Separating Solution of a Recurrent Equation

> by

Ya. G. Sinai*

[^0]
§1. Introduction

Consider a sequence of real numbers given by a recurrent equation

$$
\begin{equation*}
\wedge_{p}=\frac{1}{p-1} \sum_{p_{1}=1}^{p-1} f\left(\frac{p_{1}}{p}\right) \wedge_{p_{1}} \cdot \wedge_{p-p_{1}} . \tag{1}
\end{equation*}
$$

Here f is a C^{3}-function on $[0,1]$. The sequence \wedge_{p} is defined as soon as $\wedge_{1}=y$ is given. In this sense we shall write $\wedge_{p}(y)$ and assume $y \geq 0$.

If $y^{\prime}=c y$ then $\wedge_{p}\left(y^{\prime}\right)=c^{p} \wedge_{p}(y)$. Therefore, if $\wedge_{p}(y) \longrightarrow \infty$ as $p \longrightarrow \infty$ and $c \geq 1$ then also $\wedge_{p}\left(y^{\prime}\right) \longrightarrow \infty$ as $p \longrightarrow \infty$. If $\wedge_{p}(y) \longrightarrow 0$ as $p \longrightarrow \infty$ and $0<c<1$ then $\wedge_{p}\left(y^{\prime}\right) \longrightarrow 0$ as $p \longrightarrow \infty$. This implies that the set of $y>0$ for which $\wedge_{p}(y) \longrightarrow \infty$ as $p \longrightarrow \infty$ is an open semi-line $\left(y^{+}, \infty\right)$ while the set of $y>0$ for which $\wedge_{p}(y) \longrightarrow 0$ as $p \longrightarrow \infty$ is an interval $\left(0, y^{-}\right)$. It is a natural question whether $y^{-}=y^{+}=y^{(0)}$ and $\wedge_{p}\left(y^{(0)}\right) \longrightarrow$ const as $p \longrightarrow \infty$. As it is easy to understand, this constant must be equal to $\left(\int_{0}^{1} f(\gamma) d \gamma\right)^{-1}$ and it is our first assumption that $\int_{0}^{1} f(\gamma) d \gamma>0$. Without any loss of generality it is enough to consider the case $\int_{0}^{1} f(\gamma) d \gamma=1$ because if $f^{(1)}(y)=K f(y)$ for some constant K then for the corresponding sequence $\wedge_{p}^{(1)}(y)$ we have $\wedge_{p}^{(1)}(y)=K^{-1} \wedge_{p}(y)$.

The above formulated question appeared in our joint paper with Dong Li (see [LS]) on short time singularities in complex-valued solutions of the 3-dimensional Navier-Stokes system on R^{3}. There we needed the positive answer for the particular case $f(\gamma)=6 \gamma^{2}-10 \gamma+4$. Each of us found his own proof of the needed statement but the proofs were different and required different assumptions concerning the function f. The proof given by Dong Li can be found in his paper [L]. Below I present my proof which uses some inductive process. Here are the main assumptions about the function f :
(1) $f \in C^{3}([0,1])$.
(2) $f(0)$ or $f(1)$ is zero. Without any loss of generality we can consider the case $f(1)=0$.
(3) $\int_{0}^{1} f(\gamma) d \gamma=1$. As it was already explained, this is not a restriction because of the scaling properties of (1).
(4) Let $f_{1}(\gamma)=f(\gamma)+f(1-\gamma), f_{2}(\gamma)=-f_{1}(\gamma)-\gamma f_{1}^{\prime}(\gamma), f_{3}(\gamma)=\frac{1}{\gamma^{2}} \int_{0}^{1} x f_{2}(x) d x$. Then $\int_{0}^{1} \frac{1}{\sqrt{\gamma}} f_{3}(\gamma) d \gamma \neq-1$.
(5) The last assumption concerns the initial part of our inductive process. It will be formulated later in $\S 2, \S 4$.

Main Theorem. If the conditions (1)-(5) are fulfilled, then there exists $y^{(0)}>0$ such that for $p \longrightarrow \infty$

$$
\wedge_{p}\left(y^{(0)}\right) \longrightarrow\left(\int_{0}^{1} f(\gamma) d \gamma\right)^{-1}=1
$$

Clearly $y^{(0)}$ is unique.
We shall call $\wedge_{p}\left(y^{(0)}\right)$ a separating solution of (1).

Acknowledgments

Financial support from NSF, Grant No. DMS 0600996 is highly appreciated. Also, I thank Dong Li for the very useful collaboration.

§2. Derivation of the Main Recurrent Formula

It follows from (1) that

$$
\wedge_{p}((1+x) y)=(1+x)^{p} \wedge_{p}(y)
$$

and therefore

$$
\frac{d \wedge_{p}((1+x) y)}{d x}=p(1+O(p x)) \wedge_{p}(y)
$$

We shall use this formula in the cases where $y=O(1), \wedge_{p}(y)=O(1), p x=o(1)$. Then in the main order of magnitude $\frac{d}{d x} \wedge_{p}((1+x) y)=p \wedge_{p}(y)$ and does not depend on x, i.e. in this approximation $\wedge_{p}((1+x) y)$ is a linear function of x. We shall formulate this statement as a separate lemma.

Lemma 1. Let for some numbers A_{1}, A_{2}

$$
A_{1} \leq \wedge_{p}(y) \leq A_{2}
$$

Then there exists a constant C_{1} depending on A_{1}, A_{2} such that

$$
\begin{equation*}
\frac{d}{d x} \wedge_{p}(y+x y)=p\left(1+\epsilon_{p}^{(1)}\right) \wedge_{p}(y) \tag{2}
\end{equation*}
$$

and $\left|\epsilon_{p}^{(1)}\right| \leq C_{1} \cdot p|x|$ provided that $p|x| \leq 1$.
Below in this text various absolute constants which appear during the proof will be denoted by $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with indeces, various remainders will be denoted by ϵ, δ with indeces.

Choose some $\rho, 0<\rho<1$, and consider the sequence of intervals $\triangle_{p}=\left[1-\frac{\rho}{\sqrt{p}}, 1+\frac{\rho}{\sqrt{p}}\right]$. It is clear that $\triangle_{p} \supseteq \triangle_{p+1} \supseteq \ldots$. As was already mentioned, the proof of the main theorem is based on some inductive process. Assume that for all $q, 1 \leq q \leq p$ we have the intervals $\mathcal{D}_{q}=\left[a_{q}, b_{q}\right]$ on the y-axis such that

$$
\wedge_{q}\left(a_{q}\right)=1-\frac{\rho}{\sqrt{q}}, \wedge_{q}\left(b_{q}\right)=1+\frac{\rho}{\sqrt{q}}
$$

and $0<A_{3}<a_{q} \leq b_{q} \leq A_{4}$. Putting in (2) $y=a_{p}$ we get from Lemma 1 that the derivative $\frac{d}{d y} \wedge_{q}(y)=q\left(1+\epsilon_{q}^{(2)}\right)$ with $\left|\epsilon_{q}^{(2)}\right| \leq \frac{C_{2}}{\sqrt{q}}$ where C_{2} depends only on ρ. In other words, if q is sufficiently large the function $\wedge_{q}(y)$ is strictly monotone and changes from $1-\frac{\rho}{\sqrt{q}}$ till $1+\frac{\rho}{\sqrt{q}}$ with the derivative of order of q. Now we can write

$$
\wedge_{p+1}\left(a_{p+1}\right)-\wedge_{p}\left(a_{p}\right)=\frac{\rho}{\sqrt{p}}-\frac{\rho}{\sqrt{p+1}}=\frac{\rho}{2 p^{3 / 2}}\left(1+\epsilon_{p}^{(3)}\right),\left|\epsilon_{p}^{(3)}\right| \leq \frac{C_{3}}{p} .
$$

Then

$$
\begin{aligned}
& \frac{\rho}{2 p^{3 / 2}}\left(1+\epsilon_{p}^{(3)}\right)=\wedge_{p+1}\left(a_{p+1}\right)-\wedge_{p}\left(a_{p}\right)=\wedge_{p+1}\left(a_{p+1}\right)-\wedge_{p+1}\left(a_{p}\right) \\
& +\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)= \\
& =(p+1)\left(1+\epsilon_{p}^{(4)}\right)\left(a_{p+1}-a_{p}\right)+\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)
\end{aligned}
$$

with $\left|\epsilon_{p}^{(4)}\right| \leq \frac{C_{4}}{\sqrt{p}}$. This gives

$$
\begin{equation*}
(p+1)\left(1+\epsilon_{p}^{(4)}\right)\left(a_{p+1}-a_{p}\right)=\frac{\rho}{2 p^{3 / 2}}\left(1+\epsilon_{p}^{(3)}\right)-\left(\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)\right) . \tag{3}
\end{equation*}
$$

We shall use the recurrent equation (1) to find another expression for $\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)$. Put $\gamma=\frac{p_{1}}{p}, p_{2}=p-p_{1}, \gamma^{\prime}=\frac{p_{1}}{p+1}$. Then

$$
\begin{aligned}
& \wedge_{p+1}\left(a_{p}\right)=\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right) \wedge_{p_{1}}\left(a_{p}\right) \wedge_{p_{2}+1}\left(a_{p}\right)= \\
& =\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}+1}\left(a_{p}\right)-1\right)+ \\
& +\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)+\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{2}+1}\left(a_{p}\right)-1\right) \\
& -\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right)= \\
& =\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}+1}\left(a_{p}\right)-1\right)+ \\
& +\frac{1}{p} \sum_{p_{1}=1}^{p} f_{1}\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)-\frac{1}{p} \sum_{p_{1}=1}^{p} f\left(\gamma^{\prime}\right) .
\end{aligned}
$$

A similar formula can be written for $\wedge_{p}\left(a_{p}\right)$:

$$
\begin{aligned}
& \wedge_{p}\left(a_{p}\right)=\frac{1}{p-1} \sum_{p_{1}=1}^{p-1} f(\gamma)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}}\left(a_{p}\right)-1\right)+ \\
& +\frac{1}{p-1} \sum_{p_{1}=1}^{p-1} f_{1}(\gamma)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)-\frac{1}{p-1} \sum_{p_{1}=1}^{p-1} f(\gamma) .
\end{aligned}
$$

Subtracting $\wedge_{p}\left(a_{p}\right)$ from $\wedge_{p+1}\left(a_{p}\right)$ we get

$$
\begin{aligned}
& \wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)=\frac{1}{p} f\left(\frac{p}{p+1}\right)\left(\wedge_{p}\left(a_{p}\right)-1\right)\left(\wedge_{1}\left(a_{p}\right)-1\right) \\
& +\sum_{p_{1}=1}^{p-1}\left(\frac{1}{p} f\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}}\left(a_{p}\right)-1\right) \\
& +\frac{1}{p} \sum_{p_{1}=1}^{p-1} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)\right) \\
& +\frac{1}{p} f_{1}\left(\frac{p}{p+1}\right)\left(\wedge_{p-1}\left(a_{p}\right)-1\right)+\sum_{p_{1}=1}^{p-1}\left(\frac{1}{p} f_{1}\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right) . \\
& \left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)+\frac{1}{p} f\left(\frac{p}{p+1}\right)-\sum_{p_{1}=1}^{p-1}\left(\frac{1}{p} f\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right)=\sum_{j=1}^{7} I_{p}^{(j)} .
\end{aligned}
$$

Here $p_{2}^{\prime}=p+1-p_{1}$. Each term will be estimated in the next section.

Now we can explain in detail the property (5) of the function f :
take some ρ, A_{3}, A_{4}. Then for some $p_{0}=p_{0}\left(\rho, A_{3}, A_{4}\right)$ and all $q, 1<q \leq p_{0}$ the segments $\left[a_{q}, b_{q}\right]$ for which $\wedge_{q}\left(a_{q}\right)=1-\frac{\rho}{\sqrt{q}}, \wedge_{q}\left(b_{q}\right)=1+\frac{\rho}{\sqrt{q}}, A_{3} \leq a_{q} \leq b_{q} \leq A_{4}$ exist.

Fix some number $\alpha>0$ which later will be assumed to be sufficiently small and consider the sequence $p^{(n)}$, $p^{(n+1)}=(1+\alpha) p^{(n)}$, $n \geq 0$. The choice of α will be discussed in $\S 4$.

For each $n \geq 0$ we write $a_{p^{(n)}+1}-a_{p^{(n)}}=\frac{r^{(n)}}{\left(p^{(n)}\right)^{5} / 2}$ and this equality will be used for the definition of $r^{(n)}$. For $p^{(n)}<p \leq p^{(n+1)}$ we write $a_{p^{(n)+1}}-a_{p^{(n)}}=\frac{r^{(n)}+\delta_{n}^{(n)}}{p^{5 / 2}}$. Denote $M_{p}=\max _{q \leq p}\left|r^{(n)}+\delta_{q}^{(n)}\right|=\max \left|a_{q}-a_{q-1}\right| q^{5 / 2}$. It is clear that M_{p} does not depend on the choice of $r^{(n)}$ and $\delta_{p}^{(n)}$ because $r^{(n)}+\delta^{(n)}$ does not depend on the n. Then M_{p} will be the main p numbers which we shall estimate below.

§3. Estimates of $I_{p}^{(j)}$

In this and the next section we consider $p, p^{(n)}<p \leq p^{n+1)}$. First we consider the largest terms among $I_{p}^{(j)}$.
3.1 We start with

$$
I_{p}^{(4)}=\frac{1}{p} f_{1}\left(\frac{p}{p-1}\right)\left(\wedge_{p-1}\left(a_{p}\right)-1\right) .
$$

We have

$$
\begin{aligned}
I_{p}^{(4)} & =\frac{1}{p} f_{1}\left(\frac{p}{p-1}\right)\left(\wedge_{p-1}\left(a_{p-1}\right)-1+\wedge_{p-1}\left(a_{p}\right)-\wedge_{p-1}\left(a_{p-1}\right)\right) \\
& =-\frac{\rho}{p^{3 / 2}} f_{1}(1)+\frac{1}{p} f_{1}(1)\left(\wedge_{p-1}\left(a_{p}\right)-\wedge_{p-1}\left(a_{p-1}\right)\right)+\epsilon_{p}^{(5)}
\end{aligned}
$$

where $\left|\epsilon_{p}^{(5)}\right| \leq \frac{C_{5}}{p^{5 / 2}}$. From (2)

$$
\frac{1}{p}\left(\wedge_{p-1}\left(a_{p}\right)-\wedge_{p-1}\left(a_{p-1}\right)\right)=\left(a_{p}-a_{p-1}\right) \cdot\left(1+\epsilon_{p}^{(6)}\right)
$$

$\left|\epsilon_{p}^{(6)}\right| \leq \frac{C_{6}}{p^{1 / 2}}$. From the estimate $\left|a_{p}-a_{p-1}\right| \leq \frac{M_{p}}{p^{5 / 2}}$ it follows that

$$
\frac{1}{p}\left|\wedge_{p-1}\left(a_{p}\right)-\wedge_{p-1}\left(a_{p-1}\right)\right| \leq \frac{M_{p}}{p^{5 / 2}}\left(1+\frac{C_{6}}{p^{1 / 2}}\right) .
$$

which gives

$$
I_{p}^{(4)}=-\frac{\rho}{p^{3 / 2}} \cdot f_{1}(1)+\epsilon_{p}^{(7)}
$$

and $\left|\epsilon_{p}^{(7)}\right| \leq \frac{C_{7} M_{p}}{p^{5 / 2}}$. Later it will be shown that M_{p} are uniformly bounded. Consider

$$
I_{p}^{(5)}=\sum_{p_{1}=1}^{p-1}\left(\frac{1}{p} f_{1}\left(\gamma^{\prime}\right)-\frac{1}{p-1} f_{1}(\gamma)\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)
$$

We can write

$$
\frac{1}{p} f_{1}\left(\gamma^{\prime}\right)-\frac{1}{p-1} f_{1}(\gamma)=-\frac{\gamma^{\prime} f_{1}^{\prime}\left(\gamma^{\prime}\right)+f_{1}\left(\gamma^{\prime}\right)}{p(p-1)}+\epsilon_{p}^{(8)}=-\frac{f_{2}\left(\gamma^{\prime}\right)}{p(p-1)}+\epsilon_{p}^{(8)}
$$

$\left|\epsilon_{p}^{(8)}\right| \leq \frac{C_{8}}{p^{3}}$. For the difference $\wedge_{p_{1}}\left(a_{p}\right)-1$ from Lemma 1 and 2 we have

$$
\wedge_{p_{1}}\left(a_{p}\right)-1=\wedge_{p_{1}}\left(a_{p_{1}}\right)-1+\wedge_{p_{1}}\left(a_{p}\right)-\wedge_{p_{1}}\left(a_{p_{1}}\right)=-\frac{\rho}{p_{1}^{1 / 2}}+\left(p_{1}+\epsilon_{p_{1}}^{(1)}\right)\left(a_{p}-a_{p_{1}}\right) .
$$

The estimate for $\epsilon_{p_{1}}^{(1)}$ was given before. Then

$$
\begin{equation*}
I_{p}^{(5)}=-\sum_{p_{1}=1}^{p-1} \frac{f_{2}\left(\gamma^{\prime}\right)}{p(p-1)} \cdot \frac{\rho}{p_{1}^{1 / 2}}+\sum_{p_{1}=1}^{p-1} \frac{f_{2}\left(\gamma^{\prime}\right) p_{1}\left(a_{p}-a_{p_{1}}\right)}{p(p-1)}+\epsilon_{p}^{(3)} \tag{4}
\end{equation*}
$$

$\left|\epsilon_{p}^{(3)}\right| \leq \frac{C_{3}}{p^{2}}$ and

$$
\sum \frac{f_{2}\left(\gamma^{\prime}\right.}{p(p-1)} \cdot \frac{\rho}{p_{1}^{1 / 2}}=\frac{\rho}{p^{3 / 2}} \int_{0}^{1} \frac{f_{2}(\gamma) d \gamma}{\sqrt{\gamma}}+\epsilon_{p}^{(10)}
$$

$\left|\epsilon_{p}^{(10)}\right| \leq \frac{C_{10}}{p^{5 / 2}}$. For the second term in (4) we write

$$
\begin{aligned}
J_{p}^{(5)} & =\sum_{p_{1}=1}^{p-1} \frac{f_{2}\left(\gamma^{\prime}\right) p_{1}\left(a_{p}-a_{p_{1}}\right)}{p(p-1)}=\frac{1}{p-1} \sum_{p_{1}=1}^{p-1} f_{2}\left(\gamma^{\prime}\right) \cdot \gamma \sum_{p_{1}=1}^{p-1} f_{2}\left(\gamma^{\prime}\right) \cdot \gamma \sum_{q=p_{1}+1}^{p}\left(a_{q}-a_{q-1}\right)= \\
& =\frac{1}{p-1} \sum_{q_{2}=2}^{p}\left(a_{q}-a_{q-1}\right) \cdot \sum_{\gamma=\frac{p_{1}}{p} \leq \frac{q}{p}} f_{2}\left(\gamma^{\prime}\right) \cdot \gamma= \\
& =\sum_{q=2}^{p}\left(a_{q}-a_{q-1}\right) \cdot \frac{1}{p-1} \sum_{p_{1} \leq q} f_{2}\left(\gamma^{\prime}\right) \cdot \gamma= \\
& =\sum_{q=2}^{p}\left(a_{q}-a_{q-1}\right)\left(\int_{0}^{q / p} f_{2}(\gamma) \cdot \gamma d \gamma+\epsilon_{q}^{(11)}\right)= \\
& =\sum_{q=2}^{p}\left(a_{q}-a_{q-1}\right) \cdot\left(\frac{q^{2}}{p^{2}} \cdot f_{3}\left(\frac{q}{p}\right)+\epsilon_{q}^{(11)}\right)
\end{aligned}
$$

where $\left|\epsilon_{q}^{(11)}\right| \leq \frac{C_{11}}{p}$. Recall now that $a_{q}-a_{q-1}=\frac{r^{(n)}+\delta_{q}^{(n)}}{q^{5 / 2}}$.
Therefore

$$
\begin{gathered}
J_{p}^{(5)}=\frac{r^{(n)}}{p^{3 / 2}} \sum_{q=2}^{p} \sqrt{\frac{p}{q}} f_{3}\left(\frac{q}{p}\right) \cdot \frac{1}{p}+\frac{1}{p^{2}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}+\epsilon_{p}^{(12)}= \\
=\frac{r^{(n)}}{p^{3 / 2}} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma+\frac{1}{p^{2}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}+\epsilon_{p}^{(13)},
\end{gathered}
$$

$\left|\epsilon_{p}^{(13)}\right| \leq \frac{C_{13}}{p^{5 / 2}} R^{(n)}$ where $R^{(n)}=\max _{m \leq n}\left|r^{(m)}\right|$. The last sum will play an important role in the next section. Finally we have

$$
I_{p}^{(5)}=-\frac{\rho}{p^{3 / 2}} \cdot \int_{0}^{1} \frac{f_{2}(\gamma) d \gamma}{\sqrt{\gamma}}+\frac{r^{(n)}}{p^{3 / 2}} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma+\frac{1}{p^{2}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}+\epsilon_{p}^{(14)}
$$

and $\left|\epsilon_{p}^{(14)}\right| \leq \frac{C_{14}\left(1+R^{(n)}\right)}{p^{2}}$.
3.2. In this part of $\S 3$ we shall consider other $I_{p}^{(j)}, j \neq 4,5$ about which we shall show that they have a higher order of smallness and will be included later in the remainders. For $I_{p}^{(7)}$ we have

$$
\begin{aligned}
I_{p}^{(7)} & =-\sum_{p_{1}=1}^{p-2}\left(\frac{1}{p} f\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right)= \\
& =-\sum_{p_{1}=1}^{p-2}\left[\left(\frac{1}{p} f\left(\frac{p_{1}}{p+1}\right)-\frac{1}{p-1} f\left(\frac{p_{1}}{p+1}\right)\right)+\frac{1}{p-1}\left(f\left(\frac{p_{1}}{p+1}\right)-f\left(\frac{p_{1}}{p}\right)\right)\right] \\
& =\frac{1}{p(p-1)} \cdot \sum_{p_{1}=1}^{p-2}\left[f\left(\frac{p_{1}}{p+1}\right)+\frac{p_{1}}{(p+1)} f^{\prime}\left(\frac{p_{1}}{p+1}\right)\right]+\epsilon_{p}^{(15)} \\
& =\frac{(p+1)}{p(p-1)} \cdot \int_{0}^{1}\left[f(\gamma)+\gamma f^{\prime}(\gamma)\right] d \gamma+\epsilon_{p}^{(16)}
\end{aligned}
$$

and $\left|\epsilon_{p}^{(16)}\right| \leq \frac{C_{16}}{p^{2}}$. The last integral is zero in view of the condition $f(1)=0$.
For $I_{p}^{(6)}$ we can write

$$
\left|I_{p}^{(16)}\right| \leq \frac{C_{18}}{p^{2}}
$$

Consider

$$
I_{p}^{(3)}=\frac{1}{p} \sum_{p_{1}=1}^{p-1} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2+1}^{\prime}}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)\right) .
$$

We have

$$
\wedge_{p_{1}}\left(a_{p}\right)-1=\wedge_{p_{1}}\left(a_{p_{1}}\right)-1+\wedge_{p_{1}}\left(a_{p}\right)-\wedge_{p_{1}}\left(a_{p_{1}}\right) .
$$

By construction, $\wedge_{p_{1}}\left(a_{p_{1}}\right)-1=-\frac{\rho}{\sqrt{p_{1}}}$ and with the help of Lemma 1

$$
\wedge_{p_{1}}\left(a_{p}\right)-\wedge_{p_{1}}\left(a_{p_{1}}\right)=\left(p_{1}+\epsilon_{p_{1}}^{(1)}\right)\left(a_{p}-a_{p_{1}}\right) .
$$

For the difference ($a_{p}-a_{p_{1}}$) we write

$$
\begin{align*}
\left|a_{p}-a_{p_{1}}\right| & \leq \sum_{q=p_{1}+1}^{p}\left|a_{q}-a_{q-1}\right| \leq M_{p} \cdot \sum_{q=p_{1}+1}^{p} \frac{1}{q^{5 / 2}} \leq \\
& \leq M_{p} \cdot C_{19} \cdot \int_{p_{1}+1}^{p} \frac{d q}{q^{5 / 2}}=M_{p} \cdot C_{19} \cdot \frac{3}{2}\left(\frac{1}{p_{1}^{3 / 2}}-\frac{1}{p^{3 / 2}}\right)= \tag{5}\\
& =M_{p} \cdot C_{19} \cdot \frac{3}{2} \cdot \frac{1}{p_{1}^{3 / 2}}\left(1-\left(1-\frac{p_{2}}{p}\right)^{3 / 2}\right) \leq M_{p} \cdot C_{20} \cdot \frac{p_{2}}{p_{1}^{3 / 2} \cdot p} .
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|\wedge_{p_{1}}\left(a_{p}\right)-\wedge_{p_{1}}\left(a_{p_{1}}\right)\right| \leq M_{p} \cdot C_{21} \cdot \frac{\left(p-p_{1}\right)}{p_{1}^{1 / 2} \cdot p} . \tag{6}
\end{equation*}
$$

In the same way

$$
\left|a_{p}-a_{p_{2}}\right| \leq M_{p} \cdot C_{20} \cdot \frac{p_{1}}{p_{2}^{3 / 2} \cdot p}
$$

Now we can estimate the difference $\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)$:

$$
\begin{aligned}
& \wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)=\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right)+ \\
& +\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)+\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right) .
\end{aligned}
$$

From Lemma 1 and from the previous estimates (5), (5'), (6) it follows that

$$
\begin{gathered}
\left|\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)\right)-\left(\wedge_{p_{2}^{\prime}}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right)\right)\right| \leq \\
\leq C_{21}\left|a_{p}-a_{p_{2}^{\prime}}\right| \leq M_{p} \cdot C_{22} \cdot \frac{p_{1}}{p_{2}^{3 / 2} \cdot p} .
\end{gathered}
$$

This yields

$$
\begin{aligned}
& I_{p}^{(3)}=\frac{1}{p} \sum_{p_{1}=1}^{p-1} f\left(\gamma^{\prime}\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)\right)= \\
& =\frac{1}{p} \sum_{p_{1}=1}^{p-1} f\left(\gamma^{\prime}\right)\left(-\frac{\rho}{\sqrt{p_{1}}}+\wedge_{p_{1}}\left(a_{p}\right)-\wedge_{p_{1}}\left(a_{p_{1}}\right)\right)\left(\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)--\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right)\right)+\right. \\
& +\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right)\right)+\left(\wedge_{p_{2}^{\prime}+1}\left(a_{p}\right)-\wedge_{p_{2}^{\prime}+1}\left(a_{p_{2}^{\prime}}\right)-\wedge_{p_{2}^{\prime}}\left(a_{p}\right)+\wedge_{p_{2}^{\prime}}\left(a_{p_{2}^{\prime}}\right)\right)
\end{aligned}
$$

and from the previous estimates and the inequality $\left|f\left(\gamma^{\prime}\right)\right| \leq C_{23} \frac{p_{2}}{p}$

$$
\begin{aligned}
& \left|I_{p}^{(3)}\right| \leq \frac{1}{p^{2}} \cdot C_{23} \sum\left[p_{2}\left(\frac{\rho}{\sqrt{p_{1}}}+M_{p} \cdot C_{20} \cdot \frac{p_{2}}{p_{1}^{1 / 2} \cdot p}\right) .\right. \\
& \left.\cdot\left(M_{p} \cdot C_{24} \cdot \frac{1}{p_{2}^{3 / 2}}+M_{p} \cdot C_{20} \cdot \frac{p_{1}}{p_{2}^{3 / 2} \cdot p}\right)\right]= \\
& =\frac{C_{25} \cdot M_{p}}{p^{2}}\left[\sum_{p_{1}=1}^{p-1} \frac{\rho p_{2}}{\sqrt{p_{1} \cdot p_{2}^{3 / 2}}}+\sum_{p_{1}=1}^{p-1} \frac{\rho p_{2}}{\sqrt{p_{1}}} \cdot \frac{p_{1}}{p_{2}^{3 / 2} \cdot p}+\right. \\
& \left.+\sum_{p_{1}=1}^{p-1} \frac{p_{2}^{2}}{p_{1}^{1 / 2} \cdot p} \cdot \frac{1}{p_{2}^{3 / 2}}+\sum M_{p}^{2} C_{20}^{2} \cdot \frac{p_{2}^{2}}{p_{1}^{1 / 2} p} \cdot \frac{p_{1}}{p_{2}^{3 / 2} \cdot p}\right] \leq \frac{\left(M_{p}+1\right)^{2} \cdot C_{26}}{p^{2}} .
\end{aligned}
$$

It will follow from our proof in $\S 4$ that M_{p} are uniformly bounded. Therefore $I_{p}^{(3)}$ has a higher order of smallness.

Next we estimate

$$
I_{p}^{(2)}=\sum_{p_{1}=1}^{p-1}\left(\frac{1}{p} f\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right)\left(\wedge_{p_{1}}\left(a_{p}\right)-1\right)\left(\wedge_{p_{2}}\left(a_{p}\right)-1\right)
$$

As before,

$$
\left|\wedge_{p_{1}}\left(a_{p}\right)-1\right| \leq\left|\wedge_{p_{1}}\left(a_{p_{1}}\right)-1\right|+\left|\wedge_{p_{1}}\left(a_{p_{1}}\right)-\wedge_{p_{1}}\left(a_{p}\right)\right| \leq \frac{\rho}{\sqrt{p_{1}}}+M_{p} \cdot C_{20} \cdot \frac{p_{2}}{p_{1}^{1 / 2} p}
$$

and similarly

$$
\left|\wedge_{p_{2}}\left(a_{p}\right)-1\right| \leq \frac{\rho}{\sqrt{p_{2}}}+M_{p} \cdot C_{20} \frac{p_{1}}{p_{2}^{1 / 2} \cdot p}
$$

Also, $\left|\frac{1}{p} f\left(\gamma^{\prime}\right)-\frac{1}{p-1} f(\gamma)\right| \leq \frac{C_{27}}{p^{2}}$. Thus

$$
I_{p}^{(2)} \leq \frac{C_{27}}{p^{2}} \sum_{p_{1}=1}^{p-1}\left(\frac{\rho}{\sqrt{p_{1}}}+M_{p} \cdot C_{20} \cdot \frac{p_{2}}{p_{1}^{1 / 2} p}\right)\left(\frac{\rho}{\sqrt{p_{2}}}+M_{p} C_{20} \frac{p_{1}}{p_{2}^{1 / 2} p}\right)
$$

$$
\begin{aligned}
& =\frac{C_{27} \cdot \rho}{p^{2}} \sum_{p_{1}=1}^{p-1} \frac{1}{\sqrt{p_{1}}} \cdot \frac{1}{\sqrt{p_{2}}}+\frac{C_{27} \cdot \rho}{p^{2}} M_{p} \cdot C_{20} \cdot \sum \frac{\sqrt{p_{1}}}{\sqrt{p_{2}} \cdot p}+ \\
& +\frac{M_{p} \cdot C_{20} \cdot C_{27} \rho}{p^{2}} \sum_{p_{1}=1}^{p-1} \frac{\sqrt{p_{2}}}{\sqrt{p_{1}}} \cdot \frac{1}{p}+\frac{C_{27} \cdot C_{20} \cdot M_{p}}{p^{2}} \sum_{p_{1}=1}^{p-1} \frac{\sqrt{p_{2}} \cdot \sqrt{p_{1}}}{p^{2}} \leq \frac{C_{28}\left(1+M_{p}\right)}{p^{2}} .
\end{aligned}
$$

It remains to estimate

$$
I_{p}^{(1)}=\frac{1}{p} f\left(\frac{p}{p+1}\right) \cdot\left(\wedge_{p}\left(a_{p}\right)-1\right)\left(\wedge_{1}\left(a_{p}\right)-1\right)
$$

It follows easily from the condition $f(1)=0$ that

$$
\left|I_{p}^{(1)}\right| \leq \frac{C_{29}}{p^{5 / 2}}
$$

Now we can formulate the final result of all previous estimates.

$$
\begin{align*}
& \wedge_{p+1}\left(a_{p}-\wedge_{p}\left(a_{p}\right)=-\frac{\rho}{p^{3 / 2}} f_{1}(1)-\frac{\rho}{p^{3 / 2}} \cdot \int_{0}^{1} \frac{f_{2}(\gamma)}{\sqrt{\gamma}} d \gamma\right. \tag{7}\\
& +\frac{r^{(n)}}{p^{3 / 2}} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma+\frac{1}{p^{2}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}+\epsilon_{p}
\end{align*}
$$

and $\left|\epsilon_{p}\right| \leq \frac{C_{30} \ln p}{p^{2}}\left(\max \left(1+M_{p}+R^{(n)}\right)\right)^{2}$.

§4. The End of the Proof of the Main Theorem

As was mentioned before, the proof of the main theorem is based on induction. The possibility of the first $p^{(0)}$ steps is guaranteed by the property 5 of the function f. At the $n^{\text {th }}$ step of the induction we consider $p>p^{(n)}$ and we have $a_{p+1}-a_{p}=\frac{r^{(n)}+\delta_{p}^{(n)}}{p^{5 / 2}}$. From (3)

$$
a_{p+1}-a_{p}=\frac{\rho}{2 p^{5 / 2}}-\frac{1}{p}\left(\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)\right)+\beta_{p}^{(1)}
$$

where $\left|\beta_{p}^{(1)}\right| \leq \frac{B^{(1)}\left(\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)\right)}{p^{3 / 2}}$. In this inequality $B^{(1)}$ is an absolute constant. From (7)

$$
\begin{align*}
& \wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)=-\frac{\rho}{p^{3 / 2}} f_{1}(1)+\frac{\rho}{p^{3 / 2}} \int_{0}^{1} \frac{f_{2}(\gamma)}{\sqrt{\gamma}} d \gamma \\
& +\frac{r^{(n-1)}}{p^{3 / 2}} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma+\frac{1}{p^{2}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n-1)}+\epsilon_{p},\left|\epsilon_{p}\right| \leq \frac{C_{30}\left(1+M_{p}+R^{(n)}\right)^{2} \ln p}{p^{2}} . \tag{8}
\end{align*}
$$

Thus

$$
\begin{align*}
& r^{(n-1)}+\delta_{p+1}^{(n-1)}=\frac{\rho}{2}+\rho f_{1}(1)-\rho \int_{0}^{1} \frac{f_{2}(\gamma)}{\sqrt{\gamma}} d \gamma-r^{(n-1)} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma \\
& +\frac{1}{\sqrt{p}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n-1)}+\beta_{p}^{(1)} p^{5 / 2}+\epsilon_{p} \cdot p^{3 / 2} \tag{9}
\end{align*}
$$

In the last expression, take $p=p^{(n)}$. Then $r^{(n)}=r^{(n-1)}+\delta_{p^{(n)}+1}^{(n-1)}$. It determines our "renormalization" at the $n^{\text {th }}$-step. Clearly, $\left|r^{(n)}-r^{(n-1)}\right|=\left|\delta_{p^{(n)}+1}^{(n-1)}\right|$.

In all previous formulas, replace $r^{(n-1)}$ by $r^{(n)}-\left(r^{(n)}-r^{(n-1)}\right)$ and $\delta_{p}^{(n-1)}$ by $\delta_{p}^{(n)}+r^{(n)}-r^{(n-1)}$. Then from (9)

$$
\begin{align*}
& r^{(n)}=\frac{\rho}{2}+\rho f_{1}(1)-\rho \int_{0}^{1} \frac{f_{2}(\gamma)}{\sqrt{\gamma}} d \gamma-r^{(n)} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma \\
& +\frac{1}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p^{(n)}}\right) \delta_{q}^{(n)}+\left(r^{(n)}-r^{(n-1)}\right) \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma \tag{10}\\
& +\frac{r^{(n)}-r^{(n-1)}}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p^{(n)}}\right)+\beta_{p^{(n)}}^{(1)}\left(p^{(n)}\right)^{5 / 2}+\epsilon_{p^{(n)}}\left(p^{(n)}\right)^{3 / 2} .
\end{align*}
$$

For $p^{(n)}+1 \leq p \leq p^{(n+1)}$ we use the formula analogous to (9):

$$
\begin{align*}
& r^{(n)}+\delta_{p+1}^{(n)}=\frac{\rho}{2}+\rho f_{1}(1)-\rho \int_{0}^{1} \frac{f_{2}(\gamma)}{\sqrt{\gamma}} d \gamma-r^{(n)} \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma \tag{11}\\
& +\frac{1}{\sqrt{p}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}+\beta_{p}^{(1)} p^{5 / 2}+\epsilon_{p} \cdot p^{3 / 2} .
\end{align*}
$$

The substitution of $r^{(n)}$ from (10) gives

$$
\begin{aligned}
& \delta_{p+1}^{(n)}=\frac{1}{\sqrt{\bar{p}}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \delta_{q}^{(n)}-\frac{1}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p^{(n)}}\right) \delta_{q}^{(n)} \\
& -\beta_{p^{(n)}}^{(1)}\left(p^{(n)}\right)^{5 / 2}-\epsilon_{p^{(n)}}\left(p^{(n)}\right)^{3 / 2}-\left(r^{(n)}-r^{(n-1)}\right) \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\left(r^{(n)}-r^{(n-1)}\right)}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p^{(n)}}\right) \delta_{q}^{(n)}+\beta_{p}^{(1)} p^{5 / 2}+\epsilon_{p} \cdot p^{3 / 2} \tag{12}\\
& =\sum_{s=p^{(n)}+1}^{p}\left(\frac{1}{\sqrt{s+1}} \sum_{q=2}^{s+1} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{s+1}\right) \delta_{q}^{(n)}-\frac{1}{\sqrt{s}} \sum_{q=2}^{s} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{s}\right) \delta_{q}^{(n)}\right)+\beta_{p}^{(2)}
\end{align*}
$$

where $\beta_{p}^{(2)}$ is the sum of all remaining terms in the previous expression.
It is most important to estimate the differences

$$
J_{s}=\frac{1}{\sqrt{s+1}} \sum_{q=2}^{s+1} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{s+1}\right) \delta_{q}^{(n)}-\frac{1}{\sqrt{s}} \sum_{q=2}^{s} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{s}\right) \delta_{q}^{(n)}
$$

Let $\triangle_{p}^{(n)}=\max _{1<q \leq p}\left|\delta_{q}^{(n)} \cdot q^{\frac{1}{4}}\right|$. Then

$$
\begin{aligned}
& J_{s}=\frac{1}{\sqrt{s+1}} \cdot \frac{1}{\sqrt{s+1}} \cdot f_{3}(1) \delta_{s+1}^{(n)}+\left(\frac{1}{\sqrt{s+1}}-\frac{1}{\sqrt{s}}\right) \sum_{q=2}^{s} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{s+1}\right) \delta_{q}^{(n)} \\
& +\frac{1}{\sqrt{s}} \sum_{q=2}^{s} \frac{1}{\sqrt{q}}\left(f_{3}\left(\frac{q}{s+1}\right)-f_{3}\left(\frac{q}{s}\right)\right) \delta_{q}^{(n)} .
\end{aligned}
$$

Direct estimates of each part of the last expression give

$$
\left|J_{s}\right| \leq \frac{C_{31}}{s^{1 \frac{1}{4}}} \cdot \triangle_{p}^{(n)}+\frac{C_{32} \triangle_{p}^{(n)} \cdot s^{\frac{1}{4}}}{s^{3 / 2}}+\frac{C_{33} \cdot \triangle_{p}^{(n)}}{s^{1 \frac{1}{4}}}=\frac{C_{34} \triangle_{p}^{(n)}}{s^{1 \frac{1}{4}}}
$$

Therefore,

$$
\begin{align*}
& \left|\frac{1}{\sqrt{p}} \sum_{q=2}^{p} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right) \cdot \delta_{q}^{(n)}-\frac{1}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p^{(n)}}\right) \cdot \delta_{q}^{(n)}\right| \\
& =\left|\sum_{s=p^{(n)}+1}^{p} J_{s}\right| \leq C_{34} \cdot \triangle_{p}^{(n)} \cdot \sum_{p=p^{(n)}+1}^{p} \frac{1}{s^{1 \frac{1}{4}}} \leq C_{35} \frac{\Delta_{p}^{(n)} \cdot\left(p-p_{n}\right)}{\left(p^{(n)}\right)^{1 \frac{1}{4}}} . \tag{13}
\end{align*}
$$

From the estimates of $\S 3$

$$
\begin{equation*}
\left|\epsilon_{p^{(n)}}\right| \cdot\left(p^{(n)}\right)^{3 / 2} \leq \frac{C_{36}\left(1+M_{p^{(n)}}\right)^{2}}{\left(p^{(n)}\right)^{5 / 11}},\left|\epsilon_{p}\right| \cdot p^{3 / 2} \leq \frac{C_{36}\left(1+M_{p}\right)^{2}}{p^{5 / 11}} \tag{14}
\end{equation*}
$$

Instead of $5 / 11$ we could take any power less than $\frac{1}{2}$. The value of the constant C_{34} depends on this power.

The estimate of $r^{(n)}-r^{(n-1)}$ is done with the help of (9) written for $p=p^{(n)}$ and (10):

$$
\begin{equation*}
\left|r^{(n)}-r^{(n-1)}\right|=\left|\delta_{p^{(n)+1}}^{(n-1)}\right| \leq \frac{\triangle_{p^{(n)}+1}^{(n)}}{p_{n}^{1 / 4}} \tag{15}
\end{equation*}
$$

If $\triangle_{p}^{(n)}$ are uniformly bounded then $\left|r^{(n)-r^{(n-1)}}\right|$ decay exponentially with n. We can write

$$
\begin{gather*}
\left|\left(r^{(n)}-r^{(n-1)}\right) \int_{0}^{1} \frac{f_{3}(\gamma)}{\sqrt{\gamma}} d \gamma\right| \leq \frac{C_{37} \triangle_{p^{(n)}+1}^{(n)}}{p_{n}^{1 / 4}}=\frac{C_{37} \cdot \triangle_{p^{(n)}+1}^{(n)}}{p_{0}^{\frac{1}{4}}(1+\alpha)^{n}} \tag{16}\\
\left|\left(r^{(n)}-r^{(n-1)}\right) \frac{1}{\sqrt{p^{(n)}}} \sum_{q=2}^{p^{(n)}} \frac{1}{\sqrt{q}} f_{3}\left(\frac{q}{p}\right)\right| \leq \frac{C_{37} \cdot \triangle_{p^{(n)}+1}^{(n)}}{p_{n}^{1 / 4}}=\frac{C_{37} \cdot \triangle_{p^{(n)}+1}^{(n)}}{p_{0}^{\frac{1}{4}}(1+\alpha)^{n}} \tag{17}
\end{gather*}
$$

It remains to estimate $\beta_{p}^{(1)} p^{5 / 2}$. We have (see above)

$$
\left|\beta_{p}^{(1)}\right| \leq \frac{B^{(1)}\left|\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)\right|}{p^{3 / 2}}
$$

and from (8)

$$
\left|\beta_{p}^{(1)}\right| \cdot p^{3 / 2} \leq B^{(1)}\left|\wedge_{p+1}\left(a_{p}\right)-\wedge_{p}\left(a_{p}\right)\right| \leq \frac{B^{(1)}}{p^{3 / 2}}\left(C_{37}+C_{38} \triangle_{p}^{(n)}\right)
$$

Returning back to (12), (13), (14), (15), (16), (17) we have

$$
\begin{align*}
& \left|\beta_{p}^{(2)}\right| \leq \frac{2 B^{(1)}}{p^{1 / 2}}\left(C_{37}+C_{38} \triangle_{p}^{(n)}\right)+\frac{C_{36}\left(1+M_{p}\right)^{2}}{p^{5 / 11}} \tag{18}\\
& +\frac{2 C_{36} \cdot \triangle_{p}^{(n)}}{p_{0}^{\frac{1}{4}}(1+\alpha)^{n}} \leq \frac{2 B^{(1)} C_{37}}{p^{1 / 2}}+\frac{C_{39} \triangle_{p}^{(n)}\left(1+M_{p}\right)^{2}}{p^{5 / 11}}
\end{align*}
$$

Now come back to (12), (13), (15), (16), (17). We can write

$$
\begin{equation*}
\left|\delta_{p}^{(n)}\right| \leq C_{35} \frac{\triangle_{p}^{(n)}\left(p-p_{n}\right)}{\left(p^{(n)}\right)^{1 \frac{1}{4}}}+\frac{2 B^{(1)} C_{37}}{p^{1 / 2}}+\frac{C_{39} \cdot \triangle_{p}^{(n)}\left(1+M_{p}\right)^{2}}{p^{5 / 11}} \tag{19}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\triangle_{p+1}^{(n)} \leq \frac{2 B^{(1)} C_{37}}{p^{1 / 2}}+\frac{C_{35} \triangle_{p}^{(n)}\left(p-p_{n}\right)}{\left(p^{(n)}\right)^{1 \frac{1}{4}}}+\frac{C_{39} \triangle_{p}^{(n)}\left(1+M_{p}\right)^{2}}{p^{5 / 11}} \tag{20}
\end{equation*}
$$

Since $p-p_{n} \leq \alpha p_{n}$ we have

$$
\begin{equation*}
\triangle_{p+1}^{(n)} \leq \frac{2 B^{(1)} C_{37}}{p^{1 / 2}}+\frac{\triangle_{p}^{(n)}\left(C_{35}+C_{39}\left(1+M_{p}\right)^{2}\right)}{\left(p^{(n)}\right)^{1 / 4}} \tag{21}
\end{equation*}
$$

Also $\left|r^{(n)}-r^{(n-1)}\right| \leq \frac{\triangle_{p_{n}}^{(n)}}{p_{n}^{1 / 4}}$ and

$$
\begin{aligned}
M_{p+1} & =\max _{q \leq p+1}\left|a_{q}-a_{q-1}\right| q^{5 / 2} \leq\left|r^{(n)}\right|+\max _{q \leq p+1}\left|\delta_{q}^{(n)}\right| \leq \\
& \leq\left|r^{(1)}\right|+\sum_{m=2}^{n}\left|r^{(m)}-r^{(m-1)}\right|+\frac{\triangle_{p+1}^{(n)}}{(p+1)^{1 / 4}} .
\end{aligned}
$$

From (21) it follows easily that $\left|\triangle_{p+1}^{(n)}\right| \leq \frac{C_{40}}{p^{1 / 2}}$ and it implies that $M_{p} \leq C_{41}$. Remind that C with an index is an absolute constant.

If p_{0} is large enough then all $a_{p} \in\left[\frac{1}{2} A_{3}, 2 A_{4}\right]$ (see the end of $\S 2$). Since the derivatives of all $\wedge_{p}(y)$ within this interval are close to 1 the points b_{p} also belong to the segment $\left[\frac{1}{2} A_{3}, 2 A_{4}\right]$. The distance $b_{p}-a_{p} \leq \frac{p \cdot C_{42}}{p^{3 / 2}}$. Therefore, $\lim _{p \longrightarrow \infty} a_{p}=\lim _{p \longrightarrow \infty} b_{p}=y^{(0)}$. Theorem is proven.

References

[L] Dong Li, "On a Non-linear Recurrent Equation."
[LS] Dong Li and Ya. G. Sinai, "Blow Ups of Complex Solutions of the 3-dimensional Navier-Stokes System and Renormalization Group Method." Submitted for publication to the Journal of European Mathematical Society.

[^0]: *Mathematics Department, Princeton University, Princeton, New Jersey, U.S.A.

