On some approximation of the 3D-Euler System

E.I. Dinaburg* and Ya G. Sinai ${ }^{\dagger}$

Dedicated to the memory of M. Herman

In our joint paper [1] we proposed a quasi-linear approximation for the $3 \mathcal{D}$-NavierStokes system on the whole space R^{3}. It was constructed for Fourier transforms $\tilde{u}(k, t)=\left\{\tilde{u}_{1}(k, t), \tilde{u}_{2}(k, t), \tilde{u}_{3}(k, t)\right\}$ of the incompressible vector fields $u(x, t)=\left(u_{1}(x, t)\right.$, $\left.\left.u_{2}(x, t), u_{3}(x, t)\right)\right)$, div $u=0$. Here $x=\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}, k=\left(k_{1}, k_{2}, k_{3}\right) \in R^{3}$ and \tilde{u} is pure imaginary and odd. Putting $\tilde{u}(k, t)=i v(k, t)$ with $v(-k, t)=-v(-k, t)$ we can write our approximation as a system of quasi-linear equations (see [1]):

$$
\begin{align*}
\frac{\partial v_{i}(k, t)}{\partial t}+\sum_{s=1}^{3} B_{s} \frac{\partial v_{i}(k, t)}{\partial k_{s}} & =A_{i}^{(\nu)}, i=1,2,3 \tag{1}\\
\sum_{i=1}^{3} k_{i} v_{i}(k, t) & =0 \tag{2}
\end{align*}
$$

where

$$
\begin{gathered}
A_{i}^{\nu}=A_{i}^{(\nu)}(k, v, t)=-\nu|k|^{2} v_{i}(k, t)+ \\
+\sum_{j=1}^{3} v_{j}(k, t) a_{j i}(t)-\frac{2 k_{i}}{|k|^{2}} \sum_{j=1}^{3} \sum_{\ell=1}^{3} v_{j}(k, t) k_{\ell} a_{j \ell}(t),
\end{gathered}
$$

and $a_{i j}(t)=\int_{R^{3}} k_{i} v_{j}(k, t) d k$ are the first moments of v_{j} with respect to the space variables, $\nu>0$ is the viscosity and $B_{s}=B_{s}(k, t)=\sum_{j=1}^{3} a_{s j}(t) k_{j}$.

By putting $\nu=0$ we get a similar approximation for the Euler system describing the dynamics of the free ideal liquid in R^{3}.

In what follows we consider the system (1) and (2) for $\nu \geq 0$ satisfying at $t=0$ the incompressibility condition (2). As was shown in [1] any solution $v(k, t)$ satisfies the incompressibility condition (2) for all t for which a solution exists.

[^0]The system (1) has characteristics which are described by the system of equations

$$
\begin{equation*}
\frac{d k_{i}(t)}{d t}=B_{i}, \quad i=1,2,3 \tag{3}
\end{equation*}
$$

Along solutions of (3) the system (1) becomes a system of ordinary differential equations

$$
\begin{gather*}
\frac{d v_{i}(t)}{d t}=-\nu|k|^{2} v_{i}(t)+\sum_{j=1}^{3} v_{j}(t) a_{j i}(t)- \\
-\frac{2 k_{i}}{|k|^{2}} \sum_{j=1}^{3} \sum_{\ell=1}^{3} v_{j}(t) k_{\ell} \cdot a_{j \ell}(t), i=1,2,3 \tag{4}\\
\sum_{j=1}^{3} k_{j}(t) v_{j}(t)=0
\end{gather*}
$$

The system (3) and (4) has finite-dimensional versions if we assume that initial conditions $v(k, 0)$ are non-zero only for a finite set of points $k^{(n)}=k^{(n)}(0), 1 \leq n \leq N$, and the integrals giving $a_{i j}(t)$ are replaced by the Riemannian sums $A_{i j}(t)=\frac{1}{N} \sum_{n=1}^{N} k_{i}^{(n)}(t) v_{j}^{(n)}(t)$.

Consider the 3×3-matrix $A(t)=\left\{a_{i j}(t)\right\}$. Then our finite-dimensional system of $O \mathcal{D} E$ which is a system of $6 N$ equations can be written in the form:

$$
\begin{gather*}
\frac{d k^{(m)}(t)}{d t}=A(t) k^{(m)}(t) \tag{5}\\
\frac{d v^{(m)}(t)}{d t}=-\nu\left|k^{(m)}(t)\right|^{2} v^{(m)}(t)+A^{t}(t) v^{(m)}(t) \\
-\frac{2 k^{(m)}(t)}{\left|k^{(m)}(t)\right|^{2}}\left(v^{(m)}(t), A(t) k^{(m)}(t)\right) \tag{6}\\
\left(k^{(m)}(t), v^{(m)}(t)\right)=0,1 \leq n \leq N,
\end{gather*}
$$

where A^{t} is the transposed of A.
$\underline{\text { Some properties of the system (5) and (6). }}$

1) Matrix elements of $A(t)$ do not depend explicitly on ν.
2) $\operatorname{tr} A(t)=0$.
3) For any three numbers $1 \leq p, q, r \leq N$ the oriented volume $\mathcal{D}(p, q, r)$ of the parallel piped generated by $k^{(p)}(t), k^{(q)}(t), k^{(r)}(t)$ is the first integral of (5) and (6).
4) $\operatorname{det} A(t)$ depends only on $v^{(m)}(t), 1 \leq m \leq N$.

The property 1) is obvious, the properties 2) and 3) are proven in [1]. To prove the property 4) we remark that

$$
\begin{aligned}
& \operatorname{det} A(t)=\frac{1}{N^{3}} \sum_{1 \leq \ell, m, n \leq N} \sum_{\left(v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right)} k_{1}^{(\ell)} v_{i_{1}}^{(\ell)} k_{2}^{(m)} \cdot v_{\ell_{2}}^{(m)} . \\
& \cdot k_{3}^{(n)} v_{i_{3}}{ }^{(n)}(-1)^{\sigma\left(i_{1}, i_{2}, i_{3}\right)}=\frac{1}{N^{3}} \sum_{1 \leq \ell, m, n \leq N} \mathcal{D}(\ell, m, n) v_{1}^{(\ell)} v_{2}^{(m)} v_{3}^{(n)}
\end{aligned}
$$

where the second sum is taken over all permutations of $(1,2,3)$ and $\sigma\left(i_{1}, i_{2}, i_{3}\right)=0$ for even permutations and 1 for odd. Thus the property 4 is proven.

In [2] the case of two particles $N=2$ was studied for $\nu>0$. The main result of [2] was the following theorem.

Theorem 1: Let $\nu>0$. For any initial condition $k^{(1)}(0) \neq 0, k^{(2)}(0) \neq 0, v^{(1)}(0)$, $v^{(2)}(0)$ satisfying (6) the solution of (5) exists for all $t>0$ and

1) there exist non-zero vectors $k^{(1)}(\infty), k^{(2)}(\infty)$, depending on initial conditions such that
$\lim _{t \rightarrow \infty} k^{(i)}(t)=k^{(i)}(\infty), i=1,2 ;$
2) $\lim _{t \longrightarrow \infty} v^{(i)}(t)=0, i=1,2$.

Beginning with this moment we consider $N=2$ and $\nu=0$. The system (5) can be written in a more compact form:

$$
\begin{align*}
& \frac{d k_{i}^{(1)}(t)}{d t}=k_{i}^{(2)}(t) V^{(2)}(t) \\
& \frac{d k_{i}^{(2)}(t)}{d t}=k_{i}^{(1)}(t) V^{(1)}(t), \tag{7}\\
& \frac{d v_{i}^{(1)}(t)}{d t}=v_{i}^{(2)}(t) V^{(1)}(t)-\frac{4 k_{i}^{(1)}(t)}{\left|k^{(1)}(t)\right|^{2}} V^{(1)}(t) V^{(2)}(t) \\
& \frac{d v_{i}^{(2)}(t)}{d t}=v_{i}^{(1)}(t) V^{(2)}(t)-\frac{4 k_{i}^{(2)}(t)}{\left|k^{(2)}(t)\right|^{2}} V^{(1)}(t) V^{(2)}(t), \\
& i=1,2,3
\end{align*}
$$

where $V^{(1)}(t)=\left(k^{(2)}(t), v^{(2)}(t)\right), V^{(2)}(t)=\left(k^{(1)}(t), v^{(2)}(t)\right)$ and incompressibility condition

$$
\begin{equation*}
\sum_{i=1}^{3} k_{i}^{(j)}(t) v_{i}^{(j)}(t)=0, j=1,2 \tag{8}
\end{equation*}
$$

Lemma 1: The components of the vector $J=\left(J_{1}, J_{2}, J_{3}\right)=\left[k^{(1)}(t), k^{(2)}(t)\right]$ and $I_{1}=\left|k^{(1)}(t)\right|^{2} V^{(1)}(t), I_{2}=\left|k^{(2)}(t)\right|^{2} V^{(2)}(t)$ are the first integrals of the system (7) and (8).

The first three integrals are also the first integrals for $\nu>0$ and the proof remains the same (see [2]). I_{1} and I_{2} are the first integrals only for $\nu=0$. The statement follows from direct checking.

Lemma 2: There exists a function C_{0} of initial conditions such that

$$
\left(k^{(1)}(t), k^{(2)}(t)\right)=\left(I_{1}+I_{2}\right) t+C_{0}
$$

Proof: It is clear that

$$
\begin{array}{r}
\frac{d\left(k^{(1)}(t), k^{(2)}(t)\right)}{d t}=\sum_{i=1}^{3} k_{i}^{(1)}(t) \frac{d k_{i}^{(2)}(t)}{d t}+ \\
+\sum_{i=1}^{3} \frac{d k_{i}^{(1)}(t)}{d t} \cdot k_{i}^{(2)}(t)=\left|k^{(1)}\right|^{2} \cdot V^{(1)}(t)+ \\
+\left|k^{(2)}(t)\right|^{2} \cdot V^{(2)}(t)=I_{1}+I_{2} .
\end{array}
$$

Lemma 3: Let $I_{1} \neq 0, I_{2} \neq 0$. There exists another function C_{1} of initial conditions such that

$$
\left|k^{(2)}(t)\right|=C_{1} \cdot\left|k^{(1)}(t)\right|^{\frac{I_{1}}{I_{2}}} .
$$

Proof: It is easy to see that $\frac{d k_{i}^{(1)}(t)}{d t}=k_{i}^{(2)}(t) \cdot \frac{I_{2}}{\left|k^{(2)}(t)\right|^{2}}=I_{2} \cdot \frac{\partial}{\partial k_{2}^{(2)}} \ln \left|k^{(2)}(t)\right|$. Therefore

$$
\begin{gathered}
\sum_{i=1}^{3} \frac{d k_{i}^{(1)}(t)}{d t} \cdot \frac{d k_{i}^{(2)}(t)}{d t}=I_{2} \cdot \sum_{i=1}^{3} \frac{\partial \ell n\left|k^{(2)}(t)\right|}{\partial k_{i}^{(2)}} \cdot \frac{d k_{i}^{(2)}}{d t}= \\
=I_{2} \frac{d}{d t} \ell n\left|k^{(2)}(t)\right|=\frac{d}{d t} I_{2} \cdot\left|k^{(2)}(t)\right|
\end{gathered}
$$

because I_{2} is the first integral. Changing the indices 1 and 2 we have $\sum_{i=1}^{3} \frac{d k_{i}^{(1)}(t)}{d t}$. $\frac{d k_{i}^{(2)}(t)}{d t}=\frac{d}{d t}\left(I_{1} \ln \left|k^{(1)}(t)\right|\right)$. Therefore

$$
\frac{d}{d t}\left(I_{1} \ell n\left|k^{(1)}(t)\right|\right)=\frac{d}{d t}\left(I_{2} \ell n\left|k^{(2)}(t)\right|\right)
$$

and

$$
\left|k^{(2)}(t)\right|=C_{1} \cdot\left|k^{(1)}(t)\right|^{\frac{I_{1}}{I_{2}}}
$$

Lemma is proven.

The behavior of solutions of the system (7) and (8) depends on the values of the first integrals I_{1}, I_{2} and the length $|J|$ of the vector $|J|$. We shall consider different cases.
I. $\quad|J|=0$. In this case the vectors $k^{(1)}(t), k^{(2)}(t)$ are proportional to each other, $k^{(1)}(t)=a(t) k^{(2)}(t), a(t) \neq 0$ and $V^{(1)}(t)=a^{-1}(t),\left(k^{(1)}(t), v^{(1)}(t)\right)=0$. Therefore, $k^{(2)}(t)=k^{(2)}(0), v^{(1)}(t)=v^{(1)}(0)$. In the same way, $V^{(2)}(t)=a(t)\left(k^{(2)}(t)\right.$, $\left.v^{(2)}(t)\right)=0$ and $v^{(2)}(t)=v^{(2)}(0), k^{(2)}(t)=k^{(2)}(0)$.
II. $\quad|J| \neq 0, I_{1}=I_{2}=0$. In this case $V^{(1)}(t)=V^{(2)}(t)=0, v^{(1)}(t)=v^{(1)}(0)$, $v^{(2)}(t)=v^{(2)}(0), k^{(1)}(t)=k^{(1)}(0), k^{(2)}(t)=k^{(2)}(0)$.
III. $|J| \neq 0, I_{1} \neq 0, I_{2}=0$. In this case $V^{(2)}(t)=0$ and therefore $v^{(2)}(t)=v^{(2)}(0)$, $k^{(1)}(t)=k^{(1)}(0), V^{(1)}(t)=\frac{I_{1}}{\left|k^{(1)}(0)\right|^{2}}$. From Lemmas 2 and 3
$\left|k^{(1)}(t)\right|^{2} \cdot\left|k^{(2)}(t)\right|^{2}=\left(k^{(1)}(t), k^{(2)}(t)\right)^{2}+\left|\left[k^{(1)}(t), k^{(2)}(t)\right]\right|^{2}=\left(I_{1} t+C_{0}\right)^{2}+|J|^{2}$.

Therefore $\left|k^{(2)}(t)\right|=\left|k^{(1)}(0)\right|^{-1}\left(\left(I_{1} t+C_{0}\right)^{2}+|J|^{2}\right)$ and $\left|k^{(2)}(t)\right| \longrightarrow \infty$ as $t \longrightarrow \infty$. Denote by $\varphi(t)$ the angle between $k^{(2)}(t)$ and $k^{(1)}(t)$. We can write $|\operatorname{ctg} \varphi(t)|=\frac{I_{1} t+C_{0}}{|J|}$. This shows that $\left|k^{(2)}(t)\right| \longrightarrow \infty$ and its direction tends to the direction of $k^{(1)}(0)$ if $I_{1}>0$ or $-k^{(1)}(0)$ if $I_{1}<0$.

For the components of the vector $v^{(1)}(t)$ we have the equation

$$
\frac{d v_{i}^{(1)}(t)}{d t}=v_{i}^{(2)}(t) V^{(1)}(t)=v_{i}^{(2)}(0) \cdot \frac{I_{1}}{\left|k^{(1)}(0)\right|^{2}}
$$

From the last equation it follows that $v^{(1)}(t)$ grows linearly in time in the direction of $v^{(2)}(0)$ if $I_{1}>0$ and $-v^{(2)}(0)$ if $I_{1}<0$.
IV. $|J| \neq 0, I_{1}=0, I_{2} \neq 0$.

This case is reduced to the previous one if we interchange the numbers of the particles.
V. $|J| \neq 0, I_{1}=-I_{2} \neq 0$.

In this case $\left(k^{(1)}(t), k^{(2)}(t)\right)=C_{0},\left|k^{(1)}(t)\right|^{2} \cdot\left|k^{(2)}(t)\right|^{2}=C_{1}$. The angle between $k^{(1)}(t), \quad k^{(2)}(t)$ does not depend on t because $\cos \varphi(t)=\frac{C_{0}}{\sqrt{C_{1}}}$. Also

$$
\begin{aligned}
V^{(2)}(t)=\frac{I_{2}}{\left|k^{(2)}(t)\right|^{2}}=\frac{I_{2} \cdot\left|k^{(1)}\right|^{2}}{C_{1}} . \text { Therefore } \\
\begin{aligned}
\frac{d\left|k^{(1)}(t)\right|^{2}}{d t} & =2\left(k^{(1)}(t), k^{(2)}(t)\right) V^{(2)}(t)= \\
& =\frac{2 \cdot C_{0} \cdot I_{2}}{C_{1}} \cdot\left|k^{(2)}(t)\right|^{2}
\end{aligned}
\end{aligned}
$$

and

$$
\begin{equation*}
\left|k^{(1)}(t)\right|^{2}=\left|k^{(1)}(0)\right|^{2} e^{\frac{2 C_{0} I_{2}}{C_{1}} t} . \tag{9}
\end{equation*}
$$

In the same way

$$
\begin{equation*}
\left|k^{(2)}(t)\right|^{2}=\left|k^{(2)}(0)\right|^{2} e^{\frac{2 C_{0} I_{1}}{C_{1}} t} . \tag{10}
\end{equation*}
$$

Assume that $C_{0} I_{2}>0$. Then $C_{0} I_{1}<0$ and the formulas (9) and (10) show that

$$
\begin{aligned}
\left|k^{(1)}(t)\right|^{2} & =\left|k^{(1)}(0)\right|^{2} e^{-C_{2} t}, \\
\left|k^{(2)}(t)\right|^{2} & =\left|k^{(2)}(0)\right|^{2} e^{C_{2} t}
\end{aligned}
$$

where $C_{2}=-\frac{2 C_{0} I_{2}}{C_{1}}$. This gives $\lim _{t \longrightarrow \infty}\left|k^{(1)}(t)\right|=0, \lim _{t \longrightarrow \infty}\left|k^{(2)}(t)\right|=\infty$.
The estimation of $\left|v^{(i)}(t)\right|, i=1,2$ is based on a trick which we shall use also in the other remaining cases. The vectors $k^{(1)}(t), k^{(2)}(t), J$ constitute a non-orthogonal basis in R^{3} because $J \perp k^{(1)}(t), J \perp k^{(2)}(t)$ and $k^{(1)}(t), k^{(2)}(t)$ are linearly independent since $J=\left[k^{(1)}(t), k^{(2)}(t)\right] \neq 0$. For each t we can write

$$
\begin{equation*}
v^{(i)}(t)=a_{i}(t) J+b_{i}(t) k^{(1)}(t)+c_{i}(t) k^{(2)}(t), i=1,2 . \tag{11}
\end{equation*}
$$

Taking inner products of both sides of (11) with $J, k^{(1)}(t), k^{(2)}$ and using the incompressibility condition we get two systems of three linear equations for $a_{1}(t), b_{1}(t), c_{1}(t)$ and $a_{2}(t), b_{2}(t), c_{2}(t)$. Solving them we have the explicit expressions for all coefficients:

$$
\begin{align*}
& a_{1}(t)=\frac{\left(v^{(1)}(t), J\right)}{|J|^{2}}, b_{1}(t)=\frac{-2 V^{(1)}(t)\left(k^{(1)}(t), k^{(2)}(t)\right)}{|J|^{2}} \\
& c_{1}(t)=\frac{2 V^{(1)}(t)\left|k^{(1)}(t)\right|^{2}}{|J|^{2}}
\end{align*}
$$

and

$$
\begin{align*}
& a_{2}(t)=\frac{\left(v^{(2)}(t) J\right)}{|J|^{2}}, b_{2}(t)=\frac{2 V^{(2)}(t)\left|k^{(2)}(t)\right|^{2}}{|J|^{2}}, \\
& c_{2}(t)=\frac{-2 V^{(2)}(t)\left(k^{(1)}(t), k^{(2)}(t)\right)}{|J|^{2}}
\end{align*}
$$

In deriving (12'), (12") we used the formula $\left|k^{(1)}(t)\right|^{2}\left|k^{(2)}(t)\right|^{2}-\left(k^{(1)}(t), k^{(2)}(t)\right)^{2}=|J|^{2}$.
From $\left(12^{\prime}\right),\left(12^{\prime \prime}\right)$ one gets the following system of $O \mathcal{D E}$

$$
\begin{align*}
\frac{d a_{1}(t)}{d t} & =a_{2}(t) V^{(1)}(t) \\
\frac{d a_{2}(t)}{d t} & =a_{1}(t) V^{(2)}(t) \tag{13}
\end{align*}
$$

Using the lemmas $1,2,3$ we come to the final expressions for $b_{i}(t), c_{i}(t), i=1,2$, namely

$$
\begin{aligned}
& b_{1}(t)=-\frac{2 C_{0} \cdot I_{1}}{|J|^{2} \cdot\left|k^{(1)}(t)\right|^{2}}=-\frac{2 C_{0} I_{1}}{|J|^{2}\left|k^{(1)}(0)\right|^{2}} \exp \left\{C_{2} t\right\} \\
& c_{1}(t)=\frac{2 I_{1}}{|J|^{2}} \\
& b_{2}(t)=\frac{2 I_{2}}{|J|^{2}} \\
& c_{2}(t)=-\frac{2 C_{0} \cdot I_{2}}{|J|^{2}\left|k^{(2)}(t)\right|^{2}}=-\frac{2 C_{0} I_{2}}{|J|^{2} \cdot\left|k^{(2)}(0)\right|^{2}} \exp \left\{-C_{2} t\right\}
\end{aligned}
$$

The system (13) implies

$$
\begin{equation*}
\frac{d\left(a_{1}^{2}(t)+a_{2}^{2}(t)\right)}{d t}=2 a_{1}(t) a_{2}(t)\left(V^{(1)}(t)+V^{(2)}(t)\right) \tag{14}
\end{equation*}
$$

From (14)

$$
\begin{equation*}
-\left|V^{(1)}(t)\right|-\left|V^{(2)}(t)\right| \leq \frac{d \ell n\left(a_{1}^{2}(t)+a_{2}^{2}(t)\right)}{d t} \leq\left|V^{(1)}(t)\right|+\left|V^{(2)}(t)\right| \tag{15}
\end{equation*}
$$

If we substitute in (15) the explicit expressions for $V^{(1)}(t), V^{(2)}(t)$ we get the inequalities
$\exp \left\{-\int_{0}^{t}\left(\frac{\left|I_{1}\right|}{\left|k^{(1)}(t)\right|^{2}}+\frac{\left|I_{2}\right|}{\left|k^{(2)}(t)\right|^{2}}\right) d t\right\} \leq \frac{a_{1}^{2}(t)+a_{2}^{2}(t)}{a_{1}^{2}(0)+a_{2}^{2}(0)} \leq \exp \left\{\int_{0}^{t}\left(\frac{\left|I_{1}\right|}{\left|k^{(1)}(t)\right|^{2}}+\frac{\left|I_{2}\right|}{\left|k^{(2)}(t)\right|^{2}}\right) d t\right\}$
One can derive an explicit asymptotics for $v^{(i)}(t)$ as $t \longrightarrow \infty$.
VI.
$|J| \neq 0, I_{1} \neq 0, I_{2} \neq 0, I_{1}+I_{2} \neq 0$.
From Lemmas 1 and 2

$$
\begin{align*}
& \left|k^{(1)}(t)\right|^{2} \cdot\left|k^{(2)}(t)\right|^{2}=\left(\left(k^{(1)}(t), k^{(2)}(t)\right)^{2}+\right. \\
& \quad+\left|\left[k_{1}(t), k_{2}(t)\right]\right|^{2}=\left(\left(I_{1}+I_{2}\right) t+C_{0}\right)^{2}+|J|^{2} \tag{16}
\end{align*}
$$

and from Lemma 3

$$
\begin{align*}
\left|k^{(1)}(t)\right|^{2} & =\left[C_{1}^{-2} F(t)\right]^{\frac{I_{2}}{2\left(I_{1}+I_{2}\right)}} \tag{17}\\
\left|k^{(2)}(t)\right|^{2} & =C_{1}\left[C_{1}^{-2} F(t)\right]^{\frac{I_{1}}{2\left(I_{1}+I_{2}\right)}} \tag{18}
\end{align*}
$$

where $F(t)$ is the right-hand side of (16).
It can be easily seen from (17) and (18) that if I_{1} and I_{2} have the same sign then $\lim _{t \rightarrow \infty}\left|k^{(1)}(t)\right|=\lim _{t \rightarrow \infty}\left|k^{(2)}(t)\right|=\infty$. If their signs are different then the length of one of the vectors $k^{(i)}(t), i=1,2$ tends to zero while the other one tends to infinity. The angle $\varphi(t)$ between $k^{(1)}(t)$ and $k^{(2)}(t)$ tends to zero or π as $t \longrightarrow \infty$ depending on the sign of $I_{1}+I_{2}$.

The analysis of the behavior of the vectors $v^{(1)}(t), v^{(2)}(t)$ is based on the formulas (12). We have

$$
\begin{aligned}
& b_{1}(t)=-\frac{2 I_{1}\left(\left(I_{1}+I_{2}\right) t+C_{0}\right)}{|J|^{2}\left[C_{1}^{-2}\left(\left(I_{1}+I_{2}\right) t+C_{0}\right)^{2}+|J|^{2}\right]^{\frac{I_{2}}{I_{1}+I_{2}}}} \\
& c_{1}(t)=\frac{2 I_{1}}{|J|^{2}}, \\
& b_{2}(t)=\frac{2 I_{2}}{|J|^{2}}, \\
& c_{2}(t)=-\frac{2 I_{2}\left(\left(I_{1}+I_{2}\right) t+C_{0}\right)}{|J|^{2}\left[C_{1}^{-2}\left(\left(I_{1}+I_{2}\right) t+C_{0}\right)^{2}+|J|^{2}\right]^{\frac{I_{1}}{I_{1}+I_{2}}}} .
\end{aligned}
$$

Thus

$$
\lim _{t \rightarrow \infty} \frac{b_{1}(t)}{t^{\frac{I_{1}-I_{2}}{I_{1}+I_{2}}}}=\text { const, } \lim _{t \longrightarrow \infty} \frac{c_{2}(t)}{t^{\frac{I_{1}-I_{1}}{I_{1}+I_{2}}}}=\text { const. }
$$

and

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left|b_{1}(t)\right|=\infty, \lim _{t \longrightarrow \infty} c_{2}(t)=0 \text { if } \frac{I_{1}-I_{2}}{I_{1}+I_{2}}>0 \\
& \lim _{t \rightarrow \infty} b_{1}(t)=0, \lim \left|c_{2}(t)\right|=\infty \text { if } \frac{I_{1}-I_{2}}{I_{1}+I_{2}}<0
\end{aligned}
$$

The estimates for $a_{1}(t), a_{2}(t)$ follow from (14). In particular, they show that $a_{1}(t)$, $a_{2}(t)$ are finite for all $t>0$.

We summarize all possible types of behavior of solutions of (7) and (8) in the formulation of the next theorem which gives the main result of this paper.

Theorem 2: For any initial conditions $k^{(i)}(0) \neq 0, v^{(i)}(0), i=1,2$ satisfying the incompressibility condition (8) solutions of the system (7) exist for all $t>0$.

The functions

$$
\begin{aligned}
J=\left[k^{(1)}(0), k^{(2)}(0)\right], I_{1} & =\frac{1}{2}\left|k^{(1)}(0)\right|^{2} \cdot\left(k^{(2)}(0), v^{(1)}(0)\right), \\
I_{2} & =\frac{1}{2}\left|k^{(2)}(0)\right|^{2} \cdot\left(k^{(1)}(0), v^{(2)}(0)\right) .
\end{aligned}
$$

are the first integrals of (7) and (8). Depending on their values solutions can have the following types of behavior as $t \longrightarrow \infty$:

1. $|J|=0$.
$v^{(1)}(t)=v^{(i)}(0), k^{(i)}(t)=k^{(i)}(0), i=1,2$.
2. $|J| \neq 0, I_{1}=I_{2}=0$.
$v^{(i)}(t)=v^{(i)}(0), k^{(i)}(t)=k^{(i)}(0), i=1,2$.
3. $|J| \neq 0, I_{1} \neq 0, I_{2}=0$.
$k^{(1)}(t)=k^{(1)}(0), v^{(2)}(t)=v^{(2)}(0)$.
$\lim _{t \longrightarrow \infty}\left|k^{(2)}(t)\right|=\infty, v^{(1)}(t)=v^{(2)}(0) \frac{I_{1} \cdot t}{\left|k^{(1)}(0)\right|^{2}}+v^{(1)}(0)$
4. $|J| \neq 0, I_{1}=0, I_{2} \neq 0$.

This case is reduced to 3) if we interchange the numbers of the particles.
5. $|J| \neq 0, I_{1}=-I_{2} \neq 0$.

In this case $\left(k^{(1)}(t), k^{(2)}(t)\right)=\left(k^{(1)}(0), k^{(2)}(0)=C_{0}\right.$.
If $C_{0} I_{1}>0$ then $\left|k^{(1)}(t)\right|$ decreases exponentially, $\left|k^{(2)}(t)\right|$ exponentially grows, $\lim _{t \rightarrow \infty}\left|v^{(1)}(t)\right|=\infty$.

If $C_{0} I_{1}<0$ then $\left|k^{(2)}(t)\right|$ decreases exponentially, $\left|k^{(1)}(t)\right|$ grows exponentially, $\lim _{t \longrightarrow \infty}\left|v^{(2)}(t)\right|=\infty$.
6. $|J| \neq 0, I_{1} \neq 0, I_{2} \neq 0, I_{1}+I_{2} \neq 0$.

If $\operatorname{sgn} I_{1}=\operatorname{sgn} I_{2}$ then $\lim _{t \rightarrow \infty}\left|k^{(i)}(t)\right|=\infty, i=1,2$.
If $\operatorname{sgn} I_{1}=-\operatorname{sgn} I_{2}$ then the length of one of the vectors $k^{(i)}(t), i=1,2$ tends to ∞ while the length of the other one tends to 0 . The angle $\varphi(t)$ between $k^{(1)}(t)$, $k^{(2)}(t)$ tends to zero if $I_{1}+I_{2}>0$ and to π if $I_{1}+I_{2}<0$ when $t \longrightarrow \infty$.

Theorem 2 shows that the behavior of solutions of (7) and (8) can be different from the behavior of solutions of the similar system with $\nu>0$.

The authors thank RFFI for the financial support (grant \# 99-01-00314).

The second author is grateful to NSF for the financial support (grant \# DMS-00706689).

References

1. E.I. Dinaburg and Y.G. Sinai, "A Quasi-Linear Approximation for the 3D-NavierStokes System," Moscow Mathematical Journal, Vol. 1, N3, 381-388, (2001).
2. E.I Dinaburg, "New Finite-Dimensional Approximations of the 3D-Navier-Stokes System," Doklady of Russian Academy of Sciences. (In print).

[^0]: *The Institute of Physics of Earth, Russian Academy of Sciences
 ${ }^{\dagger}$ Mathematics Department of Princeton University and Landau Institute of Theoretical Physics

