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In our joint paper [1] we proposed a quasi-linear approximation for the 3D-Navier-

Stokes system on the whole space R3. It was constructed for Fourier transforms

ũ(k, t) = {ũ1(k, t) , ũ2(k, t) , ũ3(k, t)} of the incompressible vector fields u(x, t) = (u1(x, t),

u2(x, t), u3(x, t))), div u = 0. Here x = (x1, x2, x3) ∈ R3, k = (k1, k2, k3) ∈ R3 and ũ is

pure imaginary and odd. Putting ũ(k, t) = i v(k, t) with v(−k, t) = −v(−k, t) we can

write our approximation as a system of quasi-linear equations (see [1]):

∂vi(k, t)

∂t
+

3∑
s=1

Bs
∂vi(k, t)

∂ks
= A

(ν)
i , i = 1, 2, 3 (1)

3∑
i=1

ki vi(k, t) = 0 (2)

where

Aνi = A
(ν)
i (k, v, t) = −ν|k|2 vi(k, t) +

+
3∑
j=1

vj(k, t) aji(t) −
2 ki
|k|2

3∑
j=1

3∑
`=1

vj(k, t) k` aj`(t) ,

and aij(t) =
∫
R3
ki vj(k, t)dk are the first moments of vj with respect to the space

variables, ν > 0 is the viscosity and Bs = Bs(k, t) =
3∑
j=1

asj(t)kj.

By putting ν = 0 we get a similar approximation for the Euler system describing the

dynamics of the free ideal liquid in R3.

In what follows we consider the system (1) and (2) for ν ≥ 0 satisfying at t = 0

the incompressibility condition (2). As was shown in [1] any solution v(k, t) satisfies the

incompressibility condition (2) for all t for which a solution exists.
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The system (1) has characteristics which are described by the system of equations

d ki(t)

dt
= Bi , i = 1, 2, 3 (3)

Along solutions of (3) the system (1) becomes a system of ordinary differential equations

dvi(t)

dt
= − ν|k|2 vi(t) +

3∑
j=1

vj(t)aji(t) −

− 2ki
|k|2

3∑
j=1

3∑
`=1

vj(t)k` · aj`(t), i = 1, 2, 3 (4)

3∑
j=1

kj(t) vj(t) = 0 .

The system (3) and (4) has finite-dimensional versions if we assume that initial conditions

v(k, 0) are non-zero only for a finite set of points k(n) = k(n)(0), 1 ≤ n ≤ N , and the

integrals giving aij(t) are replaced by the Riemannian sums Aij(t) = 1
N

N∑
n=1

k
(n)
i (t)v

(n)
j (t).

Consider the 3 × 3-matrix A(t) = {aij(t)}. Then our finite-dimensional system of

ODE which is a system of 6N equations can be written in the form:

dk(m)(t)

dt
= A(t) k(m)(t) (5)

dv(m)(t)

dt
= − ν |k(m)(t)|2 v(m)(t) + At(t)v(m)(t)

− 2 k(m)(t)

|k(m)(t)|2
(v(m)(t), A(t) k(m)(t)) (6)

(k(m)(t), v(m)(t)) = 0, 1 ≤ n ≤ N ,

where At is the transposed of A.

Some properties of the system (5) and (6).

1) Matrix elements of A(t) do not depend explicitly on ν.
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2) tr A(t) = 0.

3) For any three numbers 1 ≤ p, q, r ≤ N the oriented volume D(p, q, r) of the parallel

piped generated by k(p)(t), k(q)(t), k(r)(t) is the first integral of (5) and (6).

4) detA(t) depends only on v(m)(t), 1 ≤ m ≤ N .

The property 1) is obvious, the properties 2) and 3) are proven in [1]. To prove the

property 4) we remark that

detA(t) =
1

N3

∑
1≤` ,m,n≤N

∑
(vi1 ,vi2 ,vi3 )

k
(`)
1 v

(`)
i1 k

(m)
2 · v(m)

`2
·

· k(n)
3 vi3

(n) (−1)σ(i1,i2,i3) =
1

N3

∑
1≤` ,m,n≤N

D(`,m, n) v
(`)
1 v

(m)
2 v

(n)
3

where the second sum is taken over all permutations of (1, 2, 3) and σ(i1, i2, i3) = 0 for

even permutations and 1 for odd. Thus the property 4 is proven.

In [2] the case of two particles N = 2 was studied for ν > 0. The main result of [2]

was the following theorem.

Theorem 1 : Let ν > 0. For any initial condition k(1)(0) 6= 0, k(2)(0) 6= 0, v(1)(0),

v(2)(0) satisfying (6) the solution of (5) exists for all t > 0 and

1) there exist non-zero vectors k(1)(∞), k(2)(∞), depending on initial conditions such

that

lim
t−→∞

k(i)(t) = k(i)(∞), i = 1, 2 ;

2) lim
t−→∞

v(i)(t) = 0 , i = 1, 2.

Beginning with this moment we consider N = 2 and ν = 0. The system (5) can be

written in a more compact form:
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d k
(1)
i (t)

dt
= k

(2)
i (t)V (2)(t) ,

d k
(2)
i (t)

dt
= k

(1)
i (t)V (1)(t) , (7)

d v
(1)
i (t)

dt
= v

(2)
i (t)V (1)(t) − 4 k

(1)
i (t)

|k(1)(t)|2
V (1)(t)V (2)(t)

d v
(2)
i (t)

dt
= v

(1)
i (t)V (2)(t) − 4 k

(2)
i (t)

|k(2)(t)|2
V (1)(t)V (2)(t) ,

i = 1, 2, 3

where V (1)(t) = (k(2)(t) , v(2)(t)), V (2)(t) = (k(1)(t) , v(2)(t)) and incompressibility con-

dition
3∑
i=1

k
(j)
i (t) v

(j)
i (t) = 0 , j = 1, 2 . (8)

Lemma 1 : The components of the vector J = (J1, J2, J3) = [k(1)(t), k(2)(t)] and

I1 = |k(1)(t)|2 V (1)(t), I2 = |k(2)(t)|2 V (2)(t) are the first integrals of the system (7)

and (8).

The first three integrals are also the first integrals for ν > 0 and the proof remains

the same (see [2]). I1 and I2 are the first integrals only for ν = 0. The statement follows

from direct checking.

Lemma 2 : There exists a function C0 of initial conditions such that

(k(1)(t) , k(2)(t)) = (I1 + I2)t + C0 .
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Proof: It is clear that

d(k(1)(t) , k(2)(t))

dt
=

3∑
i=1

k
(1)
i (t)

d k
(2)
i (t)

dt
+

+
3∑
i=1

d k
(1)
i (t)

dt
· k(2)

i (t) = |k(1)|2 · V (1)(t) +

+ |k(2)(t)|2 · V (2)(t) = I1 + I2 .

Lemma 3 : Let I1 6= 0, I2 6= 0. There exists another function C1 of initial conditions

such that

|k(2)(t)| = C1 · |k(1)(t)|
I1
I2 .

Proof: It is easy to see that
d k

(1)
i (t)

dt
= k

(2)
i (t) · I2

|k(2)(t)|2
= I2 ·

∂

∂ k
(2)
2

`n|k(2)(t)|.

Therefore

3∑
i=1

d k
(1)
i (t)

dt
· d k

(2)
i (t)

dt
= I2 ·

3∑
i=1

∂ `n|k(2)(t)|
∂ k

(2)
i

· d k
(2)
i

dt
=

= I2
d

dt
`n |k(2)(t)| =

d

dt
I2 · |k(2)(t)|

because I2 is the first integral. Changing the indices 1 and 2 we have
3∑
i=1

d k
(1)
i (t)

dt
·

d k
(2)
i (t)

dt
=

d

dt
(I1 `n|k(1)(t)|). Therefore

d

dt
(I1 `n|k(1)(t)|) =

d

dt
(I2 `n|k(2)(t)|)

and

|k(2)(t)| = C1 · |k(1)(t)|
I1
I2 .

Lemma is proven.

The behavior of solutions of the system (7) and (8) depends on the values of the first

integrals I1, I2 and the length |J | of the vector |J |. We shall consider different cases.
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I. |J | = 0. In this case the vectors k(1)(t), k(2)(t) are proportional to each other,

k(1)(t) = a(t) k(2)(t), a(t) 6= 0 and V (1)(t) = a−1(t), (k(1)(t), v(1)(t)) = 0. There-

fore, k(2)(t) = k(2)(0), v(1)(t) = v(1)(0). In the same way, V (2)(t) = a(t)(k(2)(t),

v(2)(t)) = 0 and v(2)(t) = v(2)(0), k(2)(t) = k(2)(0).

II. |J | 6= 0, I1 = I2 = 0. In this case V (1)(t) = V (2)(t) = 0, v(1)(t) = v(1)(0),

v(2)(t) = v(2)(0), k(1)(t) = k(1)(0), k(2)(t) = k(2)(0).

III. |J | 6= 0, I1 6= 0, I2 = 0. In this case V (2)(t) = 0 and therefore v(2)(t) = v(2)(0),

k(1)(t) = k(1)(0), V (1)(t) = I1
|k(1)(0)|2 . From Lemmas 2 and 3

|k(1)(t)|2 · |k(2)(t)|2 = (k(1)(t) , k(2)(t))2 + |[k(1)(t), k(2)(t)]|2 = (I1t + C0)2 + |J |2 .

Therefore |k(2)(t)| = |k(1)(0)|−1 ((I1t + C0)2 + |J |2) and |k(2)(t)| −→ ∞ as t −→ ∞.

Denote by ϕ(t) the angle between k(2)(t) and k(1)(t). We can write |ctgϕ(t)| = I1t+C0

|J | .

This shows that |k(2)(t)| −→ ∞ and its direction tends to the direction of k(1)(0) if I1 > 0

or −k(1)(0) if I1 < 0.

For the components of the vector v(1)(t) we have the equation

dv
(1)
i (t)

dt
= v

(2)
i (t)V (1)(t) = v

(2)
i (0) · I1

|k(1)(0)|2

From the last equation it follows that v(1)(t) grows linearly in time in the direction

of v(2)(0) if I1 > 0 and −v(2)(0) if I1 < 0.

IV. |J | 6= 0, I1 = 0, I2 6= 0.

This case is reduced to the previous one if we interchange the numbers of the

particles.

V. |J | 6= 0, I1 = −I2 6= 0.

In this case (k(1)(t), k(2)(t)) = C0, |k(1)(t)|2 · |k(2)(t)|2 = C1. The angle between

k(1)(t), k(2)(t) does not depend on t because cos ϕ(t) = C0√
C1

. Also
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V (2)(t) =
I2

|k(2)(t)|2
=

I2 · |k(1)|2

C1

. Therefore

d |k(1)(t)|2

dt
= 2(k(1)(t) , k(2)(t))V (2)(t) =

=
2 · C0 · I2

C1

· |k(2)(t)|2

and

|k(1)(t)|2 = | k(1)(0)|2 e
2C0 I2
C1

t
. (9)

In the same way

|k(2)(t)|2 = |k(2)(0)|2 e
2C0 I1
C1

t
. (10)

Assume that C0 I2 > 0. Then C0 I1 < 0 and the formulas (9) and (10) show that

|k(1)(t)|2 = |k(1)(0)|2 e−C2t ,

|k(2)(t)|2 = |k(2)(0)|2 eC2t

where C2 = −2C0 I2
C1

. This gives lim
t−→∞

|k(1)(t)| = 0, lim
t−→∞

|k(2)(t)| = ∞.

The estimation of |v(i)(t)| , i = 1, 2 is based on a trick which we shall use also in the

other remaining cases. The vectors k(1)(t), k(2)(t), J constitute a non-orthogonal basis

in R3 because J ⊥ k(1)(t), J ⊥ k(2)(t) and k(1)(t), k(2)(t) are linearly independent since

J = [k(1)(t) , k(2)(t)] 6= 0. For each t we can write

v(i)(t) = ai(t) J + bi(t) k
(1)(t) + ci(t) k

(2)(t) , i = 1, 2 . (11)

Taking inner products of both sides of (11) with J, k(1)(t), k(2) and using the incompress-

ibility condition we get two systems of three linear equations for a1(t), b1(t), c1(t) and

a2(t), b2(t), c2(t). Solving them we have the explicit expressions for all coefficients:
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a1(t) =
(v(1)(t), J)

|J |2
, b1(t) =

−2V (1)(t)(k(1)(t), k(2)(t))

|J |2
,

c1(t) =
2V (1)(t) |k(1)(t)|2

|J |2

(12′)

and

a2(t) =
(v(2)(t) J)

|J |2
, b2(t) =

2V (2)(t) |k(2)(t)|2

|J |2
,

c2(t) =
−2V (2)(t) (k(1)(t) , k(2)(t))

|J |2

(12′′)

In deriving (12′), (12′′) we used the formula |k(1)(t)|2 |k(2)(t)|2− (k(1)(t), k(2)(t))2 = |J |2.

From (12′), (12′′) one gets the following system of ODE

da1(t)

dt
= a2(t)V (1)(t)

d a2(t)

dt
= a1(t)V (2)(t) (13)

Using the lemmas 1,2,3 we come to the final expressions for bi(t), ci(t), i = 1, 2, namely

b1(t) = − 2C0 · I1

|J |2 · |k(1)(t)|2
= − 2C0 I1

|J |2 |k(1)(0)|2
exp{C2t} ,

c1(t) =
2 I1

|J |2
,

b2(t) =
2 I2

|J |2
,

c2(t) = − 2C0 · I2

|J |2 |k(2)(t)|2
= − 2C0 I2

|J |2 · |k(2)(0)|2
exp{−C2t} .
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The system (13) implies

d(a2
1(t) + a2

2(t))

dt
= 2 a1(t) a2(t) (V (1)(t) + V (2)(t)) . (14)

From (14)

−|V (1)(t)| − |V (2)(t)| ≤ d `n(a2
1(t) + a2

2(t))

dt
≤ |V (1)(t)| + |V (2)(t)| (15)

If we substitute in (15) the explicit expressions for V (1)(t), V (2)(t) we get the inequal-

ities

exp

{
−
∫ t

0

(
|I1|

|k(1)(t)|2
+

|I2|
|k(2)(t)|2

)
dt

}
≤ a2

1(t) + a2
2(t)

a2
1(0) + a2

2(0)
≤ exp

{∫ t

0

(
|I1|

|k(1)(t)|2
+

|I2|
|k(2)(t)|2

)
dt

}

One can derive an explicit asymptotics for v(i)(t) as t −→∞.

VI. |J | 6= 0, I1 6= 0, I2 6= 0, I1 + I2 6= 0.

From Lemmas 1 and 2

|k(1)(t)|2 · |k(2)(t)|2 = ((k(1)(t) , k(2)(t))2 +

+ |[k1(t) , k2(t)]|2 = ((I1 + I2) t + C0)2 + |J |2
(16)

and from Lemma 3

|k(1)(t)|2 =
[
C−2

1 F (t)
] I2

2(I1+I2) (17)

|k(2)(t)|2 = C1

[
C−2

1 F (t)
] I1

2(I1+I2) (18)

where F (t) is the right-hand side of (16).

It can be easily seen from (17) and (18) that if I1 and I2 have the same sign then

lim
t−→∞

|k(1)(t)| = lim
t−→∞

|k(2)(t)| = ∞. If their signs are different then the length of

one of the vectors k(i)(t), i = 1, 2 tends to zero while the other one tends to infinity.

The angle ϕ(t) between k(1)(t) and k(2)(t) tends to zero or π as t −→∞ depending

on the sign of I1 + I2.
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The analysis of the behavior of the vectors v(1)(t), v(2)(t) is based on the formulas

(12). We have

b1(t) = − 2 I1((I1 + I2) t+ C0)

|J |2
[
C−2

1 ((I1 + I2) t+ C0)2 + |J |2
] I2
I1+I2

c1(t) =
2 I1

|J |2
,

b2(t) =
2 I2

|J |2
,

c2(t) = − 2 I2((I1 + I2) t+ C0)

|J |2
[
C−2

1 ((I1 + I2) t+ C0)2 + |J |2
] I1
I1+I2

.

Thus

lim
t−→∞

b1(t)

t
I1−I2
I1+I2

= const , lim
t−→∞

c2(t)

t
I2−I1
I1+I2

= const.

and

lim
t−→∞

|b1(t)| = ∞ , lim
t−→∞

c2(t) = 0 if
I1 − I2

I1 + I2

> 0 ,

lim
t−→∞

b1(t) = 0 , lim |c2(t)| = ∞ if
I1 − I2

I1 + I2

< 0 .

The estimates for a1(t), a2(t) follow from (14). In particular, they show that a1(t),

a2(t) are finite for all t > 0.

We summarize all possible types of behavior of solutions of (7) and (8) in the formu-

lation of the next theorem which gives the main result of this paper.

Theorem 2 : For any initial conditions k(i)(0) 6= 0, v(i)(0), i = 1, 2 satisfying the in-

compressibility condition (8) solutions of the system (7) exist for all t > 0.
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The functions

J = [k(1)(0) , k(2)(0)] , I1 =
1

2
|k(1)(0)|2 · (k(2)(0) , v(1)(0)) ,

I2 =
1

2
|k(2)(0)|2 · (k(1)(0) , v(2)(0)) .

are the first integrals of (7) and (8). Depending on their values solutions can have the

following types of behavior as t −→∞:

1. |J | = 0.

v(1)(t) = v(i)(0) , k(i)(t) = k(i)(0) , i = 1, 2.

2. |J | 6= 0, I1 = I2 = 0.

v(i)(t) = v(i)(0) , k(i)(t) = k(i)(0) , i = 1, 2.

3. |J | 6= 0, I1 6= 0, I2 = 0.

k(1)(t) = k(1)(0), v(2)(t) = v(2)(0).

lim
t−→∞

|k(2)(t)| = ∞, v(1)(t) = v(2)(0) I1 ·t
|k(1)(0)|2 + v(1)(0)

4. |J | 6= 0, I1 = 0, I2 6= 0.

This case is reduced to 3) if we interchange the numbers of the particles.

5. |J | 6= 0, I1 = −I2 6= 0.

In this case (k(1)(t), k(2)(t)) = (k(1)(0), k(2)(0) = C0.

If C0 I1 > 0 then |k(1)(t)| decreases exponentially, |k(2)(t)| exponentially grows,

lim
t−→∞

|v(1)(t)| = ∞.

If C0 I1 < 0 then |k(2)(t)| decreases exponentially, |k(1)(t)| grows exponentially,

lim
t−→∞

|v(2)(t)| =∞.
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6. |J | 6= 0, I1 6= 0, I2 6= 0, I1 + I2 6= 0.

If sgn I1 = sgn I2 then lim
t−→∞

|k(i)(t)| = ∞, i = 1, 2.

If sgn I1 = − sgn I2 then the length of one of the vectors k(i)(t), i = 1, 2 tends

to ∞ while the length of the other one tends to 0. The angle ϕ(t) between k(1)(t),

k(2)(t) tends to zero if I1 + I2 > 0 and to π if I1 + I2 < 0 when t −→∞.

Theorem 2 shows that the behavior of solutions of (7) and (8) can be different from

the behavior of solutions of the similar system with ν > 0.
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