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The main content of these lectures is the exposition of our joint paper with Dong Li

(IAS, Princeton, NJ)

“Renormalization Group Method and Blow Ups of Complex Solutions of

3−D Navier-Stokes System”

Archive . . .

where we show that there is an open set in the space of 10-parameter families of initial

conditions so that for each family from this set there are values of parameters for which

the solution develops a blow-up in finite time so that the energy and the enstrophy tend to

infinity as time approaches the critical value.

We consider complex solutions which do not satisfy the energy inequality. The expla-

nation of the number 10 and the whole strategy of the proof require Renormalization Group

Method which is exposed in Part I of these notes. In Part II we describe simple results

related to the problem of existence and uniqueness of solutions for the 3−D Navier-Stokes

System.

In Part III we describe our joint paper with Dong Li.

Part I.

The Main Part of these lectures is based on the Renormalization Group Method (RGM).

Its idea can be seen from the following simple picture. Assume that we have a smooth

diffeomorphism of a compact smooth manifold M , x0 is a fixed point of f , i.e., f(x0) = x0.

Linearize f near x0 and denote by L the corresponding linear operator. In general, L has

no additional structure except its spectrum and the linear space H where L acts can be

decomposed onto two parts: H = H(s) + H(nu). Each of the subspaces H(s), H(nu) is

invariant under L and ‖ Lm ‖H(s) ≤ C1 ρ
m
s , ‖ Lme ‖≥ C2(ρnu)

m ‖ e ‖ for every e ∈ H(nu).

The constants C1, C2 depend on the choice of the norm and ρnu > ρs. In the cases which

we shall consider ρs < 1 while ρnu = 1. According to the well-known Hadamard-Perron

theorem the fixed point x0 has a stable manifold Γ(s) such that for any y ∈ Γ(s) the iterations

fny −→ x0 as n −→∞. Then codim Γ(s) = dimH(nu) and usually both are finite even in the
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infinite-dimensional setting. Take a local manifold F , dimF = dimH(nu) which is C1- close

to H(nu). Then it intersects Γ(s) at one point x(F ). It means that for some open set in the

space of dimH(nu)-families of points for any family from this set one point y belongs to Γ(s).

Therefore under the iterations of f it converges to x0. In concrete situations this convergence

implies important corollaries which are needed for a problem under consideration.

Renormalization Group Method works in many infinite-dimensional settings as well where

dimH(nu) <∞. Below we describe several examples.

1. RGM in probability theory. Not so many probabilists know that classical limit theorems

for the sums of independent random variables can be proven with the help of RGM. We

shall describe the simplest case. Consider a sequence of iidrv ξ1, ξ2, . . . , ξn, . . . whose

distribution has a density p(x). For simplicity we assume that p(x) is an even function,

p(−x) = p(x), and

∫
x2p(x)dx = 1. Let ζm = ξ1+ξ2 + ···+ ξ2m

2m/2 . Then ζm+1 = ζ′m + ζ′′m√
2

where ζ ′m, ζ
′′
m are independent random variables having the same distribution as ζm. If

pm(x) is the density of distribution of ζm then

pm+1(x) =
√

2

∫ ∞

−∞
pm(x

√
2− y) pm(y) dy (1)

The formula (1) shows that pm+1 = f(pm) where f is the quadratic operator given by

the rhs of (1). Our goal is to study pm = fm(p1) as m −→ ∞. As the first step we

find fixed points of f i.e., the densities q for which

q(x) =
√

2

∫ ∞

−∞
q(x

√
2 − y) q(y)dy (2)

It is easy to check that the family of Gaussian densities qσ(x) = 1√
2πσ

exp
{
− x2

2σ

}
,

σ > 0, is a one-parameter family of fixed points. The second step of RGM is the

linearization of (2) near qσ and the study of the spectrum of this linearization. The

linear map L is given by the linear integral operator Lσ,

Lσh(x) = 2
√

2

∫ ∞

−∞
h(x

√
2 − y) qσ(y)dy .
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Sometimes Lσ is called Gauss integral operator. Assume that σ = 1. Eigen-functions of

L1 are Hermite functions Hem(x) 1√
2π

exp
{
− x2

2

}
where Hem(x) is the m-th Hermite

polynomial. The Hermite polynomials will play an important role later. The corre-

sponding eigen-values are λm = 1

2
m
2 −1 . Since we consider the space of even functions,

m must be even. Since we consider small perturbations in the space of probability

densities they cannot have projections to the zeroth eigen-vector with m = 0. Then

λ2 = 1 is a neutral eigen-value. This is connected with the fact that the second moment

of our distribution is invariant under f , i.e.,

∫ ∞

−∞
x2f(p(x))dx =

∫ ∞

−∞
x2 p(x) dx .

The remaining part of the spectrum is stable, i.e., λm < 1 if m > 2. Methods of

non-linear dynamics allow to prove the following theorem.

Theorem 1. Let p1(x) = 1√
2π

exp
{
− x2

2

}
(1 + h(x)) where

∞∫
−∞

h(x)
1√
2π

exp

{
−x

2

2

}
dx =

∫ ∞

−∞
x2h(x) · 1√

2π
exp

{
−x2

2

}
dx = 0

and h is small in L2(R1 , 1√
2π

exp
{
−x2

2

}
). Then fm(p1) −→ 1√

2π
exp

{
−x2

2

}
in the sense of this space L2.

The statement of the theorem is a local version of the central limit theorem. Probability

theory has special tools to prove the global version of Theorem 1 and global stability

of the Gaussian fixed point. However, non-linear methods allow to prove an analogous

statement for functions p1 which can take positive and negative values. As it will be

seen later, RGM works in many other cases.

2. RGM in statistical mechanics. RGM was proposed for the analysis of phase transitions

in the works of M. Fisher, L. Kadanoff and K. Wilson (see, e.g. [F], [K], [W]). Here I

shall briefly describe the so-called Dyson hierarchical model where one can clearly see

how does it work. Take a growing sequence of finite sets Vn, |Vn| = 2n and each set

Vn+1 is the union of two similar subsets Vn+1 = V ′
n ∪ V ′′

n , |V ′
n| = |V ′′

n | = 2n. Consider
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spin model on Vn+1 where each spin variable σ(x), x ∈ Vn+1 takes values ±1. The

Hamiltonian of the system takes the form:

H(σ(Vn+1)) = H(σ(V ′
n)) + H(σ(V ′′

n ))− cn

22n

 ∑
x∈V (n+1)

σ(x)

2

where c is a parameter. The last term describes the interaction between σ(V ′
n), σ(V ′′

n ).

A special feature of the hierarchical model is that the interaction depends only on the

total spin σ(V (n+1)) =
∑

x∈V (n+1)

σ(x). Write down the distribution of the total spin

which follows from the Gibbs distribution:

pn(t, β) =
1

Zn

∑
σ(Vn): 1

2n
P

x∈V (n)

σ(x)=t

exp{−βH(σ(Vn))} , Zn =
∑
σ(Vn)

exp{−βH(σ(Vn))}

where β is the inverse temperature. Then from the formula for the Hamiltonian it

follows that

pn(t, β) = ∧n+1 exp
{
βcnt2

} ∑
t′ + t′′ = t

pn−1(t
′, β) pn−1(t

′′, β) (3)

The equation (3) resembles (1). The main problem here is to study the behavior of pn

as n −→∞ for the inverse critical temperature βcr. The advantage of the hierarchical

model is the possibility to formulate explicitly the condition on βcr as the condition

that the typical values t of 2−n σ(Vn) are such that the interaction cnt2 = O (1). This

implies the equation for the fixed point of RGM:

q(x; β) = exp
{
βx2

} ∫ ∞

−∞
q

(
x√
c

+ u; β

)
q

(
x√
c
− u; β

)
du (4)

which is analogous to (1).
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As in the previous example, (4) has a curve of Gaussian solutions q(x; β) =
√

βc
r(2−c)

exp
{
− βcx2

2−c

}
. Again, the next step is the analysis of stability of these fixed points.

It turns out that the Gaussian fixed point is stable (in the sense of RGM) only if√
2 < c < 2. In our paper with Blekher (see [BS1]) we proved the convergence of the

distributions pn

(
tcn/2, βcr

)
to this point. At c =

√
2 some bifurcation takes place and

the Gaussian point becomes unstable. It gets replaced by another fixed point which

decays faster than Gaussian and is stable. This non-Gaussian point was constructed

in our other paper with Blekher (see [BS2]). A very good exposition of related results

can be found in the book [CE] by Collet and Eckmann. More recent results here were

obtained by H. Koch and Wittwer (see [KW]).

The original motivation of the works by Fisher, Kadanoff and Wilson was the analysis

of the critical points in more realistic lattice models of statistical mechanics. This leads

to the theory of limit theorems of probability theory for sums of strongly dependent

random variables. This theory is still waiting for its development. However, some basic

definitions can be given. Namely, consider a stationary random field {ξ(n), n ∈ Zd}
on the d-dimensional lattice Zd. Its probability distribution is denoted by P . Then

ξ′(n) = 1
dγ

∑
e

ξ(2n+e) is again a stationary random field. Here 2n = (2n1, 2n2 , . . . 2nd)

if n = (n1, n2, . . . , nd) and e is any d-dimensional vector whose components are 0 and

1. The transition from {ξ(n)} to {ξ′(n)} is called Kadanoff block-spin transformation.

The probability distribution corresponding to {ξ′(n)} is denoted by P ′.

Definition 1. Probability distribution P is called scale-invariant if P ′ = P .

The scaling hypothesis in the theory of phase transitions says that only scale-invariant

distributions can be limiting distributions of spin variables at the critical temperature.

This condition of scale-invariance is an infinite-dimensional analog of the equation for

the fixed point of RGM. Again, the next step is to find examples of scale invariant

fixed points within the class of Gaussian stationary fields.

Theorem 2. Let f(λ1, . . . λd) be an homogeneous positive function of degree d(α+ 1).

Then the function

ρ(λ1 . . . λd) =
d∏

s=1

|e2πiλs − 1|2
∑

m∈Zd

1

f(λ+m)
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is the spectral density of the scale-invariant Gaussian random field.

The case f(λ1, . . . , λd) = λ2
1 + λ2

2 + . . . + λ2
d, i.e., α = 2

d
− 1, deserves a spe-

cial attention. The Gibbs distribution corresponding to this field can be written as

Const exp{− 1
2
(∇ϕ,∇ϕ)}. Sometimes it is called Gaussian free field. The interaction

in the Lagrangian of this field is short-ranged. Therefore it is natural to expect that

this field can appear as the limiting distribution of the Ising-type model at the critical

temperature. However, the Gaussian scale-invariant distribution is stable only if the

dimension d ≥ 5. The case d = 4 is marginal and requires a non-standard normal-

ization. The corresponding statement was formulated in many papers by physicists

(see, e.g. [PP], [Ka]). Mathematical results can be found in the works by [A], [Fr],

[GK]. Let me mention also the paper by Pinson and Spencer [PS] where the authors

proved the stability of the fixed point of the two-dimensional Ising model under even

perturbations. The modern development of this topic is connected with the conformal

field theory and Loewner stochastic equations.

One-dimensional Gaussin random field with α = 0 appears in many problems of the

theory of random matrices.

3. RGM in the theory of dynamical systems. For the first time RGM in the theory of

dynamical systems appeared in the works of Feigenbaum (see [F1], [F2]) on universality

in period-doubling bifurcations.

Assume that we have a family of one-dimensional maps x −→ f(x;λ) depending on

some parameter λ. A typical example is the quadratic map x −→ λx(1 − x) and

0 ≤ x ≤ 1. Let x0 = x0(λ) be a stable fixed point for some λ0, i.e., |f ′x(x0, λ0)| <
1. As λ increases there appears a value λ1 such that x0(λ1) looses its stability and

|f ′x(x0(λ1), λ1)| = 1. If f ′x(x0(λ1), λ1) = −1 then typically a period-doubling bifurcation

takes place, where the point x0(λ) becomes unstable and a new stable periodic point

x1(λ) of period 2 arises.

As λ further increases, there appears the value λ2 for which x1(λ2) becomes unstable

and gets replaced by the new point x2(λ2) of period 4 which is stable in a small right

semi-neighborhood of λ2 and so on. Denote by λn the values of parameter where the
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subsequent bifurcations take place. The Feigenbaum universality says that typically

λn converge to a limit λ∞ and this convergence is exponential, i.e., λn− λ∞ ∼ C(f)αn

where the constant C(f) depends on the family and α is the famous universal Feigen-

baum constant, α−1 ∼ 4.6992 . . . . The basic idea of Feigenbaum to explain this uni-

versality was the use of RGM. Let λ̄n, λn < λ̄n < λn+1, be such that at the fixed

point x(λ̄n) the derivative of f (2n) is zero. The existence of λ̄n is natural because this

derivative changes from −1 until 1 as λ changes form λn to λn+1. Feigenbaum assumed

that the form of f (2n)(· ; λ̄n) is universal, i.e., it does not depend on the family f(·, λ).

If so then the form of the universal function ψ must satisfy the functional equation

ψ(x) = −θψ(ψ(θ−1x)) , θ = − 1

ψ(1)
.

Feigenbaum found ψ numerically and through it derived the constant α. There were

many mathematical papers (Coullet, Tresser [CT], Derrida, Gervais, Pomeau [DGP],

Collet, Eckmann, Lanford [CEL], Lanford [L], the works by D. Sullivan [Su], the book

by de Melo and van Strien [deMvS] and others) where the authors proved all necessary

steps of RGM in Feigenbaum universality.

After the works of Feigenbaum and others RGM became very popular in dynamics.

Khanin and I applied it to the Arnold problem about rectifying circle maps. Let f(x)

be such that f is monotone continuous and f(x+1) = f(x)+1. Then we can consider

the homeomorphism of the circle x
ϕ−→ {f(x)}. It follows from Denjoy theory that if

f ∈ C1 and the rotation number is irrational then there exists the change of variables

y = χ (x) such that in new variable y the homeomorphism ϕ is reduced to the rotation,

ϕ(y) = y + ρ. Arnold problem was to study the smoothness of χ as function of ϕ. It

was solved completly by M. Herman (see [H]) and J-C. Yoccoz (see [Y]).

We found in [KS-1] another way to prove the results of [H] and [Y] which in some cases

gives sharper results. Denote by qn the denominator of the n-th approximant of the

rotation number of ϕ. We consider ϕqn on intervals of the length O(
⊥
qn). The basic

idea was to show that the rescaled map asymptotically becomes linear. The linear

map is the fixed point of the corresponding Renormalization Group which has enough
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stability to prove the convergence to this point. The paper by Khanin and Teplitsky

[KT] gives the complete description of the corresponding technique.

It turns out that the KAM-theory of 2-dimensional twist maps can be also exposed

as a problem of RGM (see [KS-2]). Interesting results concerning the so-called critical

KAM-curves were obtained by R. Mackay [MK]. He also used the RGM-method.

Concluding Remark: Every proof which is based on RGM consists of three steps.

Step 1. The description of possible fixed points.

Step 2. The analysis of the spectra of linearized operators near fixed points.

Step 3. The description of the set of possible initial conditions, initial manifolds, etc.

Part II.

Several Results from the Mathematical Fluid Dynamics

In a big part of this text we consider the 3-dimensional Navier-Stokes system on R3 for

incompressible fluids with viscosity 1 without external forcing. In Part III we discuss the

application of RGM to this system. It is written for the velocity vector u(x, t) = (u1(x, t),

u2(x, t), u3(x, t)) and for the pressure p(x, t) and has the form:

div u = 0

.
Du
dt

=
∂u

∂t
+ (u,∇)u = 4u −∇p . (5)

The first general results in the existence problem for (5) were proven by J. Leray (see [L]).

Later important contributions were done by E. Hopf (see [H]), T. Kato (see [K]) and others.
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An essential breakthrough appeared in the works of O. Ladyzenskaya (see her book [La])

where she proved the existence and uniqueness of strong solutions in the 2-dimensional case

and bounded domains. Many mathematicians made important contributions to this field

and I apologize for not being able to quote their results properly.

Our analysis of (5) begins with the Fourier transform of (5). It is quite natural from

the point of the theory of dynamical systems because we are interested in solutions with

singularities and it is not always easy to explain the meaning of spatial derivatives in the

equation. This difficulty disappears if we make Fourier transform. The Fourier transform

of (5) is written for C3-functions −iv(k, t) where k ∈ R3 and v(k, t) ⊥ k for every k 6= 0.

The last property is equivalent to incompressibility in (5) and actually determines the phase

space of dynamical system which we shall consider. Thus, instead of (5), we have

v(k, t) = exp{−t|k|2} · v(k, 0) +

t∫
0

exp{−(t− s)|k|2}ds

∫
R3

< v(k − k′, s), k > Pk v(k
′, s) d3k′ . (6)

Here Pk is the orthogonal projection to the space orthogonal to k, i.e. Pk v = v− <v,k>k
<k,k>

. The

formula (6) gives a formal definition of the flow corresponding to the 3-dim Navier-Stokes

system. In my opinion, (6) should become as popular as quadratic family of maps or geodesic

flows and maybe more important.

There are many notable results related to the existence problem for (6). In this text, we

shall describe only two of them.

Introduce the space Φ(α) of functions v(k) = c(k)
|k|α where 2 < α < 3 and c(k) ⊥ k and is

continuous everywhere except k = 0, sup
k 6=0

|c(k)| < ∞. This space is natural for the Navier-

Stokes system. The power-like behavior near k = 0 is connected with a power-like decay

of solutions as x −→ ∞. Vice-versa, the decay at infinity is related to the smoothness of

u(x, t).
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In the spaces Φ(α) the local existence theorem is valid.

Theorem 3. Let v(k, 0) = c(k,0)
|k|α and sup

k 6=0
|c(k, 0)| = c(0). Then there exists an interval [0, T ]

on the time axis and a function v(k, t) ∈ Φ(α) defined for 0 ≤ t ≤ T which is continuous in

t and satisfies (6). It is unique in Φ(α).

Theorems of this type are usually proven with the help of some iteration scheme. If

v(k, t) = c(k,t)
|k|α then the function c(k, t) satisfies the equation

c(k, t) = exp{−|k|2t} · c(k, 0) +

+ i|k|α
∫ t

0

exp{−|k|2(t− s)} · ds
∫
R3

< k, c(k − k′, s) > Pkc(k
′, s)dk′

|k − k′|α · |k′|α
.

Put c(0)(k, t) = exp{−|k|2t} · c(k, 0) and

c(n) (k, t) = exp{−|k|2t} · c(k, 0) +

+ i|k|α
∫ t

0

exp{−|k|2(t− s)} ds
∫
R3

< k, c(n−1)(k − k′, s) > Pkc
(n−1)(k′, s) dk

|k − k′|α · |k′|α
.

Assume that sup
k∈R3

0≤t≤T

|c(n−1) (k, t)| ≤ c(n−1). Then

|c(n)| ≤ c(0) + (c(n−1))2 sup
k∈R3

|k|α+1 ·
∫ t

0

exp{−|k|2(t− s)} ds ·
∫
R3

dk′

|k − k′|α · |k′|α
=

= c(0) + (c(n−1))2 · sup
k∈R3r0

|k|α−1(1− exp{−|k|2t})
∫
R3

dk′

|k − k′|α · |k′|α
.



Current Developments in Mathematics - Seminar at Harvard - November 17-19, 2006 11

For the last integral we have the estimate

∫
R3

dk′

|k − k′|α · |k′|α
≤ B1

|k|2α−3

where B1 is a constant. Assume by induction that c(n−1) ≤ 2c(0). Then we have to show that

sup
k∈R3r0

(2c(0))2B1
1

|k|α−2
· (1− exp{−|k|2t}) ≤ c(0)

if t is small enough, or

sup
k∈R3r0

· 4c(0)B1
1

|k|α−2
(1− exp{−|k|2t}) ≤ 1 .

This will give c(n) ≤ 2c(0).

Consider two cases.

Case 1. |k|2 ≤ 1
t
. Then

1

|k|α−2
· (1− exp{−|k|2t}) ≤ |k|4−α · t ≤ tε/2

where ε = α− 2 and

sup
k∈R3r0

4c(0) 1

|k|α−2
(1− exp{−|k|2t}) ≤ 4c(0)tε ≤ 1

if t ≤ T and T is small enough.
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Case 2. |k|2 ≥ 1
t
. Then

1

|k|α−2
· (1− exp{−|k|2t}) ≤ 1

|k|α−2
≤ tε/2

and again

sup
k∈R3r0

4c(0)B1
1

|k|α−2
(1− exp{−|k|2t}) ≤ 4c(0) · tε/2 ≤ 1

if T is small enough.

Thus all iterations c(n)(k, t), 0 ≤ t ≤ T have the norm less than 2c(0).

The next step in the proof is to show that the iterations c(n) converge to a limit. We have

c(n)(k, t)− c(n−1)(k, t) = i|k|α
t∫

0

exp{−|k|2(t− s)

∫
R3

< k, c(n−1)(k − k′, s)− c(n−2)(k − k′, s) > Pkc
(n−1)(k′, s)dk′

|k − k′|α · |k′|α

+

∫
R3

< k, c(n−2)(k − k′, s) > Pk(c
(n−1)(k′, s)− c(n−2)(k′, s))dk′

|k − k′|α · |k′|α



and

|c(n)(k, t)− c(n−1)(k, t)| ≤ 2c(0) ‖ c(n−1) c(n−2) ‖ ·

· |k|α−1 · (1− exp{−|k|2t)
∫
R3

dk′

|k − k′|α · |k′|α
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≤ 2c(0) · B1 · ‖ c(n−1) − c(n−2) ‖ · sup
k∈R3r0

|k|α−1 · (1− exp{−|k|2t}) · 1

|k|2α−3
.

The same arguments as before give that

sup
k∈R3r0

|k|α(1− exp{−|k|2t}) · 1

|k|2α−3
≤ B2t

ε/2

where B2 is another absolute constant. Thus, for some constant B3

‖ c(n−1) − c(n) ‖≤ B3 · c(0) · tε/2 ‖ c(n−2) − c(n−1) ‖ .

This gives the needed convergence of the iterations and the uniqueness in Φ(α) provided

that T is small enough.

Take some v(k, 0). Assume that it can imbedded in different spaces Φ(α). Then, it is

easy to check that the solutions given for different α actually coincide.

LeJan and Sznitman proved in [LeJS] the following interesting theorem.

Theorem 4. Assume that v(k, 0) = c(k,0)
|k|2 and sup |c(k, 0)| = c(0) < ∞, i.e., v(k, 0) ∈ Φ(2).

If c(0) is small enough then there exists a global solution of (6) defined for all t > 0. This

solution is unique.

Slightly different proofs of this theorem were given by Cannone and Planchon in [CP]

and in [S2].

Both Theorems 3 and 4 cover many cases when a local and global existence theorems are

valid. Presumably, the global existence theorem for small initial data is not valid in Φ(α).

However, M. Arnold and I proved in [AS] that for the analogous periodic problem it is true.

Let me mention also the recent result by Dinaburg and myself (see [DS]) where we proved
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the local existence result and global existence result for small initial data in the case of initial

conditions which are finite linear combinations of δ-functions.

Probably the spaces Φ(α) is not optimal for our purposes. The space of functions v(k)

which have finite limits as k −→ 0 along any direction and this limit may depend on the

direction are more suitable.

Proof of Theorem 4. Let

N{c(k, t) , t ≥ 0 and k 6= 0} = i|k|2
t∫

0

exp{−|k|2(t− s)} ds ·

·
∫
R3

< k, c(k − k′, s) > Pk c(k
′, s) dk′

|k − k′|2 · |k′|2

It is easy to check that

I2 =

∫
R3

d3k′

|k − k′|2 · |k′|2
≤ B3

|k|
.

where B3 is an absolute constant. Then

|N{c(k, t), t ≥ 0 and k 6= O}| ≤ C2 · B3

where C = sup
k,t
|c(k, t)|. This immediately implies the global existence result if C is small.

I believe that for α = 2 and large initial conditions even the local existence result is not

always true. The corresponding statement could be considered as some examples of blow

up.
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Part III.

Blow Ups of Complex Solutions of 3-dim Navier-Stokes System and RGM

We return back to the Fourier transform of the 3-dimensional Navier-Stokes System:

v(k, t) = exp{−t|k|2} v(k, 0) +

t∫
0

exp{−|k|2(t− s)} ds .

∫
R3

< v(k − k′, s) , k > Pk v(k
′, s) d3k′ (7)

v(k, t) ⊥ k for all k 6= 0 . (8)

An important property of (7), (8) is the energy inequality: if E(t) =

∫
R3

< v(k, t),

v(k, t) > d3k and −iv(k, t) is the Fourier transform of the real-valued u(x, t) then

E(t′) ≤ E(t′′) if t′ ≥ t′′ . (9)

However, (9) is no longer true if v(k, t) are arbitrary C3-functions i.e., solutions of (7), (8)

are complex. In the text below we consider real solutions of (7) which in principle do not

correspond to the real solutions in the x-space.

Power series for solutions of (7), (8). Denote vA(k, 0) = Av(k, 0) and vA(k, t) is the solution

of (7), (8) with this initial condition, A is a real parameter. Write down the solution of (7)

in the form

vA(k, t) = exp{−|k|2t} vA(k, 0) +

t∫
0

exp{−|k|2(t− s)}ds ·
∑
p>1

Ap hp(k, s) . (10)
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The substitution of (10) into (7) gives the system of recurrent equations for the functions

hp:

h1(k, s) = exp{−|k|2s} · v(k, 0) ,

h2(k, s) = i

∫
R3

< v(k − k′, 0), k > Pkv(k
′, 0) exp{−s|k − k′|2 − s|k′|2}d3k′ ,

hp(k, s) = i

s∫
0

ds2

∫
R3

< v(k − k′, 0, k > Pkhp−1 (k′, s2) ,

· exp{−s|k − k′|2 − (s− s2)|k′|2} d3k′ +

+ i
∑

p1+p2=p ,
p1,p2>1

s∫
0

ds1

s∫
0

ds2

∫
R3

< hp1(k − k′, s1), k > ·Pkhp2(k
′, s2) ·

· exp{−(s− s1)|k − k′|2 − (s− s2)|k′|2} d3k′ +

+ i

s∫
0

ds1

∫
R3

< hp−1 (k − k′, s1), k > Pk v(k
′, 0) ·

exp{−(s− s1)|k − k′|2 − s|k′|2} d3k′ . (11)

This series was introduced in the papers [S1], [S2], [BDS]. It is possible to show that for

bounded initial conditions with compact support and any given t it converges provided that

A is sufficiently small.

The terms in (11) resemble the convolutions in probability theory. For example, if h1 is

concentrated in some subset C ⊂ R3 then hp are concentrated in C + C + . . .+ C︸ ︷︷ ︸
p times

. The

analogy with probability theory will be useful for our discussion below.
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Below, I describe the main result of our joint paper with Dong Li (see [LS]).

Theorem. There exists on open set in the space of 10-parameter families of initial conditions

such that for each family from this set for some values of parameters one can find an interval

on the time axis S = [S(−), S(+)] and a function A(s), s ∈ S, so that the solution with the

initial condition A(s)v(k, 0) blows up at t = s.

It will be explained below as to why we need 10 parameters and in what sense the solution

blows up.

This result is obtained with the help of RGM. We derive the equation for the fixed point

in our situation and show the existence of its solutions. Then we study the spectrum of the

linearization. The number 10 is the sum of the number of unstable and neutral eigen-values.

Introduce the neighborhood

B1 = {k : |k − κ(0)| ≤ D1

√
k(0) ln k(0)}

where κ(0) = (0, 0, k(0)) and k(0),D1 are the main large parameters. Also

Br = {k : |k − r κ(0)| ≤ D1

√
rk(0) ln(rk(0))} .

Inside Br introduce the rescaled coordinate Y using the formula k = rκ(0) +
√
rk(0) · Y and

write down the representation for all hr , r < p:

hr(rκ
(0) +

√
rk(0) Y, s) = Zp(s) · (∧p(s))

r · r · gr(Y, s)

where

gr(Y, s) =
1

2π
exp

{
−Y

2
1 + Y 2

2

2

}
· 1√

2π
exp

{
−Y

2
3

2

}
·

·(H1(Y1, Y2) + δ
(r)
1 (Y1, Y2, Y3), H2(Y1, Y2) +

+ δ
(r)
2 (Y1, Y2, Y3),

1√
rk(0)

· (F (Y1, Y2) + δ
(r)
3 (Y1, Y2, Y3)) .

Assume that δ
(2)
j −→ 0 as r −→ ∞. Then we are in a situation similar to probability

theory where H1, H2 play the role of Gaussian distribution. We shall derive the equation for
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H(Y1, Y2) = (H1(Y1, Y2), H2(Y1, Y2)). The expression for F follows from the incompressibility

condition:

H1Y1 + H2Y2 + F = O .

Introduce the variables θ1, θ2 instead of s1, s2 where s1 = s(1− θ1

(p1k(0))2
), s2 = s(1− θ2

(p2k(0))2
)

and γ = p1

p
, κ(0,0) = (0, 0, 1). Then we can rewrite (11) as follows:

hp(pκ
(0) +

√
pk(0)Y, s) = Zp+1(s) ∧p

p+1 (s) · p · gp(Y, s) = . . .

+ i p
∑

p1+p2 = p
p1,p2 > 1

1

p

(pk(0))5/2 · p1 · p2

(p1k(0))2 (p2k(0))2

(p1k(0))2∫
0

dθ1

(p2k(0))2∫
0

dθ2

∫
R3

(
1

2π

)3/2

exp

{
− (Y1 − Y ′

1)
2 + (Y2 − Y ′

2)
2 + (Y3 − Y ′

3)
2

2γ

}

〈g̃p1

(
Y − Y ′
√
γ

, s

(
1− θ1

(p1k(0))2

))
, κ(0,0) +

Y√
pk(0)

〉 ·

·Pκ(0,0) + Y√
pk(0)

g̃p2

(
Y ′

√
1− γ

, s

(
1− θ2

(p2k(0))2

))

Zp

(
s

(
1− θ1

(p1k(0))2

))
· ∧p1−1

p

(
s

(
1− θ1

(p1k(0))2

))
·

Zp

(
s

(
1− θ2

(p2k(0))2

))
∧p2−1

p

(
s ·

(
1− θ2

(p2k(0))2

))
·

·
(

1

2π

)3/2

exp

{
−(Y ′

1)
2 + (Y ′

2)
2 + (Y ′

3)
2

2(1− γ)

}
· exp

{
−θ1|κ(0,0) +

Y − Y ′

γ
√
pk(0)

|2
}

· exp

{
−θ2|κ(0,0) +

Y ′

(1− γ)
√
pk(0)

|2
}

+ · · · (12)
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where dots mean the terms with p1 = 1 and p1 = p− 1 which we do not write explicitly. We

shall modify (12) neglecting by terms which tend to zero as p→∞. It is done in four steps.

Step 1. All terms s
(
1− θ1

(p1k(0))2

)
are replaced by s.

Step 2. Write

(pk(0))5/2 · p1p2

(p1k(0))2 · (p2k(0))2
=

(pk(0))1/2

(k(0))2 γ(1− γ)
.

Step 3. Consider the inner product

(pk(0))1/2 < gp1

(
Y − Y ′
√
γ

, s

)
, κ(0,0) +

Y√
pk(0)

> .

Up to remainders it equals to

(
1

2π

)3/2

exp

{
−(Y1 − Y ′

1)
2 + (Y2 − Y ′

2)
2 + (Y3 − Y ′

3)
2

2γ

}
·

[
H1

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y1 + H2

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y2 +

1
√
γ
·

F

(
Y − Y ′
√
γ

, s

)]
=

(
1

2π

)3/2

exp

{
−(Y1 − Y ′

1)
2 + (Y2 − Y ′

2)
2 + (Y3 − Y ′

3)
2

2γ

}
·

{
− γ − 1

√
γ

[
H1

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y1 − Y ′

1√
γ

+

+H2

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y2 − Y ′

2√
γ

]
+

+
√

1− γ

[
H1

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y ′

1√
1− γ

+

+H2

(
Y1 − Y ′

1√
γ

,
Y2 − Y ′

2√
γ

)
Y ′

2√
1− γ

]}
.
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Step 4. Replace the projection operator by the identity operator. It is reasonable because for

Y = O(1), k3 ∼ pk(0) the projection in the main order of magnitude is the projection

to the plane (Y1, Y2).

The sum over p1 is the Riemannian integral sum for the corresponding integral. Take

Zp(s) = (k(0))2 and write ∧p+1(s)

∧p(s)
= 1 + ξp+1

p2 . Then

exp

{
−|Y |

2

2

}
· 1

2π
H(Y ) =

1∫
0

dγ

∫
R2

1

2πγ
exp

{
−|Y − Y ′|2

2γ

}

1

2π(1− γ)
· exp

{
− 1

2(1− γ)
|Y ′|2

}
·

·
[
−(1− γ)3/2 ·

(
Y1 − Y ′

1√
γ

H1

(
Y − Y ′
√
γ

)
+
Y2 − Y ′

2√
γ

H2

(
Y − Y ′
√
γ

))

+
√
γ(1− γ)

(
Y ′

1√
1− γ

H1

(
Y − Y ′
√
γ

)
+

Y ′
2√

1− γ
H2

(
Y − Y ′
√
γ

))]
· H

(
Y ′

√
1− γ

)
d2Y ′ .

(13)

This is our basic equation for the fixed point in RGM. Actually, the full equation has two

additional parameters which we did not include here (see [LS]).

The analysis of this equation can be done if we use the expansions over Hermite polyno-

mials. In [LS] the following theorem was proven.

Theorem 5. The equation (13) has a three-parameter family of formal solutions. If these

parameters are small, then the solutions are non-formal in the sense that they are given by

bounded functions of Y .

The parameters are not independent in the sense that some of them generate the same

solutions. If we use all parameters then our family of fixed points depends on four parameters.
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The next step in RGM is to introduce the “tangent space,” the group of linearized maps

and to study its spectrum. In our setting, the tangent space is simple and consists of functions

δ(γ, Y ), 0 ≤ γ ≤ 1, Y ∈ R3. We assume that for each γ, 0 ≤ γ ≤ 1, the function δ(γ, Y )

belongs to the Hilbert space L2 = L2(R3) of square-integrable functions with respect to

the weight
(

1
2π

)3/2
exp

{
−1

2
|Y |2

}
, Y = (Y1, Y2, Y3) and as a function of γ it is a continuous

curve in this Hilbert space, max
0≤γ≤1

‖ δ(γ, Y ) ‖L2<∞.

The semi-group {At} of linearized maps acts as follows: if γ exp{t} < 1 then

Atδ(γ, Y ) = δ(γ exp t, Y ). At γ = 1 we impose boundary conditions:

exp

{
− Y 2

1 + Y 2
2 + Y 2

3

2

}
· 1

(2π)3/2
δ(1, Y ) =

1∫
0

dγ

∫
R3

1

(2πγ)3/2
· 1

(2π(1− γ))3/2
·

exp

{
− |Y1 − Y ′

1 |2 + |Y2 − Y ′
2 |2 + |Y3 − Y ′

3 |2

2
− |Y ′

1 |2 + |Y ′
2 |2 + |Y ′

3 |2

2(1− γ)

}
·

·
{[
−(1− γ)3/2

(
Y1 − Y ′

1√
γ

H1

(
Y − Y ′
√
γ

)
+
Y2 − Y ′

2√
γ

H2

(
Y − Y ′
√
γ

))

+ γ1/2 (1− γ)

(
Y ′

1√
1− γ

H1

(
Y − Y ′
√
γ

)
+

Y ′
2√

1− γ
H2

(
Y − Y ′
√
γ

))

δ

(
1− γ ,

Y ′
√

1− γ

)
+

[
−(1− γ)3/2

(
Y1 − Y ′

1√
γ

δ1

(
γ,
Y − Y ′
√
γ

)

+
Y2 − Y ′

2√
γ

δ2

(
γ,
Y − Y ′
√
γ

))
+ γ

1
2 (1− γ)

(
Y ′

1√
1− γ

δ1

(
γ ,

Y − Y ′
√
γ

)
+

Y ′
2√

1− γ
·

· δ2
(
γ ,

Y − Y ′
√
γ

)))]
H

(
Y ′

√
1− γ

)
d3Y ′ .
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It is not too difficult to show that the eigen-functions of the linearized group have the form:

δ(γ, Y ) = γα Φα(Y )

where the functions Φα satisfy the equation which is similar to the equation for the fixed

point. Again, its analysis can be done with the help of expansion into series with respect to

Hermite polynomial and the result is the following (see [LS]):

Theorem 6. The spectrum of the semi-group of the linearized maps consists of the following

numbers:

spec {Lt} =

{
1,

1

2
, 0; λ(1)

m , λ(2)
m , m ≥ 1

}

where the multiplicity of 1 is 1, the multiplicity of 1
2

is 3, the multiplicity of zero is 6.

The eigen-values λ
(1)
m = −m

2
, λ

(2)
m =

√
17−4−m

2
, m ≥ 1 and their multiplicities are

ν
λ
(1)
m

= (m+3)(m+4)
2

, ν
λ
(2)
m

= m(m+5)
2

.

The eigen-values α = 1, α = 1
2

are unstable and the eigen-value α = 0 is neutral. Their

multiplicities are 4 and 6 respectively. In view of the general ideology of RGM (see the

beginning of these notes), 10-parameter families of initial condition which are C ′-close to

H(nu) intersect the stable manifold Γ(s). For points from Γ(s) the remainders δ(p)(Y ) −→ 0

as p −→∞.

More detailed description of the open set of 10-parameter families of initial conditions.

Take k(0) which will be assumed to be sufficiently large and consider the neighborhood

A1 =
{
k : |k − k(0)| ≤ D1

√
k(0) ln k(0)

}
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where D1 is also sufficiently large. Our initial conditions are zero outside A1. Inside A1 they

have the form:

v(k, 0) = 1
2π

exp
{
− Y 2

1 +Y 2
2

2

}
(H(0)(Y1, Y2) +

+
4∑

j=1

b
(u)
j Φ

(u)
j (Y1, Y2, Y3) +

b∑
j′=1

b
(n)
j′ Φ

(n)
j′ (Y1, Y2, Y2)

+ Φ(Y1, Y2, Y3, b
(u), b(n))) 1√

2π
exp

{
− Y 2

3

2

}
.

In this expression k = k(0) +
√
k(0)Y , H(0)(Y1, Y2) = (H

(0)
1 (Y1, Y2), H

(0)
2 (Y1, Y2), 0) is the fixed

point of RGM. Φ
(n)
j′ , Φ

(n)
j′ are unstable and neutral eigen-functions of the semi-group of the

linearized maps near the fixed point, b
(u)
j and b

(n)
j′ are our main parameters, −ρ1 ≤ b

(u)
j ,

b
(n)
j′ ≤ ρ1 where ρ1 is another constant, Φ(Y1, Y2, Y3; b

(u), b(n) is in some sense small. Due

to the presence of b(u), b(n) we have 10-parameters families of initial conditions, due to the

presence of Φ we have an open set in the space of such families.

Having these initial conditions, we write the reprsentation of functions hr in the form

hr(k, s) = Z(s) · ∧r(s) · r · exp

{
− Y 2

2

}
·

(
1√
2π

)3

· (H(Y ) + δr(Y, s))

if |Y | ≤ D1

√
ln(rk(0)) and k = rκ(0) +

√
rk(0) · Y , κ(0) = (0, 0, k(0)), H(Y ) is one of

our fixed points. Outside the domain |Y | ≤ D1

√
ln(rk(0)) the function hr satisfies simple

power-like estimate. Parameter s changes within a fixed interval s ∈ [S−, S+] of positive

length. We adjust the parameters b(u), b(n) in such a way that the remainders δr tend to zero

as r →∞. Take A(s) = ∧−1(s). Then the solution with the initial datum A(s)v(k, 0) blows

up at time s. The function A(s) is increasing, i.e., the function ∧(s) is decreasing. This is

natural because blow up at small s requires large initial conditions.

If s′ < s then E(s′), Ω(s′) are finite. It is possible to show that E(s′) � 1
(s−s′)5

,

Ω(s′) � 1
(s−s′)7

. The series which gives vA(s)(k, s) generates linear functional on the space

of bounded functions with compact support. It is not clear whether our solution can be

extended beyond the point of singularity.
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rotations,” Publ. Math. IHES, (1979), 49, p 5-233.

[Ka] L. Kadanoff, “Statistical physics,” World Scientific Publishing Co., River Edge, NJ,

(2000), p. 483.

[KS1] K. Khanin, Ya. G. Sinai, “Smoothness of conjugacies of diffeomorphisms of the

circle to rotations,” Russian Math. Surv., (1989), 49, p. 57-82.

[KS2] K. Khanin, Ya. G. Sinai, “Renormalization group method and the KAM-theory,”

Nonlinear Phenomena in Plasma Physics and Hydrodynamics, Editor: R. Sagdeev,

Moscow, MIR, (1986).

[KT] K. Khanin, A. Teplitsky, “Robust Rigidity for Circle Diffeomorphisms with Singu-

larities,” Math. Invent., (submitted).

[KW] H. Koch, P. Wittwer, “A non-trivial renormalization group fixed point for the

Dyson-Baker hierarchical model,” Comm. in Math. Phys., (1994), 164, p. 627-

647.

[M] R. Mac Kay, “Renormalization in Area Preserving Maps,” World Scientific, (1993).

[dMvS] W. de Melo and van Strien S., “One-dimensional Dynamics,” Spring-Verlag, (1993).

[PP] A. Patashinski, V. Pokrovski, “Fluctuation Theory of Phase Transitions,” Interna-

tional Series in Natural Philosophy, 98, Perganon Press, (1979), p. 321.

[PS] H. Pinson and T. Spencer, “Universality in 2D Critical Ising Model,” Preprint,

(2005), IAS.

[S] Y. G. Sinai, “Theory of phase transitions,” Rigorous Results, North Holland,

(1981).

[Su] D. Sullivan, “Bounds, quadratic differentials and renormalization conjecture. AMS

Centennial Publications, vol. 2, (1992).



Current Developments in Mathematics - Seminar at Harvard - November 17-19, 2006 26

[W] K. Wilson, Physics Review, D10, (1974), p. 2445.

“The renormalization group and critical phenomena,” Review of Modern Physics,

55, (1983), p. 583-600.
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