ON SOME APPROXIMATION OF THE 3D-EULER SYSTEM
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Dedicated to the memory of M. Herman

In our joint paper [1] we proposed a quasi-linear approximation for the 3D-Navier-
Stokes system on the whole space R®. It was constructed for Fourier transforms
u(k,t) = {ay(k,t),uz(k,t),u3(k,t)} of the incompressible vector fields u(x,t) = (ui(x,t),
us(z,t), uz(x,t))), div u = 0. Here x = (x1,22,73) € R3, k = (k1, ko, k3) € R and @ is
pure imaginary and odd. Putting a(k,t) = iv(k,t) with v(—k,t) = —v(—k,t) we can

write our approximation as a system of quasi-linear equations (see [1]):
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and a;;(t) = /3 k;v;(k,t)dk are the first moments of v; with respect to the space
R

variables, v > 0 is the viscosity and By = Bs(k, ) Z as;(t

By putting v = 0 we get a similar approximation for the Euler system describing the

dynamics of the free ideal liquid in R3.

In what follows we consider the system (1) and (2) for v > 0 satisfying at ¢t = 0
the incompressibility condition (2). As was shown in [1] any solution v(k,t) satisfies the

incompressibility condition (2) for all ¢ for which a solution exists.
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The system (1) has characteristics which are described by the system of equations
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The system (3) and (4) has finite-dimensional versions if we assume that initial conditions
v(k,0) are non-zero only for a finite set of points k™ = k(™ (0), 1 < n < N, and the

N
integrals giving a;;(t) are replaced by the Riemannian sums A;;(t) = % Z

Consider the 3 x 3-matrix A(t) = {a;;(¢)}. Then our finite-dimensional system of

ODE which is a system of 6 NV equations can be written in the form:

dkm™(t) .
o = AW k(1) (5)
WD o o) + A
dt
2k () . -
BERIOE (1), A(t) KU(1)) (6)

(k:(m)(t)’ U(m)(t)) —0,1<n<N,

where A' is the transposed of A.

Some properties of the system (5) and (6).

1) Matrix elements of A(t) do not depend explicitly on v.
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2)  trA(t) =0.

3)  For any three numbers 1 < p,q, r < N the oriented volume D(p, ¢, 7) of the parallel
piped generated by k®)(t), k@ (t), k") (t) is the first integral of (5) and (6).

4)  det A(t) depends only on v™(t), 1 <m < N.

The property 1) is obvious, the properties 2) and 3) are proven in [1]. To prove the
property 4) we remark that
1 l 4 m m

ISZ,’I’TL,’I’LSN (U’ilavi27vi3)
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kg oy, O (1)) = e 3T D myn) vy o™ vy
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where the second sum is taken over all permutations of (1,2,3) and o(iy,9,73) = 0 for

even permutations and 1 for odd. Thus the property 4 is proven.

In [2] the case of two particles N = 2 was studied for v > 0. The main result of [2]

was the following theorem.

Theorem 1: Let v > 0. For any initial condition k™(0) # 0, k2 (0) # 0, v™1(0),
v®)(0) satisfying (6) the solution of (5) exists for allt > 0 and

1) there exist non-zero vectors kM (oc0), k) (00), depending on initial conditions such
that
lim k@(t) = kD (00),i=1,2;

t—o00

2) lim v@() =0,i=1,2.

t—00

Beginning with this moment we consider N = 2 and v = 0. The system (5) can be

written in a more compact form:
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where VO(t) = (K@ (t),v@ (1)), VA () = (kW (¢),v?(t)) and incompressibility con-
dition ;
SRV u (1) = 0.5 = 1.2, (8)

Lemma 1: The components of the vector J = (Jy,Jo,J3) = [kO#), kP (t)] and
L = [KYOPVO®R), L = [kD@)|2VE(t) are the first integrals of the system (7)
and (8).

The first three integrals are also the first integrals for v > 0 and the proof remains
the same (see [2]). I; and I, are the first integrals only for v = 0. The statement follows

from direct checking.

Lemma 2: There exists a function Cy of initial conditions such that

(kW (@), k2 (t) = (I + L)t + Co.
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Proof: It is clear that

dEO@), K20) &, dED (@)
LIZO) g g T

3 dkM (¢
S Zdt() ED) = ROP . VO@) +

i=1

+k@DD)? VAW =1 + 1.

Lemma 3: Let I; # 0, Iy # 0. There exists another function Cy of initial conditions

such that

Iy
EP@)] = Cy - KO @)% .

) I
Proof: It is easy to see that dk’dt(t) = k:Z@)(t) : m = I - ('9/?(2) tn|k®(t)|.
Therefore i
S dkMN () dkP () ; i@ﬁn]k@)(tﬂ dk?
~ dt YO dt
d d
= I, — (2) - — I, k@
LStk 0] = 41, k)

3 (1
dk;7(t
because I, is the first integral. Changing the indices 1 and 2 we have E zit< ) .

i=1

dkP(t)  d
dt( ) = (I, tn|E™M(t)]). Therefore

T Lk ()

d
(L kD 0)]) = 2

dt
and

Lemma is proven.

The behavior of solutions of the system (7) and (8) depends on the values of the first
integrals I;, I and the length |J| of the vector |.J|. We shall consider different cases.



“ON SOME APPROXIMATION OF ...” - E.I. DINABURG & YA. G. SINAI 6

IT.

IIT.

|J| = 0. In this case the vectors k(V)(t), k) (t) are proportional to each other,
kD) = a(t) k@ (t), a(t) # 0 and V() = a(t), (KM (t), vV (t)) = 0. There-
fore, kK2 (t) = k@(0), vV (t) = v(Y(0). In the same way, VP (t) = a(t)(k®(t),
v (1)) = 0 and v@(¢) = v@(0), k@ () = K@(0).

|J| # 0, [, = I, = 0. In this case VV(t) = V() = 0, vW(t) = v1(0),
v () = v@(0), kD (2) = kKD(0), k2 (t) = k(0).

|J| #0, I} # 0, I, = 0. In this case V() = 0 and therefore v (t) = v(?(0),

kD (t) = kW(0), VD(t) = W. From Lemmas 2 and 3

V@ - K2 @) = (), K2 0)* + [V (@), 2O = (Lt + Co)* + .

Therefore |[k@(¢)] = [kW(0)|7* (11t + Cp)? + |J?) and [P ()] — oo as t — oo.
Denote by o(t) the angle between k) (t) and k™M (¢). We can write |ctgp(t)] = Iltl—}rlco
This shows that |k®)(t)] — oo and its direction tends to the direction of M (0) if I; > 0

or

—kM(0) if I < 0.

For the components of the vector v()(¢) we have the equation

dvM (1)
dt

I
= OV = w20 TG

From the last equation it follows that v(!)(¢) grows linearly in time in the direction

of v(0) if I, > 0 and —v®(0) if I; < 0.

IV.

|| £0, I, =0, I, #0.

This case is reduced to the previous one if we interchange the numbers of the

particles.
| #0, I = I, #0.

In this case (KM (t), K2 (t)) = Co, |V ())? - k@ (#)|> = C). The angle between
EV (), k@ (t) does not depend on t because cos p(t) = \/CC% Also
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I I - [kW?
(2) _ 2 _ 2
V() FEIDE o Therefore
d kM (t)|?
|dt<)’ — Q(k(l)(t)’k(2)(t))v(2)(t) _
2-Cy - I
- A P
and
Co Iz
KO@P = [KD()2e ¢ (9)
In the same way
2Cy I
KO@)P = kD)2 e o (10)

Assume that Cy Iy > 0. Then Cj I; < 0 and the formulas (9) and (10) show that

KO@F = [ED(0)2 e,

2@ = [2(0) e

where Cy = 200 L

This gives lim_ k(1) = 0, Jim k2 (1) = oo.

The estimation of [v®(¢)|,i = 1,2 is based on a trick which we shall use also in the
other remaining cases. The vectors k™M (t), k®)(t), J constitute a non-orthogonal basis
in R* because J L kW (t), J Lk®(t) and kM (t), k2 (t) are linearly independent since
J = [kW(t), k@ (t)] # 0. For each t we can write

v () = a;(t) J + bi(t) kV(t) + () kP (1) i = 1,2. (11)

Taking inner products of both sides of (11) with .J, kM (¢), k® and using the incompress-
ibility condition we get two systems of three linear equations for ay(t), b1(t), ¢1(t) and

as(t), ba(t), ca(t). Solving them we have the explicit expressions for all coefficients:
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(wO(t). J) —2VO@) (kO (), k(1))

ai(t) = TR bi(t) = i :
_ 2V [RV@))?
ot P
and
_ ®))) _2VO@) [EB ()]
a2<t) - |J|2 7b2<t) - ‘J|2 )
ey~ VP0G, K

712

(12)

(12)

In deriving (12'), (12") we used the formula [k ()2 |[E@ ()2 — (kW (2), kK2 (¢))? = |J|%.

From (12), (12”) one gets the following system of ODE
dal(t)

= as(t) VI (t)
da2(t) - 2
i a () VA (t)

(13)

Using the lemmas 1,2,3 we come to the final expressions for b;(t), ¢;(t), i = 1,2, namely

200'[1 26’0]1

WO = e R T T e ep St
alt) = %
ba(t) — ff|
o) = ——2C B 2C0hL e oy

CIRPRS@E TR - k@02
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The system (13) implies

d(ai(t) + a3(t))

B = 2t ) (VO ) + V). (14)

From (14)

_ dn(ad(t) + a3(0)

— VO] = VO (¢
Vo) - v < el

< VO] + [V ()] (15)

If we substitute in (15) the explicit expressions for V1 (¢), V) (t) we get the inequal-

ities
o L (1) + ad(t) o L)
exp{_/o <|k<1><t>|2 * |k<2><t)|2> dt} = 20) +a3(0) eXp{/o <|k<1><t>|2 MTEIOE

One can derive an explicit asymptotics for v (t) as t — oo.

)}

VI |J|#£0, L #£0, I, #0, I, + I #0.

From Lemmas 1 and 2

[ED@OF - [FP@) = (W (), k2 (2))* +

(16)
k(1) k2 (D]* = (L + L)t + Co)* + |J]?
and from Lemma 3 .
K@) = [Cr P (17)
KOWE = ¢ o Py (18)

where F'(t) is the right-hand side of (16).

It can be easily seen from (17) and (18) that if I; and I have the same sign then
Jim K@) = Jim k@) (t)| = oco. If their signs are different then the length of
one of the vectors k™ (t),7 = 1,2 tends to zero while the other one tends to infinity.
The angle ¢(t) between k() (t) and k) (t) tends to zero or 7 as t — oo depending
on the sign of Iy + Is.
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The analysis of the behavior of the vectors v(!)(t), v®(t) is based on the formulas
(12). We have

2L((I + L)t + Co)

h(t) = - I
2 [CO2 (I + L) t+ Co)? + [J[2] 77
21

aft) = ﬁ
21

W =

o) = — 2L((L+ L)t + Cy) -

P2 [CO((IL + L)t + Co)? + I 777

Thus
by(t t
lim % = const, lim 6122—91 = const.
t—o00 tm t—> tm
and
lim |by ()] I (t) = 0if h=fb
im = o0, lim ¢ =01
Do 1 e 2 ]—1 + 12 )
I —1I
Jim by () = 0,1im [es(t)] = oo if 11+1§ 0.

The estimates for ay(t), as(t) follow from (14). In particular, they show that a,(t),
as(t) are finite for all ¢ > 0.

We summarize all possible types of behavior of solutions of (7) and (8) in the formu-

lation of the next theorem which gives the main result of this paper.

Theorem 2: For any initial conditions k™ (0) # 0, v9(0), i = 1,2 satisfying the in-
compressibility condition (8) solutions of the system (7) exist for all t > 0.
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The functions

J = [K(0) K2 (0)], L = % EDOF - (kP(0),v(0),

1

I = S [KD(0) - (k(0), v*(0)).

are the first integrals of (7) and (8). Depending on their values solutions can have the

following types of behavior as t — o0:

1. |[J| = 0.

v (1) = v®(0),kD(t) = KD(0),i = 1,2,
2. |J| #0, 1, =1, =0.

v (t) = v®(0), kD) = kKD(0),i = 1,2.
3. |J| #0, I # 0,1, = 0.

kD () = kM(0), v@(t) = v2)(0).

Jim [KP(t)] = oo, vW(t) = v®(0) gtgp + v(0)
4. |J| #0, 1 =0, Iy # 0.

This case is reduced to 3) if we interchange the numbers of the particles.
5. |J| #0, 1 = =1, # 0.

In this case (kM (¢), k2 (t)) = (KM(0), K2(0) = Co.

If Col; > 0 then |k (t)| decreases exponentially, |k)(¢)| exponentially grows,

Jim oM (t)| = oo.

If Coly < 0 then |k®(t)| decreases exponentially, |k ()| grows exponentially,

tlim [0 (t)| = oo.
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6. |J| #0, L #0, I, #0, I, + I # 0.
If sgn I = sgn I, then lim KOt = o0, = 1,2.

If sgn I, = — sgn I, then the length of one of the vectors £)(¢), i = 1,2 tends
to oo while the length of the other one tends to 0. The angle ¢(t) between k() (t),
k;(z)(t) tends to zero if I} + I > 0 and to wif I; + I < 0 when t — 0.

Theorem 2 shows that the behavior of solutions of (7) and (8) can be different from

the behavior of solutions of the similar system with v > 0.
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