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§1. Introduction

Consider n-tuples a = (a1, a2, . . . , an) of positive integers which are co-prime, i.e., the largest
common divisor (lcd) of all aj is 1. Frobenius number F (a) of a is the smallest F such that
any integer t > F can be written in the form

t =
n∑

j=1

xjaj

with non-negative integers xj. V.I. Arnold in [1] introduced the ensembles of a for which
a1 + a2 + · · · + an = σ tend to infinity and studied the behaviour of F (a) under the limit
transition σ → ∞. In particular, he formulated the hypothesis according to which F (a)

grows for typical a as σ1+ 1
n−1 . Other hypotheses and results of Arnold can be found in [2].

In this paper we consider different ensembles of large a and study the same question of
the growth of F (a) in these ensembles. Namely, take N and denote by ΩN the set of all a for
which 1 ≤ aj ≤ N, j = 1, 2, . . . , n, and lcd (a) = 1. Using elementary probability methods
one can show that the limit limN→∞

1
Nn |ΩN | exists and is positive (see, for example, [3]). It

gives “the probability” of a ∈ ΩN in the ensemble of all possible n-tuples a with entries less
than N . Below PN denotes the uniform probability distribution on ΩN . We study in this
paper the behaviour of F (a) for typical a (in the sense of PN) as N → ∞. The case n = 2
follows easily from the famous result of Sylvester according to which F (a) = (a1− 1)(a2− 1)
(see [5]). This implies that 1

N2 F (a) has the limiting distribution as N →∞.

Below in Sections 2 and 3 we consider the next case n = 3. Based on some facts from
the theory of continued fractions we prove

Theorem 1. As N →∞ there exists the limiting distribution of 1
N3/2 F (a).

The proofs of the needed facts will be a subject of another paper by C. Ulcigrai and
one of us (Ya. Sinai). It is hopeless to write down explicitly the limiting distribution in
Theorem 1. Probably the methods of this paper can be used for estimating its decay at
infinity.

Below we introduce another function F1(a) about which we prove in Lemma 1 that in
typical situations it behaves as F (a). But F1(a) is much easier for the analysis of the problem
because it is formulated as a “max-min” problem.

In Section 2 we discuss the case n = 3 when lcd(ai, aj) = 1 for at lease one pair ai, aj. In
Section 3 we discuss the general case of n = 3.
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In Section 4 we consider n > 3. Theorem 2 of this section shows that for slightly modified
ensembles the distributions of F (a)

N
1+ 1

n−1
are (uniformly in N) bounded in the sense that

PN,α

{
F (a)

N1+ 1
n−1

> D

}
≤ ε(D)

where ΩN,α is the ensemble of a for which aj ≥ αN , 1,≤ j ≤ n and PN,α is the uniform
distribution in this ensemble, 0 < α < 1 is the fixed number, ε(D) does not depend on N
and ε(D) → 0 ad D →∞. In Appendix 1 we prove a general Lemma which was used in an
earlier version of this paper and can have different applications. Namely, we show that

`

{
α :

M∑
m=1

1

|e2πimα − 1|
≥ DM ln M

}
≤ ε1(D)

where ` is the Lebesgue measure on [0, 1] and ε1(D) does not depend on M , ε1(D) → 0 as
D →∞.

The analysis of the behaviour of 1
M

M∑
m=1

1
e2πimα−1

as function of M for typical α is of some

importance but we do not go further in this direction.

Now we give the defintion of the function F1(a) and prove Lemma 1 which shows in what
sense F (a) and F1(a) are equivalent. For any a ∈ ΩN introduce the arithmetic progression
Πr = {r + man, m > 0}, 0 ≤ r < an. Consider the equality

x1a1 + x2a2 + · · ·+ xn−1an−1 = r + m(x1, . . . , xn−1)an

which shows that
x1a1 + x2a2 + · · ·+ xn−1an−1 ≡ r (mod an) . (1)

Here xj > 0 are integers. Put m̄r = min0≤x1,x2,...,xn−1 < an m(x1, x2, . . . , xn−1) and denote
F1(a) = maxr(r + m̄ran).

Lemma 1. F1(a)− an ≤ F (a) ≤ F1(a) provided that F1(a)− an > 0.

Proof. Take t > F1(a). Then t ∈ Πr for some r, 0 ≤ r < an, i.e., t = r + man. Therefore

t = r + m̄ran + (m− m̄r)an = x1a1 + · · ·+ xn−1an−1 + (m− m̄r)an
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for some 0 ≤ xj < an, j = 1, . . . , n−1. Since t > F1(a) we have x1a1+ · · ·+xn−1an−1 ≤ F1(a)
and m > m̄r. This gives the needed representation of t and the inequality F (a) ≤ F1(a).

To prove the inequality from the other side, take r1 such that F1(a) = r1 + m̄r1an =
maxr(r + m̄ran). We shall show that t1 = r1 + (m̄r1 − 1)an cannot be represented in the
form t1 = y1a1 + · · · + ynan with non-negative yj, 1 6 j 6 n. Indeed, if such representation
is possible we would have

y1a1 + · · ·+ yn−1an−1 = r1 + man

for some m > m̄r1 and by definition of t1

t1 = y1a1 + · · ·+ yn−1an−1 + ynan = r1 + man + ynan = r1 + (m̄r1 − 1)an .

Therefore m + yn = m̄r1 − 1. Since m > m̄r this is possible only if yn < 0. Lemma is
proved.

Certainly, instead of an we could take any other aj. In a typical situation we expect that

x grow as N
1

n−1 . Therefore typically F (a) ∼ F1(a).

The financial support from NSF, Grant No. 0600996 given to the second author is highly
appreciated.

§2. The case n = 3 and lcd(ai, aj) = 1 for some ai, aj

Without any loss of generality we may assume that i = 1, j = 3. In this case the “max-
min” problem for F1(a) can be solved more or less explicitly. Write for positive integers
x1, x2

x1a1 + x2a2 = r + m(x1, x2)a3 (2)

or

x1a1 + x2a2 ≡ r (mod a3) (3)
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where 0 ≤ r < a3. Since a1, a3 are co-prime there exists a−1
1 , 1 ≤ a−1

1 < a3 for which
a1 · a−1

1 ≡ 1 (mod a3). It follows easily from the estimates of Kloosterman sums that for any
fixed 0 < α1 < α2 < 1 and Nα1 ≤ a1 ≤ Nα2 the inverse a−1

1 is asymptotically uniformly
distributed on [1, . . . , a3]. Presumably this is also true in our ensemble. Rewrite (3) as
follows:

x1 + a1 2x2 ≡ r1 (mod a3) (4)

where r1 ≡ ra−1
1 (mod a3), a12 = a−1

1 · a2(mod a3) and

a1 2x2 ≡ (r1 − x1) (mod a3) (5)

The equation (5) has a natural geometric interpretation. Consider S = [0, 1, . . . , a3 − 1]
as a “discrete circle.” The shift R by a1 2(mod a3) is the rotation of the circle S and {a1 2x2}
is the orbit under the action of R of the point zero. Then (5) means that r1 − x1 belongs to
this orbit.

From Lemma 1

F1(a) = max
r

min
x1a1+x2a2≡ r (mod a3) 0 ≤ x1, x2 < a3

(x1a1 + x2a2) =

= N3/2 max
r

min
x1a1+x2a2≡ r (mod a3)

(
x1√
N

a1

N
+ x2√

N

a2

N

)
= N3/2 max

r1

min
x1+x2a1 2≡ r1 (mod a3)

(
x1√
N

a1

N
+ x2√

N

a2

N

)
.

(6)

First we localize our ensemble. Choose α = (α1, α2, α3), 0 < αj < 1 for j = 1, 2, 3 and
ε > 0 and define ΩN,α,ε ⊂ ΩN as a subset of those a = (a1, a2, a3) for which

∣∣aj

N
− αj

∣∣ ≤ ε.
Then PN,α,ε is the notation for the uniform probability distribution on ΩN,α,ε. Theorem 1 will
follow if we prove Theorem 1 wrt to the distribution PN,α,ε (see also the end of this section).
In the ensemble ΩN,α,ε the ratios a1

N
, a2

N
are ε-close to α1, α2.

We shall use some facts from the theory of continued fractions and from the theory of
rotations of the circle (see [5]). Take ρ = a1 2

a3
and expand it into continued fraction:
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ρ =
1

h1 +
1

h2 +
1

h3 +...+
1

hs0

(7)

where hj ≥ 1 are integers. Let

ρs =
1

h1 +
1

h2 +...
+

1

hs

=
ps

qs

be the s-approximant of ρ. One can find “odd” intervals 4(2p−1)
1 = {0, 1, . . . ,m2p−1} and

“even” intervals 42p {a3 − m2p, . . . , a3 − 1}, p ≥ 1, such that if 4(2p−1)
j = Rj4(2p−1),

4(2p)
j1

= Rj14(2p) then the intervals 4(2p−1)
j , 0 ≤ j < q2p and 4(2p)

j1
, 0 ≤ j1 < q2p−1 are

pair-wise disjoint and their union gives the whole circle S. This means that 4(2p−1)
j , 4(2p)

j ,

constitute some partition of S which we denote by η(p). The partitions η(p) increase, η(p+1) ≥
η(p). Their exact structure depends on the elements of the continued fraction (7).

We shall show that in (6) it is enough to consider x1 ≤ D1

√
N , x2 ≤ D1

√
N where D1

is sufficiently large depending on ρ (see below). Take s1 such that qs1−1 ≤
√

N < qs1 . If
x2 > D1

√
N choose k so that qs1+k1 ≤ x2 < qs1+k1+1. Clearly, k1 increases of D1 increases.

Put x′1 = x1 + (a12 qs1+k1 − ps1+k1a3) = x1 + a3(ρ qs1+k1 − ps1+k1), x′2 = x2 − qs1+k1 . It is easy
to see that

x′1 + a1 2 x′2 ≡ x1 + a12 x2 (mod a3)

and

x′1√
N

a1

N
+

x′2√
N

· a2

N
=

x1√
N

a1

N
+

x2√
N

· a2

N
+

+
a3(ρ qs1 + k1 − ps1 + k1)√

N

a1

N
− qs1+k1√

N
· a2

N
. (8)
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The expression
a3(ρ qs1 + k1

− ps1 + k1
)√

N
· a1

N
= a3

N
·
√

N(ρ qs1 + k1 − ps1 + k1) · a1

N
decreases as k1

increases because (ρ qs1+k1 − ps1+k1) behaves as 1
qs1+k1

. On the other hand,
qs1+k1√

N
takes values

O(1) and increases as k1 increases. Therefore, the sum of the last two terms in (8) becomes
negative if k1 is large enough. Since in (6) we are interested in the minimal values of x′2,
x′2 = x2 − qs1+k1 give smaller values for the expression (6). Thus it is enough to consider
x2 ≤ D1

√
N for sufficiently large D1 depending on ρ.

Let us show that x2 > D−1
2

√
N for another sufficiently large D2. Indeed, take k2 so

that qs1−k2 < D−1
2

√
N ≤ qs1−k2+1 and consider the partition η(s1−k2). Take any element

4 = [y1, y2] of this partition and for r1 = y2−1 the value of x1 are (y2−y1)−1, (y2−y1−1)+`1,
(y2 − y1 − 1) + `1 + `2, . . . where `1, `2, . . . are the lengths of the elements of η(s1−k2) which
follow 4. If x2 ≤ D−1

2

√
N ≤ qs1−k2+1 then it is clear that min of x1√

N

a1

N
+ x2√

N

a2

N
is attained

at x1 = y2 − y1 − 1. On the other hand, for r1 consider an element 4′ of the partition η(s1)

containing r1. Take x′1 = |4′| − 1. It is clear that x′2 ≤ qs1+1 and
x′1√
N
· a1

N
+

x′2√
N

a2

N
is much

smaller than in the previous case. Thus D−1
2

√
N ≤ x2 ≤ D1

√
N .

In the above mentioned paper by C. Ulcigrai and the second author ([6], in preparation)
the following problem was considered. Take large R and some fixed number k. For any
irrational ρ consider qs such that qs−1 ≤ R < qs and hs−k, . . . , hs, . . . , hs+k. In [7] it is proven
that with respect to the Gauss density 1

ln 2(1+ρ)
there exists the joint limiting distribution of

qs−1/R, qs/R, hs−k, . . . , hs, . . . , hs+k. Presumably, the same limiting distribution appears for
any probability distribution PN,α,ε but we do not consider this question in more detail.

For any s1 and k, consider the elements 4′, 4′′ of η(s1−k) which contain 0 (for 4′ the
point 0 is the right end-point while for 4′′ it is the left end-point). The partitions η(s−k+1),
η(s−k+2), . . . , η(s+k) generate a finite partition of 4′∪4′′ which we denote by ν. The structure
of this partition is determined by hs−k, hs−k+1, . . . , hs+k. Denote by N the finite set of end-
points of elements of ν.

Take b = a3 − a1 2 and N ′ = N − a1 2(mod a3).

Denote

fk = max
y∈N ′

min
x1+a1 2 x2 ≡ y (mod a3)

a1 2 x2 ∈N′

(
x1√
N

· a1

N
+

x2√
N

a2

N

)
.

The same arguments as before show with PN,α,ε-probability tending to 1 as k → ∞ the
solution of the main max-min problem for F1 is given by fk. In this sense it is a function of
qs−1

R
, qs

R
and hs−k, . . . , hs+k and has a limiting distribution as N →∞.
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§3. The case n = 3 and arbitrary bij = lcd(ai, aj)

Since all aj have no common divisors, b13 and b23 are co-prime. Again for given r, 0 ≤
r < a3, we consider the equation

x1a1 + x2a2 = r + m(x1, x2)a3 .

We write a1 = b13a
′
1, a2 = b23a

′
2, a3 = b13b23a

′
3. Clearly a′1 and a′3, a′2 and a′3 are co-prime.

Let

r = r′b13b23 + r′′, 0 ≤ r′′ < b13b23 ,

x1 = b23x
′
1 + x′′1, 0 ≤ x′′1 < b23 ,

x2 = b13x
′
2 + x′′2, 0 ≤ x′′2 < b13 ,

a′1 = b23a
′′
1 + a′′′1 , 0 ≤ a′′′1 < b23 ,

a′2 = b13a
′′
2 + a′′′2 , 0 ≤ a′′′2 < b13 .

First we consider the equation

x′′1b13a
′′′
1 + x′′2b23a

′′′
2 ≡ r′′ (mod b13b23) . (9)

We can find unique solution which we denote by x̄′′1, x̄
′′
2 such that

x′′1a
′′′
1 + x′′2a

′′′
2 = r′′ + tb13b23

where t can take values 0 or 1. After that we consider the equation which remains after
dividing both sides of (8) by b13b23:

x′1a
′
1 + a′2a

′
2 = r′ − x′′1a

′′
1 − x′′2a

′′
2 − t + ma′3 . (10)

Denote r′1 = r′ − x′′1a
′′
1 − x′′2a

′′
2 + t. Clearly x′′1a

′′
1 − x′′2a

′′
2 + t can take finitely many values

depending only on {bij}. It is easy to see that the limits of probabilities of these values exist
as N →∞.
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The equation (9) is similar to (6) because a′1 and a′3 are co-prime. We can write

x′1 + x′2a
′
2(a

′
1)
−1 = r′1(a

′
1)
−1 + m1a

′
3

and use the same arguments as in Section 2. In particular, we consider the expansion of
a′2(a

′
1)
−1 into continued fraction, take s1 for which qs1 >

√
N , qs1 − 1 <

√
N and find the

value of s for which
|4(s)

1 |√
N

+ qs√
N

takes its minimum. The limiting distribution of the last

number gives the limiting distribution of 1
N3/2 F1(a).

§4. The case n > 3

For n > 3 our result is weaker. Again we consider the equation

x1a1 + x2a2 + · · · + xn−1 an−1 = r + man (11)

or

x1a1 + x2a2 + · · · xn−1 an−1 ≡ r (mod an) . (12)

The left-hand side is the orbit of the abelian group generated by (n−1) commuting rotations
Rj where Rj is the shift mod an of S = {0, 1, . . . , an − 1} by aj, 1 ≤ j ≤ n− 1. We shall
prove the following theorem.

Theorem 2. Consider the ensemble ΩN,α ⊂ ΩN such that αN < aj, 1 ≤ j ≤ n, where
0 < α < 1 is a fixed number. Take the set

∑
D ⊂ ΩN,α of (a1, a2, . . . , an) ∈ ΩN,α such that for

any r ∈ S the equation (12) has a solution with 0 ≤ xj ≤ DN
1

n−1 . Then PN,α(
∑
D

) ≥ 1−ε(D)

where ε(D) → 0 as D →∞. Here PN,α is the uniform probability distribution on ΩN,α.

Proof. It is easy to see that

1

an

an−1∑
m=0

exp

{
− 2πim · r

an

}
exp

{
− 2πi

n−1∑
j=1

maj

an

· xj

}
=


1 if (12) holds

0 if (12) fails
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Take M > 0 and consider the weight on Z

c(x) =

 1 − |x−M |
M

, 0 ≤ x ≤ 2M

0 otherwise .

To show that (12) has a solution for any r ∈ S, it will suffice to show that for any r

Za(r) =
∑

x1,x2,...,xn∈Z

c(x1) c(x2) · · · c(xn−1)
1

an

an−1∑
m=0

exp

{
− 2πimr

an

}
·

exp

{
2πim

n−1∑
j=1

aj

an

xj

}
6= 0 . (13)

We write

Za(r) =
1

an

an−1∑
m=0

exp

{
− 2πi

mr

an

} n−1∏
j=1

∑
x∈Z

c(x) exp

{
2πi

maj

an

x

}
.

It is easy to check that

∑
x∈Z1

c(x) e−2πiθx = e2πiMθ 1

2M + 1

{
sin π(2M + 1)θ

2 sin πθ

}2

(14)

for any θ. Separating in (13) the contribution of m = 0 and m 6= 0 we can write

Za(r) =
Mn−1

an

+ Z(1)
a (r) =

Mn−1

an

+
1

an

an−1∑
m=1

e−2πi mr
an

n−1∏
j=1

(∑
x∈Z′

c(x) e2πi
maj
an

x

)
.

We shall consider M = A N
1

n−1 . Therefore Mn−1

an
= An−1 ·N

an
. In our case α ≤ an

N
≤ 1. In

view of (14) for Z
(1)
a (r) we have the estimate

|Z(1)
a | ≤ 1

an

an−1∑
m=1

n−1∏
j=1

(
sin π(2M + 1)θj

2 sin πθj

)2
1

2M + 1
(15)
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where θj =
maj

an
. This estimate does not depend on r. Therefore, if we show that the

expectation of the rhs of (15) is bounded by some constant then the Chebyshev inequality
gives the statement of the theorem.

It is easy to check that

(
sin π(2M + 1)θj

2 sin πθj

)2

≤ C1(
sin
(

πmaj

an

))2

+ M−2

for some absolute constant C1. Therefore

|Z(1)
a | ≤ C2

an

an−1∑
m=1

n−1∏
j=1

 1

M

1(
sin πm

aj

an

)2

+ M−2

 =

≤ C2

an

an−1∑
m=1

n−1∏
j=1

1

M ‖ maj

an
‖2 + M−1

. (16)

for another absolute constant C2. In the last formula ‖ · ‖ is the distance till the nearest
integer number. Let us average the rhs of (16) wrt PN,α, i.e., consider

Z(2) =
1

Nn+1

∑
αN ≤ an≤N

an−1∑
m=1

∑
αN ≤ a1,...,an−1 ≤N

`cd(a1,...,an) = 1

n−1∏
j=1

1

M ‖ maj

an
‖2 + M−1

. (17)

Assume that m
an

= b/q for some 1 ≤ b ≤ q and (b, q) = 1. Then the rhs of (17) can be written
as

N−n−1

N∑
q=1

N

q
·
∑
1≤b≤q
(b,q)=1

∑
αN≤a1,...,an≤N

`cd(a1,...,an−1,q) = 1

n−1∏
j=1

1

M ‖ b
q
aj ‖2 + M−1

. (18)

If `cd(a1, . . . , an−1, q) = 1 then certainly ak is not a multiple of q for some k = 1, . . . , n− 1.
Hence
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∑
αN ≤ a1,...,an≤N

n−1∏
j=1

1

M ‖ b
q
aj ‖2 + M−1

≤
n−1∑
k=1

∑
αN ≤ a1,..., an−1 ≤N

ak /∈ qZ

n−1∏
j=1

1

M ‖ b
q
aj ‖2 + M−1

=

= (n− 1)
∑

αN ≤ a≤N
a6=qZ

1

M ‖ ba
q
‖2 + M−1

·

( ∑
αN ≤ a≤N

1

M ‖ b
q
a ‖2 + M−1

)n−2

(19)

Now we shall estimate both sums in (19).

Lemma 2.

(i) If q > M then ∑
αN ≤ a≤N

1

M ‖ b
q
a ‖2 + M−1

≤ N ;

(ii) If q ≤ M then ∑
αN ≤ a≤N

1

M ‖ b
q
a ‖2 + M−1

≤ M

q
· N ;

(iii) If q ≤ M then ∑
αN ≤ a≤N

a /∈ qZ

1

M ‖ ba
q
‖2 + M−1

≤ q

M
N .

Proof. Partition [αN, N ] onto approximately (1−α)N
q

intervals Iγ of the length q. Denote by

πq the quotient map Z → Z/qZ. Then for each Iγ we have {πq(ba)|a ∈ Iγ} = Zq and

{πq(ba)|a ∈ Iγ, πq(a) 6= 0} = Zq r {0} .

Therefore the sum

∑
αN ≤ a≤N

1

M ‖ b
q
a ‖2 + M−1

11



behaves as

N

q

q−1∑
z=0

(q − 1)
1

M ‖ z
q
‖2 + M−1

and for another absolute constant C3

q−1∑
z=0

1

M ‖ z
q
‖2 + M−1

≤ C3q

if q ≥ M

and

q−1∑
z=0

1

M ‖ z
q
‖2 + M−1

≤ C3M

if q < M .

This gives the statements (i) and (ii) of the lemma. For q < M the sum

q−1∑
z=1

1

M ‖ z
q
‖2 + M−1

≤ q2

M
.

Lemma is proven.

Return back to (19). For q ≥ M Lemma 2 shows that it is not more than Nn−1 while

for q < M it is not more than q
M
· N ·

(
M
q

n
)n−2

=
(

M
q

)n−3

· Nn−1. Substituting these

estimates into (17) we get assuming n > 3

Z(2) ≤ 1

Nn+1
·

∑
M ≤ q≤N

· N
q

∑
1≤ b≤ q
(b,q) = 1

Nn−1 +

+
1

Nn+1

∑
1≤ q≤M

N

q

∑
1≤ b≤ q
(b,q) = 1

(
M

q

)n−3

· Nn−1 <

12



< C4 + C4
Mn−3

N

∑
1≤ q≤M

1

qn−3
< C4

(
1 +

Mn−2

N

)

for another constant C4. Thus Z(2) is bounded. This implies the statement of the theorem.

Theorem 2 shows that in any ensemble ΩN,α the family of probability distributions of

F1(a)/N1+ 1
n−1 is weakly compact. However, it does not imply the existence of the limiting

distribution of F1(a)/N1+ 1
n−1 but gives only the existence of limiting points.
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Appendix 1.

Below we prove some estimate which was not used in the previous proofs but is of some
independent interest. A similar statement was proven by A. Kochergin (private communi-
cation).

Lemma Let for 0 < α < 1

ST (α) =
1

T

T∑
t=1

1

| exp{2πitα} − 1|

and

AT (D) = {α : |ST (α)| ≥ D ln T} .

Then `(AT (D)) ≤ ε1(D) where ε1(D) → 0 as D →∞, where ` is the Lebesgue measure.

Proof. Take two positive numbers C1, C2, 1 < C1 < 2C1 < C2, introduce the intervals

4T (k) =
{

α :
Ck

1

T
≤ α ≤ Ck+1

1

T

}
, k = 0, 1, . . . , K. Without any loss of generality we may

assume that CK+1
1 = T . Clearly, K ∼ ln T

ln C1
. Consider

BT,k(C1, C2) = {α : νT,k(α) ≤ C2C
k
1}

where νM,k(α) is the number of m, 1 ≤ m ≤ M , such that {mα} ∈ 4M(k), and

BT (C1, C2) =
K⋂

k=0

BT,k(C1, C2) .

Then for α ∈ BT (C1, C2)

|ST (α)| =
1

T

T∑
t=1

1

| exp{2πitα} − 1|
≤ 1

T

K∑
k=0

T

2πCk
1

νT,k(α)

≤ C2

2π
(K + 1) ≤ C2 ln T

2π ln C1

.
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This is the needed inequality with D = C2

2π ln C1
. Thus we have to estimate the measure of

the complement of BT (C1, C2). Clearly

`(B̄T (C1, C2)) ≤
K∑

k=0

`(B̄T,k (C1, C2))

where B̄ is the complement to B. Let χk(α) be the indicator of BT,k(C1, C2). Then

νT,k(C1, C2) =
T∑

t=1

χk(tα)

and by Chebyshev inequality

`{α : νT,k(α) ≥ C2C
k
1} = `

{
α :

T∑
t=1

χk(tα) ≥ C2C
k
1

}

= `

{
α :

T∑
t=1

(
χk(tα) − Ck

1 (C1 − 1)

T

)
≥ (C2 − C1 + 1)Ck

1

}

≤
E

[
T∑

t=1

(
χk(tα) − Ck

1 (C1−1)

T

)2
]

(C2 − C1 + 1)2 C2k
1

=
ET

j=1(T − j)(Eχk(α)χk(jα) −
(

Ck
1 (C1−1)

T
)
)

(C2 − C1 + 1)2 C2k
1

.

The expectation is taken with respect to the Lebesgue measure. We shall estimate the last
sum. It will be done separately in four steps.

Step 1: j < C1. Here Eχk(α)χ− k(jα) ≤ Eχk(α) =
Ck

1 (C1−1)

T
and

∑
j<C1

(M − j)

[
Eχk(α)χk(jα) −

(
Ck

1 (C1−1)

T

)2
]

(C2 − C1 + 1)2C2k
1

≤ Ck
1 (C1 − 1))C1

C2k
1 (C2 − C1 + 1)2

≤ 1

Ck+1
1

since C2 > 2C1.
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Step 2: C1 ≤ j < T

Ck+1
1

. In this case Eχk(α)χk(jα) = 0 and therefore there is nothing

to estimate. Indeed, χk(α) is the indicator of the set 4T (k). The function χk(jα) is

the indicator of the arithmetic progression of the intervals
[

1
j

Ck
1

T
+ s

j
, 1

j

Ck+1
1

T
+ s

j

]
,

s ≥ 0. From our condition on j it follows that 4T (k) can intersect only with the
interval for which t = 0 this intersection is empty.

Step 3: T

Ck+1
1

≤ j ≤ 3T
Ck

1 (C1−1)
. The number 3 does not play any essential role

and can be replaced by any bigger number. Here 4T (k) intersects with not more
than three intervals from the above mentioned arithmetic progression. Therefore

Eχk(α)χk(jα) ≤ 3Ck
1

jT
and

∑
j

(T − j)

[
Eχk(α)χk(jα) −

(
Ck

1 (C1−1)

T

)2
]

(C2 − C1 + 1)2C2k
1

≤ 3Ck
1

(C2 − C1 + 1)2C2k
1

∑
T

Ck+1
1

≤ j≤ 3T

Ck
1 (C1−1)

1

j

≤ 3

Ck
1 (C2 − C1 + 1)2

Ck+1
1 · 2T

T · Ck
1 (C1 − 1)2

=
24

Ck
1 C2

.

This is the estimate which we need.

Step 4: j ≥ 3T
Ck

1 (C1−1)
. In this case Eχk(α)χk(jα) is close to (Eχk(α))2 =

(
Ck

1 (C1−1)

T

)2

.

Indeed, we can increase 4T (k) by adding an interval near each end-point so that the

new set 4′
T (k) will consist of an integer number of intervals

[
s
j
, s+1

j

]
. Therefore

Eχk(α)χk(jα) ≤ `(4′
T (k))

Ck
1 (C1 − 1)

T
≤
(

`(4T (k)) +
2

j

)
Ck

1 (C1 − 1)

T

= `2(4T (k)) +
2Ck

1 (C1 − 1)

Tj

and

∑
3T

Ck
1 (C−1)

≤ j≤T

(T − j)

[
Eχk(α)χk(jα) −

(
Ck

1 (C1−1)

T

)2
]

(C2 − C1 + 1)2C2k
1
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≤
∑

3T

Ck(C−1)
≤ j≤T

(T − j)2Ck
1 (C1 − 1)

Tj(C2 − C1 + 1)2C2k
1

≤ 2Ck
1 (C1 − 1)

(C2 − C1 + 1)2Ck
1

ln
TCk

1 (C − 1)

3T
=

4(C1 − 1)k ln C1

(C2 − C2 + 1)2Ck
1

.

Now we can finish the proof of the Lemma. From all our estimates it follows that

`
{
α : νT,k(α) ≥ C2C

k
1

}
≤ 4 ln C1

C1

k

Ck
1

and therefore

∑
k

`{α : νT,k(α) ≥ C2C
k
1} ≤ const

ln C1

C1

.

This implies the statement of the lemma.

March 20, 2007:gpp

17


