥ 2, |θj | ≤ b2 is valid where b2 is another sufficiently small constant (see
below);

ii) for j = j1 − 1 and j = j2 + 1 it is not valid and δ2j2 , δ2j2+1, δ2j2+2, �(j2+1) are such

that �(j2+1) ≤ 7 and at least one term in (2) is such that
c2j2

+1

3
+

c2j2
2

k2j2
+1

32 = t
32

where t is an integer not divisible by 3 (see Tables 1 and 2).

Lemma 1. There exists a constant α, 0 < α < 1, such that for any cycle [j1, j2]

|ϕj2+1(λ)| ≤ 1 − α .

Proof. A point j2 can be the right end of a cycle by one of the following two reasons.
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1. For j = j2

2k(j2)
λ

32j2
= 32 m

(j2)
2 + θj2 or

2k(j2)

32j2
= 33 · m(j)

2 + θj2

with |θj2| ≤ b2. Then

2k(j2+1)
λ

32(j2+1)
= 2�(j2+1)

m
(j2)
2 + θj2

2�(j2+1)

32
or

2k(j2+1)
λ

32(j2+1)
= 3 · 2�(j2+1)

m
(j2)
2 + θj2

2�(j2+1)

32
.

Since �(j2+1) ≤ 7 we have |θj2
2�(j2+1)

32 | ≤ const b2. Any product 2�(j2+1) · m
(j2)
2 or

3 · 2�(j2+1)
m

(j2)
2 is not divisible by 9. In view of ii) both products

2�(j2+1)

m
(j2)
2

(
c2j+1

3
+

c2j+22
k2j+1

32

)
or 3 · 2�(j2+1)

m
(j2)
2

(
c2j+1

3
+

c2j+12
k2j+1

32

)

are fractions with the denominator 3 or 9. If b2 is small enough then

∣∣∣∣∣∣1 − exp

⎧⎨
⎩2πi

2k(j2+1)
λ

32(j2+1)

(
c2j+1

3
+

c2j+22
k2j+1

32

)⎫⎬
⎭
∣∣∣∣∣∣ ≥ α1

for some constant α1 > 0. This gives the statement of the lemma in this case.

2. For j = j2

2k(j2)
λ

32j2
= 3s m

(j2)
2 + θj2

where s ≥ 3, |θj2| ≤ b2 and

2k(j2+1)
λ

32(j2+1)
= 3s−2 · 2�(j2+1)

m
(j2)
2 + θj2 · 2�(j2+1)

32

with
∣∣∣∣ θj2 · 2�(j2+1)

32

∣∣∣∣ ≥ b2. Since �(j2+1) ≤ 7 we have
∣∣∣∣θj2 · 2�(j2+1)

32

∣∣∣∣ ≤ b2 const. In

this case

∣∣∣∣∣∣exp

⎧⎨
⎩2πi

2k(j2+1)
λ

32(j2+1)

(
c2j+1

3
+

c2j+2

32
· 2k2j+1

)⎫⎬
⎭ − 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣exp

⎧⎨
⎩2πi θj2 · 2�(j2+1)

32
·
(

c2j+1

3
+

c2j+2

32
2k2j+1

)⎫⎬
⎭− 1

∣∣∣∣∣∣ ≥ α2

for another constant α2 > 0. Lemma is proven.
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We shall prove that with probability tending to 1 as n −→ ∞ the number of cycles
is not less than α3 �n n for another constant α3. In view of Lemma 1, this gives the

estimate

∣∣∣∣∣∣
n/2∏
j=1

ϕj(λ)

∣∣∣∣∣∣ ≤ (1 − α)α3 �n n = 1
nγ2

with γ2 = −α3 �n(1 − α).

A segment [j1, j2] is called pre-cycle if for all j, j1 ≤ j ≤ j2

i′) the representation

2k(j)
λ

32j
3sj m

(j)
2 + θj

with sj ≥ 2 and m
(j)
2 not divisible by 3, |θj | ≤ b2 is valid.

ii′′) for j = j1 − 1, j = j2 + 1 it is not valid. Any point j with the property i′) can be
included in a unique way in a pre-cycle. The difference j2 − j1 = d([j1, j2]) is called

the length of the pre-cycle. It is clear that θj = 2k(j)−k(j1)

32(j−j1) θj1 for j ∈ [j1, j2] and

|θj1| ≥ 1
32j1

. Therefore the following lemma holds.

Lemma 2. There exist positive constants α4, α5 such that for given j1, the conditional

probability that d([j1, j2]) ≥ α4 j1 is less than exp{−α5 j1}.

Proof. Assuming that α4 is chosen consider the situation d([j1, j2]) ≥ α4 j1. Then for

j − j1 = [α4 j2]

2k(j)−k(j1)

32(j−j1)
· |θj1| ≤ b2

which implies

2k(j)−k(j1) ≤ b2 · 32(j−j1)

|θj1 |
≤ b2 · 32j

since |θj1| ≥ 1
32j1

. This gives

k(j) − k(j1) � �n b2+2j �n 3
�n 2

= �n b2 + 2j1 �n 3+2α4 j1 �n 3+O(1)
�n 2

=

= j1(2 �n 3+2α4 �n 3)+ �n b2 +O(1)
�n 2

(6)

In a typical situation k(j) − kj1) grows as 2(j − j1) which is equivalent to 4α4j1 while the

main term in the last expression grows as 2�n 3+2α4�n 3
�n 2

· j1. Therefore, for large enough
α4 we have the inequality 2�n 3+ 2 α4 �n 3

�n 2
< 4 α4 and the probability of the sequences
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k(j) − k(j1) satisfying (6) can be estimated with the help of the usual methods in the
theory of probabilities of large deviations. Lemma is proven.

Consider the segment [nγ3 , n] for any γ3, 0 < γ3 < 1. The value of γ3 will determine
the estimate of some probabilities below. It follows easily from Lemma 2 and from the

fact that the majority of the indices j is bad that with probability tending to 1 the
number of pre-cycles which intersect [nγ3 , n] is greater than α6 �n n for another constant

α6 > 0.

The difference between pre-cycles and cycles is in the behavior at the right end-

point. Suppose that j1 is the beginning of a pre-cycle, m2(j1), θj1 are the corresponding
parameters of the initial point. Under this condition the conditional probability that a

pre-cycle is a cycle is greater than some constant α7 > 0. By this reason with probability
tending to 1 the number of cycles is greater than α8 �n n for some constant α8 > 0. This

implies (1). Theorem is proven.

The proof presented in this paper is an improvement of the proof of a similar state-

ment given in [1]. It gives the power-like decay of the conditional characteristic function.
However, presumably its actual decay is exponential.

The same methods allow to prove the main theorem for conditional distributions of
ξ1 . . . ξn under conditions ξ1 + ξ2 + . . . + ξn = k, |k − 2n| = O(

√
n).
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