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MINIMUM VOLUME CUSPED HYPERBOLIC

THREE-MANIFOLDS

DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY

1. Introduction

In this paper, we prove:

Theorem 1.1. Let N be a one-cusped orientable hyperbolic 3-manifold with Vol(N)
≤ 2.848. Then N can be obtained by Dehn filling all but one of the cusps of M ,
where M is one of the 21 cusped hyperbolic 3-manifolds listed in the table in figure
1.

In [MM] the Dehn surgery spaces of the 21 manifolds listed in figure 1 are
rigorously analyzed, producing a complete list of one-cusped manifolds with volume
no greater than 2.848 which result from the Dehn fillings described above. We
therefore obtain:

Corollary 1.2. Let N be a 1-cusped orientable hyperbolic 3-manifold with Vol(N)
≤ 2.848, then N is one of m003, m004, m006, m007, m009, m010, m011, m015,
m016, or m017. (Notation as in the Snappea census.)

This corollary extends work of Cao and Meyerhoff who had earlier shown that
m003 and m004 were the smallest volume cusped manifolds. Also, the above list
agrees with the SnapPea census of one-cusped manifolds produced by Jeff Weeks
([W]), whose initial members are conjectured to be an accurate list of small-volume
cupsed manifolds.

Let N be a closed hyperbolic 3-manifold with simple closed geodesic γ and let
Nγ denote the manifold N \ γ. Agol ([Ago]) discovered a formula relating Vol(N)
to Vol(Nγ) and the tube radius of γ. Assuming certain results of Perelman, Agol
and Dunfield (see [AST]) have further strengthened that result. A straightforward
calculation (see [ACS]) using this stronger result, the log(3)/2 theorem of [GMT],
plus bounds on the density of hyperbolic tube packings by Przeworksi, shows that
a compact hyperbolic manifold with volume less than that of the Weeks manifold
must be obtainable by Dehn filling on a cusped manifold with volume less than or
equal to 2.848. The paper [MM] rigorously shows that the Weeks manifold is the
unique compact hyperbolic 3-manifold of smallest volume obtained by filling any
of the 10 manifolds listed in Corollary 1.2. We therefore obtain,

Corollary 1.3. The Weeks manifold is the unique closed orientable hyperbolic 3-
manifold of smallest volume.
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m125 m129 m203 m202 m292 m295 m328
m329 m359 m366 m367 m391 m412 s596
s647 s774 s776 s780 s785 s898 s959

Figure 1. The cusped manifolds which generate all one-cusped
hyperbolic 3-manifolds with volume ≤ 2.848. The manifolds are
denoted here as they appear in the SnapPea census.

The Weeks manifold is obtained is obtained by (5, 1), (5, 2) filling on the White-
head link, or by (2, 1) filling on the manifold m003 in the SnapPea census.

The proof of Theorem 1.1 is based on the Mom technology introduced in [GMM2].
Indeed, Figure 1 lists the collection of Mom-2 and Mom-3 manifolds enumerated in
[GMM2], thus we have the following equivalent formulation:

Theorem 1.4. Let N be a one-cusped orientable hyperbolic 3-manifold with Vol(N)
≤ 2.848. Then N can be obtained by Dehn filling all but one of the cusps of M ,
where M is a hyperbolic Mom-2 or Mom-3 manifold.

Recall that a Mom-n manifold is a 3-manifold M obtained by starting with
T × [0, 1] where T is the 2-torus and attaching n 1-handles and n valence-3 2-
handles to the T 2 × 1 side. Furthermore, ∂M is a union of tori. Given N as in
the theorem, the goal is to find a hyperbolic Mom-3 embedded in N , or in the
terminology of [GMM2] show that N possesses an internal Mom-n structure for
some n ≤ 3. I.e., M satisfies the condition that the interior of M has a complete
hyperbolic structure of finite volume and each component of ∂M bounds (to the
outside) either a solid torus or a cusp.

In practice, we think of T × 0 as the torus cutting off a maximal cusp neigh-
borhood U . In the universal covering U lifts to a collection of horoballs {Bi}. To
first approximation, when lifted to H3, the cores of the 1-handles of the Mom-n
structure will be geodesic arcs connecting two Bi’s. (Being maximal, some Bi’s
will be tangent to each other and these points of tangency will also be viewed as
1-handles.) The cores of the 2-handles, when lifted to H3 will correspond to totally
geodesic hexagons whose sides alternately lie on the 1-handles and boundaries of
Bi’s.

Using the 2.848 volume bound we will show that N possesses a geometric Mom-n
structure, where n ≤ 3. This means that we will find n π1(N)-orbits of geodesic
arcs and n π1(N)-orbits of geodesic hexagons with boundaries on the geodesic
arcs and Bi’s as in the previous paragraph. With some luck, when thickened up,
these geodesics and hexagons will descend to an internal Mom-n structure on N .
In reality, when projected to N , these hexagons may self-intersect in undesirable
ways and/or the resulting handle structures may be unsuitable for various technical
reasons. Much of this paper is devoted to the process of promoting a geometric
Mom-n structure n ≤ 3 which is torus-friendly to a hyperbolic internal Mom-k
structure, k ≤ n. (See definition 2.2.)

This paper is organized as follows. In Section 2 we give a detailed definition
of geometric Mom-n structure. In Section 3 we present several useful geometric
lemmas that will be used extensively in the rest of the paper. Then in Sections
4 and 5 we show that if N satisfies the hypotheses of Theorem 1.1, then N must
contain a geometric Mom-n structure which is torus-friendly. This part of the proof,
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while theoretically simple, is computationally complicated and was completed with
the use of computer assistance; the use of rigorous floating-point computations is
discussed in Section 5.

Sections 6, 7, and 8 are concerned with the process of promoting the geometric
Mom-n structure produced in Section 4 and 5 to an internal Mom-n structure of the
type described in [GMM2]. There is a natural geometric object associated to a geo-
metric Mom-n structure, consisting of a thickened copy of the cusp torus ∂U (which
corresponds to our T 2 × [0, 1]) together with a “one-handle” for every orthogonal
geodesic arc in the Mom-n structure and a “2-handle” for every hexagon. However
there are three key conditions that this geometric object must meet before it fits the
definition of an internal Mom-n structure. Each of Sections 6, 7, and 8 are devoted
to one of these three conditions, and to showing that either the condition holds
or else we can replace our geometric Mom-n with a “simpler” structure, for some
appropriate definition of “simpler”. Section 6 is concerned with whether or not the
geometric object associated to the Mom-n is embedded in N , in particular whether
the various handles have undesirable intersections or self-intersections. Section 7
is concerned with whether the components of the complement have the correct
topology, and Section 8 is concerned with whether or not our Mom-n structure
has “simply-connected lakes” in the language of Matveev. Having completed these
three sections, we find that the geometric Mom-n structure produced in Sections 4
and 5 will have evolved into an internal Mom-k structure for some k ≤ n.

At that point, the proof of Theorem 1.1 reduces to an application of Theorems
4.1 and 5.1 of [GMM2]. Together those two theorems imply that if N has an internal
Mom-n structure with n ≤ 3 then N contains an embedded submanifold M which
is a hyperbolic manifold with boundary whose interior is homeomorphic to one of
the manifolds in figure 1 and such that N − M is a disjoint union of solid tori and
cusps. This is the desired result. Section 9 summarizes this argument formally.

It should be noted that while the list in Figure 1 is precisely the list of manifolds
produced by Theorem 5.1 of [GMM2], it is somewhat redundant for the purposes
of Theorem 1.1 of this paper. The manifold s776 is a three-cusped manifold from
which many of the two-cusped manifolds on the list–experimentally, everything up
to and including m391–can be recovered by Dehn filling. Hence the 21 manifolds
in Figure 1 could be reduced to a list of 9 manifolds with no effect on Theorem 1.1.
However, we use the longer list here to be consistent with [GMM2].

Finally in Section 9 we will discuss some of the ideas used in [MM] to rigorously
analyze various Dehn fillings of the manifolds of Figure 1.

2. Definition of a geometric Mom-n

For the rest of this paper, N will refer to an orientable one-cusped hyperbolic
3-manifold. Suppose N is such a manifold; then N possesses a maximal cusp
neighborhood which is a closed set whose interior is homeomorphic to T 2 × (0,∞),
with the property that each torus T 2 × {x} has constant sectional curvature in
N . The term “maximal” here means that this cusp neighborhood is not a proper
subset of any other closed subset of N with this property.

T bounds a horoball when lifted to T̃ in the universal covering H3 of N . In
practice we think of T as a maximal cusp bounding a horoball. In H

3, the cores of
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the various 1-handles will be orthogonal geodesic arcs (or points) connecting π1(N)-
translates of this horoball. The cores of the 2-handles will be totally geodesic discs
with boundary alternately on horoballs and these geodesic arcs.

We prove Theorem 1.1 using geometric Mom-n structures, defined below.
In the universal cover H

3 of N , the maximal cusp neighborhood lifts to a collec-
tion of horoballs {Bi}; any two such horoballs have disjoint interiors but maximal-
ity implies that some pairs will be tangent at their boundaries. Choose one such
horoball and denote it B∞. In the upper half-space model {(x, y, z)|z > 0} of H3,
we may assume after conjugation by some element of Isom+(H3) that B∞ will be
precisely the set {(x, y, z)|z ≥ 1}; then every other Bi will appear as a sphere with
center (xi, yi, zi) and radius zi for some 0 < zi ≤ 1

2 . Let H ⊂ π1(N) be the sub-
group which fixes B∞, so that B∞/H is homeomorphic to the cusp neighborhood.
Let dE denote the distance function in the subspace (Euclidean) metric along the
boundary of B∞.

The center of a horoball Bj 6= B∞ is the limiting point of the horoball on the
sphere at infinity. For example, if Bj appears in the upper half-space model as a
sphere centered at (xj , yj, zj) with radius zj , then the center of the horoball is the
point (xj , yj , 0). We will sometimes refer to the complex number xj + iyj as the
center of Bj in this case, and define the center of B∞ to be ∞; then the center of

a horoball is always an element of Ĉ = C ∪∞.
In addition to this we will define the orthocenter of a horoball Bj 6= B∞ to be

the point on ∂B∞ which is closest to Bj . Uniqueness is guaranteed by the fact
that the boundary of any horoball has positive sectional curvature in H3, being a
Euclidean surface in a negatively curved space. In the upper half-space model, the
orthocenter of Bj is just the point on the surface z = 1 directly above the center
of Bj .

Given two horoballs A and B, neither equal to B∞, we will say that A and B are
in the same orthoclass if either A and B lie in the same H-orbit or there exists some
g ∈ π1(N) such that g(A) = B∞ and g(B∞) = B. In the latter case we say that
A and B lie in conjugate H-orbits. We denote the orthoclasses by O(1), O(2), and
so forth. For any B ∈ O(n) we call d(B, B∞) the orthodistance and denote it o(n);
this is clearly well-defined. Order the orthoclasses O(1), O(2), . . . in such a way
that the corresponding orthodistances are non-decreasing: 0 = o(1) ≤ o(2) ≤ · · · .
We will refer to this as the orthodistance spectrum. In addition we also define
en = exp(o(n)/2), and refer to the sequence 1 = e1 ≤ e2 ≤ · · · as the Euclidean
spectrum. Note that if A ∈ O(n), then in the upper half-space model the point on
∂A which is closest to B∞ must appear to be at a height of exp(−d(A, B∞)), which
equals en

−2 since d(A, B∞) = o(n). The choice of the word “Euclidean” actually
comes from Lemma 3.4.

Closely related to the orthoclasses are another set of equivalence classes which we
will call the orthopair classes. These are just the equivalence classes of the action of
π1(N) on the set of unordered pairs of horoballs {A, B}. It follows immediately from
the definition that A and B are in the same orthoclass if and only if {A, B∞} and
{B, B∞} lie in the same orthopair class. Hence we will occasionally abuse notation
and denote the orthopair classes by O(1), O(2), . . . as well. The definition of
orthodistance in this context is clear.
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Definition 2.1. A (p, q, r)-triple (or equivalently a triple of type (p, q, r)) is a triple
of horoballs {B1, B2, B3} with the property that {B1, B2} ∈ O(p), {B2, B3} ∈ O(q),
and {B3, B1} ∈ O(r), possibly after re-ordering.

Now we come to the key definition of this paper.

Definition 2.2. A geometric Mom-n structure is a collection of n triples of type
(p1, q1, r1), . . . , (pn, qn, rn), no two of which are equivalent under the action of
π1(N), and such that the indices pi, qi, and ri all come from the same n-element
subset of Z+.

We will occasionally drop the word “structure” when our meaning is otherwise
clear.

A geometric Mom-n will be said to be torus-friendly if n = 2 or if n = 3 and the
Mom-3 does not possess exactly two triples of type (p, q, r) for any set of distinct
positive indicies p, q, and r. (The geometrical implications of this term will be
explained in Section 7).

So, for example, a (1, 1, 3)-triple and a (1, 3, 3)-triple would constitute a geomet-
ric Mom-2, while a (1, 1, 2)-triple and a (1, 1, 3)-triple would not. A (1, 1, 2)-triple,
a (1, 1, 3)-triple, and a (1, 2, 3)-triple, however, would constitute a geometric Mom-3
which furthermore is torus-friendly. A (1, 1, 2)-triple and two (1, 2, 3)-triples which
are not equivalent under the action of π1(M) form a geometric Mom-3 which is not
torus-friendly. Although this definition can clearly be generalized, in this paper we
will only be discussing geometric Mom-n’s where n = 2 or 3, and where the indices
all come from the set {1, 2, 3, 4}.

The connection between geometric Mom-n’s and the internal Mom-n structures
of [GMM2] is clear. The term “geometric” is meant to highlight the fact that this
definition does not include any of the topological assumptions that are part of the
definition of an internal Mom-n structure, such as embeddedness. Nevertheless,
the correspondence between geometric and internal Mom-n structures is the key to
proving Theorem 1.1.

3. Geometrical lemmas

Throughout this chapter we will be using the upper half-space model of H3. We
will take certain facts, listed below, as given; a reader who is interested may refer
to [Fen] for more information.

First, the orientation-proving isometries of H3 can be identified with the matrix
group PSL(2, C) in a natural way. Each element of PSL(2, C) acts on the sphere at

infinity Ĉ = C ∪ {∞} by the corresponding Mobius transformation, i.e.
[

a b
c d

]

: z 7→ az + b

cz + d

if z ∈ C, and ∞ 7→ a
c . The action of PSL(2, C) on H3 itself can be expressed

similarly, using quaternions. In the upper half-space model, the point (x, y, t) in
H3 with t > 0 can be associated to the quaternion x + yi + tj; then the action of
PSL(2, C) can be expressed as

[

a b
c d

]

: x + yi + tj 7→ (a(x + yi + tj) + b)(c(x + yi + tj) + d)−1

The resulting quaternion will always be equal to u + vi + sj for some real (u, v, s)
with s > 0.



6 DAVID GABAI, ROBERT MEYERHOFF, AND PETER MILLEY

If g ∈ PSL(2, C) is not the identity we can determine from the trace of g whether
or not g is hyperbolic, parabolic, or elliptic as an isometry (note that trace is only
defined up to sign in PSL(2, C)). For example, g is an elliptic isometry (that is, g is
a rotation about a line in H3) if and only if tr(g) = ±2 cos(θ/2), where θ ∈ [−π, π]
is the angle of rotation of g. Note that in contrast to the hyperbolic and parabolic
cases, an elliptic isometry cannot be an element of π1(N), where N is a 1-cusped
hyperbolic 3-manifold.

One final fact about PSL(2, C) that we will use: if g =

[

a b
c d

]

then the image

of B∞ under g will be a horoball which appears as a Euclidean ball of diameter
|c|−2. More generally, the subset B(t) = {(x, y, z)|z ≥ t} of H3 will be mapped
to a horoball which appears as a Euclidean ball of diameter t−1|c|−2. This can be
demonstrated as follows. Since g(∞) = a

c , the image of B(t) will be a horoball
with center a

c ∈ C. Therefore the orthocenter of g(B(t)) will correspond to the
quaternion a

c + δj where δ is the diameter we seek. This is just the point where

g(B(t)) intersects the line in H3 from ∞ to a
c . Therefore the pre-image of this

point under g is the point where B(t) intersects the line from g−1(∞) = − d
c to

g−1(a
c ) = ∞. In other words,

a

c
+ δj = g

(

−d

c
+ tj

)

Direct calculation with quaternions then yields the desired result.
We now begin enumerating the geometrical lemmas that we will use in the rest

of the paper. The following lemma first appears (using different language) in [Ada].

Lemma 3.1. Every orthoclass consists of two H-orbits.

Proof: It is fairly clear from the definition that each orthoclass contains no more
than two H-orbits. If an orthoclass contains exactly one H-orbit, then we must
have g−1(B∞) = hg(B∞) for some h ∈ H , g 6∈ H . In other words, ghg ∈ H , and
therefore (gh)2 ∈ H . But as an isometry gh must be either hyperbolic, parabolic,
or the identity. In the first case (gh)2 would also be hyperbolic (and hence not in
H), and in the last two we would have gh ∈ H and hence g ∈ H . Either case is a
contradiction. �

The following lemma appears in [CM]; a related lemma for compact manifolds
appears in [GMM]. It is reproduced here for the sake of completeness.

Lemma 3.2. If A and B are both in O(n), and if g ∈ π1(N) is an isometry such
that g(B) = B∞, then g(A) 6∈ O(n).

Proof: There are two cases to consider: either A and B lie in different H-orbits or
else they lie in the same H-orbit.

In the first case, by the definition of an orthoclass g(B∞) = h(A) for some
h ∈ H . By replacing g with h−1g, therefore, we may assume that g(B∞) = A.
Suppose that g(A) is in O(n). Then either g(A) = h1(B) for some h1 ∈ H , in
which case we have g2(B∞) = h1g

−1(B∞), or else g(A) = h1(A), in which case we
have g2(B∞) = h1g(B∞).

Either way we have g2 = h1g
±1h2 for some h2 ∈ H . Let

g =

[

a b
c d

]

, hi =

[

1 ki

0 1

]

, i ∈ {1, 2}
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Expanding both sides of the equation g2 = h1g
±1h2 and taking the (2, 1)-entry of

the resulting matrix on each side, we get c(a+d) = ±c. Therefore the square of the
trace of g is 1, which implies that g ∈ π1(N) is elliptic of order 3, a contradiction.

The other case is when A and B lie in the same H-orbit, i.e. A = h(B) for
some h ∈ H . Suppose that g(A) ∈ O(n) and that g(A) lies in the same H-
orbit as A and B, i.e. g(A) = k(B) for some k ∈ H . Then g(A) and g(B∞)
both lie in O(n) but must lie in different H-orbits (see Lemma 3.1). Furthermore
gk−1(g(A)) = g(B) = B∞, and gk−1(B∞) = g(B∞). Therefore replacing B with
g(A), A with g(B∞), and g with gk−1 reduces the problem to the previous case.
On the other hand, suppose g(A) ∈ O(n) but g(A) does not lie in the same H-orbit
as A and B. Then g(A) = kg(B∞) for some k ∈ H . Since A = h(B) = hg−1(B∞),
we have ghg−1 = kgl for some l ∈ H . This last equation, after some manipulation
(note that h and l commute), implies that k−1(gl)h = (gl)2, which leads to a
contradiction just as in the first case. This completes the proof of the lemma. �

Another way of phrasing the above result is to say that the unordered pair {A, B}
does not lie in the same orthopair class as the pairs {A, B∞} and {B, B∞}. Hence
we immediately get the following:

Corollary 3.3. There are no (n, n, n)-triples.

�

The following lemma will be quite useful when studying horoball diagrams on
the surface of B∞:

Lemma 3.4. Let A, B be two horoballs not equal to B∞ and let p, q be their
orthocenters. Suppose A ∈ O(m) and B ∈ O(n), and suppose that d(A, B) = O(r).
Then the distance between p and q along the surface of B∞ is given by dE(p, q) =
er/(emen).

Proof: Using the upper half-space model, we may assume that p = (0, 0, 1) and
q = (x, 0, 1) where x = dE(p, q). Then A is a ball of height e−2

m tangent to S2
∞

at 0 and B is a ball of height e−2
n tangent to S2

∞ at (x, 0). Consider the following
isometry given as an element of PSL(2, C):

σ =

[

1 0
−x−1 1

]

Since σ is a parabolic isometry which fixes 0, σ preserves A. And σ sends x to
∞; therefore σ sends B to a horoball centered at infinity. The height of σ(B) will
be the same as the height of the image of the point (x, 0, en

−2), which is readily
determined to be x2en

2. Therefore the distance between A = σ(A) and σ(B) is the
logarithm of the ratio of x2en

2 to the diameter of A, which implies that

er
2 =

x2en
2

em
−2

which proves the lemma. �

The next two lemmas concern pairs of lines joining the centers of horoballs in H3;
they will be used extensively in discussing when geometric Mom-n’s are embedded
in Section 6.
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Lemma 3.5. Suppose A, B, C, and D are disjoint horoballs in H3 with no horoball
contained in the interior of another (or equivalently, with no two having the same
center on the sphere at infinity). Let λ1 be the line joining the centers of A and C,
λ2 be the line joining the centers of B and D, and let x be the distance between λ1

and λ2. Then

e
d(A,B)+d(C,D)

2 + e
d(A,D)+d(B,C)

2 = e
d(A,C)+d(B,D)

2 coshx

Corollary 3.6. If {A, B} ∈ O(h), {B, C} ∈ O (j), {C, D} ∈ O(k), {D, A} ∈ O (l),
{A, C} ∈ O(m), and {B, D} ∈ O(n), then

ehek + ejel = emen coshx

Proof: Arrange the horoballs in the upper half-space model in such a way that A
is the horoball at infinity with height 1 and C is centered at 0. Let z, w ∈ C be the
centers of B and D respectively. To compute the distance between the two lines λ1

and λ2, we turn to [Fen] which says that

cosh(x + iy) = −1

2
tr (Λ1Λ2)

where

Λ1 =

[

i 0
0 −i

]

∈ PSL(2, C)

is an elliptic element of order 2 fixing the line from 0 to ∞ while

Λ2 =
i

w − z

[

w + z −2wz
2 −w − z

]

∈ PSL(2, C)

is an elliptic element of order 2 fixing the line from z to w, and where y is the
relative angle between the two lines along the shortest arc between them, which is
only defined modulo π. Then by direct calculation,

cosh(x + iy) = − i

2(w − z)
tr

([

i 0
0 −i

] [

w + z −2wz
2 −w − z

])

= − i

2(w − z)
(i(w + z) − i(−w − z))

=
w + z

w − z

To determine coshx note that as y varies, cosh(x+ iy) = coshx cos y + i sinhx sin y
varies along an ellipse in the complex plane. It is straightforward to determine that
the foci of this ellipse are at −1 and 1, and that therefore for any y,

|cosh(x + iy) − 1| + |cosh(x + iy) + 1| = 2 coshx

Therefore,

coshx =
1

2

(∣

∣

∣

∣

w + z

w − z
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

w + z

w − z
+ 1

∣

∣

∣

∣

)

=
|w| + |z|
|w − z|

So |w| + |z| = |w − z| coshx. But by Lemma 3.4, |w|2 = ed(C,D)−d(A,C)−d(A,D),
|z|2 = ed(C,B)−d(A,C)−d(A,B), and |w − z|2 = ed(B,D)−d(A,B)−d(A,D). The result
follows. �
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Lemma 3.7. Let N be a cusped hyperbolic manifold with cusp neighborhood T , and
suppose A, B, C, and D are all horoballs in H3 which are lifts of T . Define λ1,
λ2, and x as in the previous lemma. If there exists an element g ∈ π1(N) such
that g(A) = B and g(C) = D, and if d(A, C) = d(B, D) is less than or equal to
2 log(1.5152) then x ≥ 0.15.

Proof: Suppose x < 0.15; we will establish a contradiction. For sake of notation,
suppose that {A, C} and {B, D} are both elements of O(k). Note that this implies
that ek ≤ 1.5152. Arrange the four horoballs in the upper half-space model so that
A is centered at infinity with height ek and C is centered at 0 with height e−1

k .
Then suppose that

g =

[

a b
c d

]

∈ PSL(2, C)

We wish to compute x in terms of a, b, c, and d in the same fashion as in the
previous lemma. Since g sends 0 to b

d and ∞ to a
c , by the same arguments as

before we have that for some y,

cosh(x + iy) =
a
c + b

d
a
c − b

d

=
ad + bc

ad − bc
= ad + bc

= 2ad − 1

where the last two steps used ad − bc = 1. Hence

ad =
1

2
(cosh(x + iy) + 1)

Since x < 0.15, this implies that ad lies strictly inside an ellipse in the complex
plane with foci at 0 and 1, whose boundary intersects the real axis at the points
1
2 (cosh 0.15 + 1) and 1

2 (1 − cosh 0.15).
Now recall that if c 6= 0 then the element g sends a horoball of height t centered

at infinity to a horoball of height t−1|c|−2 (whereas if c = 0 then g fixes the point
at infinity). So since g(A) = B and since B and A have disjoint interiors, we must
have e−1

k |c|−2 ≤ ek, or in other words |c| ≥ e−1
k ≥ 1.5152−1. But C and g(A) = B

also have disjoint interiors, so let

h =

[

0 i
i 0

]

∈ PSL(2, C)

Then h swaps A and C; therefore hg(A) and h(C) = A have disjoint interiors.
Since

hg =

[

ic id
ia ib

]

this implies that e−1
k |ia|−2 ≤ ek, or in other words |a| ≥ e−1

k ≥ 1.5152−1. Similarly,
A and D = g(C) = gh(A) have disjoint interiors, which implies that |d| ≥ 1.5152−1,
and C and D have disjoint interiors, so h(C) = A and h(D) = hgh(A) have
disjoint interiors, which implies that |b| ≥ 1.5152−1. Combining these facts we
have |ad| ≥ 1.5152−2 and |ad − 1| = |bc| ≥ 1.5152−2. Hence we can conclude that
ad lies somewhere in the shaded region indicated in Figure 2.
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Figure 2. The possible range of ad in the complex plane. The
shaded region is defined by the equation |z−0|+ |z−1| ≤ cosh 0.15
(i.e. the solid ellipse bounded by the curve 1

2 (cosh(0.15 + it) + 1)

where t is real) and the equations |z| ≥ 1.5152−2 and |z − 1| ≥
1.5152−2.

It’s worthwhile at this point to sketch out the motivation for the argument
that follows. Roughly speaking, we’ve shown that ad is approximately equal to
1/2. Given the stated lower bounds on |a| and |d|, this implies that |a| and |d|
are each approximately equal to

√

1/2. If it were the case that ad = 1/2 and

|a| = |d| =
√

1/2, then a + d would have to be a real number between −
√

2

and
√

2 which would imply that g ∈ π1(N) is elliptic, a contradiction. Since we
only have approximate equality in the previous statement, we wish to show that
g is “approximately elliptic”. More rigorously, we wish to show that a + d lies
close enough to the real interval from −

√
2 to

√
2 to ensure that gn(A) or gn(C)

intersects A for some n (specifically n = 2, 3, or 4), a contradiction which will
complete the proof of the lemma.

To make this argument work we need to break the problem into two cases de-
pending on the value of ad. The first case will be when ℜ(ad) ≥ 1/2 and ad lies in
the region in the above figure; the second case is when ℜ(ad) ≤ 1/2. We proceed
with the proof in the first case.

So suppose ℜ(ad) ≥ 1/2 and ad lies in the region in the above figure; we wish
to determine a domain for the trace τ = a + d of g. Suppose that a = |a|eiθ and
d = |d|eiφ; then

τ = ei( θ+φ
2 )
(

(|a| + |d|) cos
θ − φ

2
+ i (|a| − |d|) sin

θ − φ

2

)

Hence τ lies in an ellipse, centered at the origin, whose major axis has length
2(|a| + |d|) and whose minor axis has length 2||a| − |d||, and whose major axis is
tilted away from the real axis by half the argument of ad.

Note that we have upper bounds on all three of these quantities. First, the
argument of ad is bounded since ad is contained in a bounded simply-connected
region which does not contain 0. Second, since |ad| is bounded above and |a|
and |d| are both bounded below, the point (|a|, |d|) is contained in a region in the
first quadrant of the real plane which is bounded by the lines x = 1.5152−1 and
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Figure 3. The region of possible values for a + d (solid contour),
generated by sweeping out ellipses with constant major axis and
minor axis length, parameterized by the angle of inclination with
the x-axis. The dashed contours represent the beginning and end-
ing ellipses.

y = 1.5152−1 and the hyperbola xy = D where D is the maximum possible value of
|ad|. This implies that |a|+ |d| and ||a|− |d|| are both bounded as well. Specifically,
we can state the following:

θ + φ

2
≤ 0.07473

|a| + |d| ≤ 1.5323

||a| − |d|| ≤ 0.2124

These facts together imply that τ must be contained in a bounded region near the
origin, as sketched out in figure 3.

Now consider g2, g3, and g4; these elements do not fix ∞ since g does not.
Similarly they do not fix 0. By direct calculation,

g2 =

[

∗ bτ
cτ ∗

]

g3 =

[

∗ b(τ2 − 1)
c(τ2 − 1) ∗

]

g4 =

[

∗ b(τ3 − 2τ)
c(τ3 − 2τ) ∗

]

(Here ∗ is used to denote entries whose value is unimportant.) Since A and gn(A)
(respectively C and gn(C)) have disjoint interiors, by the same arguments as before
all three of the quantities |cτ |, |c(τ2−1)|, and |c(τ3−2τ)| (respectively |bτ |, |b(τ2−
1)|, and |b(τ3 − 2τ)|) must be no less than 1.5152−1. Since |bc| = |ad− 1| and since

ad lies in a bounded simply connected region which does not contain 1,
√

|bc| is
bounded above and hence |τ |, |τ2−1|, and |τ3−2τ | are bounded below. Specifically
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Figure 4. The region from figure 3, contained inside the union of
the regions |τ | < 0.9281, |τ2 − 1| < 0.9281, and |τ3 − 2τ | < 0.9281.

we have

|τ | ≥ 0.9281
∣

∣τ2 − 1
∣

∣ ≥ 0.9281
∣

∣τ3 − 2τ
∣

∣ ≥ 0.9281

But as demonstrated in figure 4, the intersection of the three regions described by
the above inequalities is disjoint from the previously determined range of possible
values of τ , a contradiction. This completes the proof in the first case.

The proof in the second case is nearly identical, only the specific numbers differ:
replace 0.07473 with 0.08599, 1.5323 with 1.4262, 0.2124 with 0.1062, and 0.9281
with 0.8698. This completes the proof of the lemma. �

The remaining lemmas in this chapter will be quite arbitrary and geometrical,
but they will be quite useful in the next chapter when we begin to compute the
volume of manifolds which do not possess geometric Mom-n’s. We start with a
lemma and definition which first appeared in [CM]:

Lemma 3.8. Let B be a horoball centered at infinity in the upper half-space model
of H3, whose boundary has Euclidean height 1/b. Let A be a half-space, i.e. one of
the two connected components of the complement of a plane; assume that A does
not contain the point at infinity, and that the plane which defines A appears in the
upper half-space model as a Euclidean hemisphere with radius 1/a. Assume that
a < b, so that A ∩ B is non-empty. Then the volume of A ∩ B is

π

(

b2

2a2
− 1

2
+ log

a

b

)

Definition 3.9. Denote the above quantity by lessvol(a, b).
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Proof of Lemma 3.8: Without loss of generality, assume that the plane defining
A appears as a Euclidean hemisphere centered at the origin. Then convert to
cylindrical coordinates; the desired volume is given by the following integral:

∫ 1
a

1
b

∫ 2π

0

∫

q

1
a2 −z2

0

r

z3
dr dθ dz

The result follows immediately. �

The following lemma is a straightforward exercise in trigonometry; the proof is
left to the reader:

Lemma 3.10. Let A and B be two circular disks in the plane with radius a and
b respectively, such that the centers of A and B are c units apart. Suppose that
|a − b| ≤ c ≤ a + b, i.e. suppose that the two disks overlap but neither disk is
entirely contained in the interior of the other. Then

Area(A ∩ B) = a2f

(

a2 − b2 + c2

2ac

)

+ b2f

(−a2 + b2 + c2

2bc

)

where f(x) = cos−1(x) − x
√

1 − x2, if a 6= b. If a = b, then

Area(A ∩ B) = 2a2f
( c

2a

)

Definition 3.11. Define the function overlapArea(a, b, c) to equal the right-hand
side of the first equation above if a 6= b, and the right-hand side of the second
equation above if a = b.

Finally, we provide a companion to the above lemma. The function f(x) de-
scribed above, while relatively simple, turns out to be unsuitable for rigorous
floating-pointing computation. As will be explained in more detail in Section 5,
a polynomial approximation to f(x) will be extremely useful. Hence we provide
the following:

Lemma 3.12. Let A and B be two circular disks in the plane with radius a and
b respectively, such that the centers of A and B are c units apart. Suppose that
|a − b| ≤ c ≤ a + b, i.e. suppose that the two disks overlap but neither disk is
entirely contained in the interior of the other. Then

Area(A ∩ B) ≤ a2g

(

a2 − b2 + c2

2ac

)

+ b2g

(−a2 + b2 + c2

2bc

)

where g(x) = (5
3 − π

2 )x5 + 1
3x3 − 2x + π

2 , if a 6= b. If a = b, then

Area(A ∩ B) ≤ 2a2g
( c

2a

)

Definition 3.13. Define the function overlapApprox(a, b, c) to equal the right-hand
side of the first inequality above if a 6= b, and the right-hand side of the second
inequality above if a = b.
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Proof: Comparing the above lemma to Lemma 3.10, clearly it would suffice to
show that g(x) ≥ f(x) for all x ∈ [−1, 1] where f(x) = cos−1(x) − x

√
1 − x2.

Unfortunately, this cannot be the case as both f(x) − π
2 and g(x) − π

2 are odd
functions. However, it is true that g(x) ≥ f(x) for all x ∈ [0, 1]; we will use this
fact in what follows. Let h(x) = g(x)−f(x). We note the following facts about h(x),
which are readily verified: h(x) is an odd function, h(±1) = h(0) = 0, h(x) > 0 if
0 < x < 1, and h(x) has a single local maximum at xmax = 0.928 . . . . By Lemma
3.10 it suffices to show that

a2h

(

a2 − b2 + c2

2ac

)

+ b2h

(−a2 + b2 + c2

2bc

)

≥ 0

if a 6= b.
Let P be the center of the first circle, Q the center of the second, and let R

be one of the points where the circles intersect. Let θ be the angle of the triangle
PQR at P , and let φ be the angle at Q. Applying the law of cosines for PQR to
the above inequality, we get

a2h (cos θ) + b2h (cosφ) ≥ 0

Note that if θ = 0 or π then φ = 0 or π and vice-versa. Since h(1) = h(−1) = 0 the
lemma is true in either case. So suppose that θ, φ ∈ (0, π). Note that since θ and
φ are angles of a (possibly flat) triangle this also implies that θ + φ ∈ (0, π). Then
we can apply the law of sines to the above inequality to get

(

c sinφ

sin(θ + φ)

)2

h (cos θ) +

(

c sin θ

sin(θ + φ)

)2

h (cosφ) ≥ 0

Letting x = cos θ and y = cosφ, it suffices to show that

(1 − y2)h(x) + (1 − x2)h(y) ≥ 0

where x < 1, y < 1, and x > −y (since θ < π − φ). Let H(x, y) equal the left-hand
side of the above inequality. Note that H(x, 1) = H(1, y) = 0 since h(1) = 0, and
H(x,−x) = 0 for x ∈ [−1, 1] since h(x) is odd. Hence the lemma will be proved
if we can show that H(x, y) has a non-negative value at any local minimum in the
interior of the triangle bounded by the lines x = 1, y = 1, and x + y = 0. Since
h(x) ≥ 0 if 0 ≤ x ≤ 1, H(x, y) ≥ 0 whenever 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Also,
H(x, y) = H(y, x). Therefore it suffices to examine local minima in the interior of
the triangle bounded by the lines x = 1, y = 0, and x + y = 0. We now show that
there are no such local minima in that region.

Computing the gradient, we see that if (x0, y0) is a local extreme point of H(x, y)
then

(1 − y0
2)h′(x0) = 2x0h(y0)

(1 − x0
2)h′(y0) = 2y0h(x0)

If (x0, y0) is in the interior of the triangle described above then 0 < x0 < 1
and −1 < y0 < 0. Then from the first equation, since h(y0) < 0 we must have
h′(x0) < 0, and from the second equation since h(x0) > 0 we must have h′(y0) < 0.
Therefore xmax < x0 < 1, and −1 < y0 < −xmax. Now suppose further that
(x0, y0) is a local minimum. Then we must have ∂2H/∂x2 > 0 at that point, which
implies that

h′′(x0) >
2h(y0)

1 − y0
2
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But it can be readily computed that the maximum value of h′′(x) on the interval
[xmax, 1] is less than −1.6, while the minimum value of 2h(y0)/(1 − y0

2) on the
interval [−1,−xmax] is greater than −0.6, contradicting the above inequality. This
completes the proof of the lemma. �

4. Bounding the parameter space

In Section 5 we will show that a one-cusped hyperbolic 3-manifold with volume
less than or equal to 2.848 has a geometric Mom-2 or Mom-3 structure. This proof
involves constructing volume estimates in terms of the first three non-trivial ele-
ments of the Euclidean spectrum e2, e3, and e4, and then evaluating those formulas
with rigorous computer assistance. This requires us to restrict our attention from
the space of all possible values of (e2, e3, e4) to a compact subset of that space.
Doing so is the purpose of this section.

Specifically, we wish to prove the following:

Proposition 4.1. Let N be a one-cusped hyperbolic 3-manifold with Vol(N) ≤
2.848. Then e2 ≤ 1.4751; furthermore, one of the following statements must be
true:

• e3 ≤ 1.5152, or
• N contains a geometric Mom-2 structure consisting only of (1, 1, 2)-triples

and (1, 2, 2)-triples.

Note that this effectively provides upper bounds on e2 and e3 for manifolds
with Vol(N) ≤ 2.848; lower bounds are trivially provided by ek ≥ e1 = 1. This
proposition does not provide an upper bound for e4, but we can do without as
described in the next section.

The proof of Proposition 4.1 depends on several complicated estimates of area
and volume and spans multiple cases. Similar arguments, presented in less detail
for brevity, will be used for the proofs in Section 5, and hence this section should
perhaps be considered a “warm-up” for those results.

We begin with the following simple result:

Lemma 4.2. The volume of a one-cusped hyperbolic three-manifold N is at least

e2
4
√

3

2
− π

(

e2
2 − 1 − 2 log e2

)

Corollary 4.3. If e2 > 1.4751 then Vol(N) > 2.848.

Proof: Let {pi} ⊂ ∂B∞ be the set of orthocenters of horoballs belonging to O(1).
According to lemmas 3.2 and 3.4, dE(pi, pj) ≥ e2 for all i 6= j. Therefore ∂B∞ can
be packed by circles of radius e2/2 centered at each point pi. There are two H-orbits
of such points by lemma 3.1, and therefore the area of ∂B∞/H is at least π(e2

2)/2.
Since our packing is by circles of uniform radius, we can immediately improve this
bound by a factor of

√
12/π (the density of the hexagonal circle packing) to get

Area(∂B∞/H) ≥ e2
2
√

3

However we want to estimate volume, not area. The volume of B∞/H is exactly
Area(∂B∞/H)/2, and this is a lower bound on the volume of N , but this lower
bound only accounts for the volume inside the cusp neighborhood. We would like
our estimate to count some of the volume outside the cusp neighborhood as well.
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We do this by “inflating” the cusp neighborhood in a uniform fashion. In the
upper half-space model, this corresponds to replacing B∞ with a new horoball C
which is centered at infinity but whose Euclidean height is some positive number
which may be less than one. In particular we choose C to have height 1/e2. Then

Vol(C/H) =
e2

2

2
Area(∂B∞/H)

=
e2

4

2

√
3

but of course C/H is no longer embedded in N ; it is only immersed. To get a
valid lower bound for Vol(N) we must “cut off” C/H by subtracting the volumes
of those regions where C/H extends beyond the Ford domain corresponding to
B∞/H . The maximum height of a Ford face corresponding to A ∈ O(2) is just 1/e2;
therefore C/H only extends past the Ford faces corresponding to O(1)-horoballs
and not O(2)-horoballs (or O(n)-horoballs for n > 2). Hence at most we must
subtract twice the volume of the region where the horoball C intersects the half-
space corresponding to some B ∈ O(1). That volume is given by the lessvol function
(see Definition 3.9); specifically,

Vol(N) ≥ Vol(C/H) − 2 lessvol(1, e2)

=
e2

4
√

3

2
− π

(

e2
2 − 1 − 2 log e2

)

This is the desired result.
The corollary follows since the above function is easily verified to be increasing

in e2. �

In practice, the area of the cusp torus ∂B∞/H will usually be far greater than

our crude estimate of e2
2
√

3, because the density of the packing of ∂B∞ by circles
around the orthocenters of the O(1)-horoballs is typically nowhere near optimal.
One strategy to try and capture the extra area between the circles is simply to use
larger circles: specifically, use circles of radius e3/2 instead of e2/2 to estimate the
area. This has the advantage of incorporating e3 into the area estimate, which will
lead to the upper bound on e3 that we seek. The disadvantage, of course, is that by
increasing the radius we can no longer guarantee that each circle will be embedded
in ∂B∞/H : the larger circles may overlap.

However, such overlaps imply the existence of triples which may be part of a
geometric Mom-n structure. If two circles of radius e3/2 overlap then the distance
between their centers is less than e3, which implies by Lemma 3.4 that the cor-
responding horoballs, together with B∞, must form a (1, 1, 2)-triple. If there are
no such triples, then our new expanded circles will not overlap. This leads to the
following:

Lemma 4.4. Let N be a one-cusped hyperbolic three-manifold whose horoball dia-
gram contains no triples of type (1, 1, 2). Then

(1) Vol(N) ≥ e2
2e3

2
√

3

2
− π

(

e2
2 − 1 − 2 log e2

)

Corollary 4.5. Under the assumptions of the lemma, if e3 > 1.8135 then Vol(N) >
2.848.
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Proof: Let {pi} ⊂ ∂B∞ be defined as in the proof of Theorem 4.2. Since the
horoball diagram for N contains no (1, 1, 2) handles, dE(pi, pj) ≥ e3 for all i 6= j,
and ∂B∞ can be packed by circles of radius e3/2 centered at each point pi. The
rest of the proof proceeds just as in the proof of Theorem 4.2.

To prove the corollary, note that the right-hand side of equation (1) is both
increasing in e2 for fixed e3 and vice-versa. When e3 = 1.8135 and e2 = 1, Vol(N) >
2.848 and the result follows. �

The upper bound on e3 obtained from Corollary 4.5 is unfortunately too large
to be useful. The next step is to improve upon it by accounting for the effect of
the horoballs in O(2) upon Area(∂B∞). If e2 is small, then we expect to be able
to construct circles around the orthocenters of these horoballs which will be almost
as large as the circles around the orthocenters of the horoballs in O(1), increasing
our estimate. While if e2 is large, then e3 must be large as well, increasing the area
of the circles constructed in the proof of Lemma 4.4.

Thus we wish to estimate Area(∂B∞) using two sets of circles: one set corre-
sponding to the elements of O(1) as before, and another set corresponding to the
elements of O(2). But we need to decide how large the circles in this new second
set will be. Also, whatever new circles we construct may intersect the previously
constructed circles corresponding to the O(1) horoballs. In particular, if N pos-
sesses a (1, 2, 2)-triple then O(2)-horoballs and O(1)-horoballs will be close enough
for these circles to possibly intersect. This can be accounted for using the function
overlapArea(a, b, c) from Lemma 3.10, leading to the following:

Lemma 4.6. Let N be a one-cusped hyperbolic 3-manifold containing no triples
of type (1, 1, 2) and at most one triple of type (1, 2, 2). Furthermore, assume that
e2 ≤ 1.4751 and e3 ≤ 1.8135. Then

Area(∂B∞/H) ≥2π
(e3

2

)2

+ 2π

(

e3

e2
− e3

2

)2

− 2 overlapArea

(

e3

e2
− e3

2
,
e3

2
, 1

)

− overlapArea

(

e3

e2
− e3

2
,
e3

e2
− e3

2
,

1

e2
2

)

and furthermore

(2) Vol(N) ≥ Area(∂B∞/H)
e3

2

2
− π

(

e3
2 − 1 − 2 log e3 +

e3
2

e2
2
− 1 − 2 log

e3

e2

)

Corollary 4.7. Under the assumptions of Lemma 4.6 if e3 > 1.4751 then Vol(N) >
2.848.

Proof: Let {pi} be the set of orthocenters of O(1) horoballs as before, and let
{qi} be the set of orthocenters of O(2) horoballs. Assume that we have already
constructed circles of radius e3/2 around each pi as in Lemma 4.4. As before, since
there is not a (1, 1, 2)-triple these circles will not overlap.

Now in addition to this, construct circles of radius e3/e2 − e3/2 around each
of the points qi. These circles may conceivably overlap either the previous circles
or each other. Suppose that the circle around qi overlaps the circle around pj for
some i and j, and let Bi and Bj be the corresponding horoballs. Then clearly
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dE(qi, pj) < e3/e2, which by Lemma 3.4 implies that d(Bi, Bj) < o(3). Therefore
(Bi, Bj, B∞) must be a triple of type (1, 2, 2) (or a triple of type (1, 1, 2), but we’re
explicitly excluding that case right now).

Or suppose that the circles around qi and qj overlap for some i and j, and let
Bi and Bj be the corresponding horoballs. If d(Bi, Bj) ≥ o(3), then by Lemma 3.4
we must have dE(qi, qj) ≥ e3/e2

2. But it is easy to show that 2(e3/e2 − e3/2) ≤
e3/e2

2 for all positive e2 and e3; therefore if the circles are indeed overlapping then
d(Bi, Bj) < o(3). Therefore (Bi, Bj , B∞) must again be a triple of type (1, 2, 2)
(recall that a triple of type (2, 2, 2) is impossible by Lemma 3.2).

In summary, any overlaps between the new circles and the old ones, or between
the new circles and each other, arise due to the presence of a triple of type (1, 2, 2).
And we have supposed that there is no more than one such triple up to the action
of G.

After taking the quotient by the action of H we are left with two new circles of
radius e3/e2 − e3/2 and up to three new cases where one circle overlaps another.
First, a (1, 2, 2)-triple implies that dE(qi, qj) = 1/e2

2 for some i and j; therefore in
∂B∞/H we may see either the two new circles overlapping each other or else we
may see one of the new circles overlapping itself. Secondly, a (1, 2, 2)-triple implies
that dE(qi, pj) = 1 for some i and j; in ∂B∞/H we may see up to two instances of
a new circle being overlapped by an old one.

Therefore the area of ∂B∞/H is at least the area of the two new circles plus the
two old circles minus the three possible overlaps. Using Lemma 3.10, this proves
the first half of the lemma.

There is a technical issue that must be addressed: Lemma 3.10 is not valid if
the circles in question do not overlap, or if one circle is contained in the interior of
the other. Since we’re using Lemma 3.10 twice we need to ensure that both of the
following sets of inequalities hold:

∣

∣

∣

∣

e3

e2
− e3

∣

∣

∣

∣

≤ 1 ≤ e3

e2

0 ≤ e2
−2 ≤ 2e3

e2
− e3

All of the above inequalities can be verified by elementary means when 1 ≤ e2 ≤
1.4751 and e2 ≤ e3 ≤ 1.8135. Hence our use of Lemma 3.10 is valid. Note this also
confirms that the new circles actually contribute to the area of ∂B∞/H .

To find a lower bound of the volume of N , we inflate the cusp neighborhood as
in the proof of Theorem 4.2. This time we obtain a horoball C centered at infinity
with Euclidean height 1/e3. Then Vol(C/H) = 1

2 Area(∂B∞/H)e3
2. And while

C/H extends beyond the Ford domain corresponding to B∞/H , at worst it only
extends past the Ford faces corresponding to O(1)-horoballs and O(2)-horoballs.
Hence,

Vol(N) ≥ Area(∂B∞/H)
e3

2

2
− 2 lessvol(1, e3) − 2 lessvol(e2, e3)

This proves the second half of the lemma. To prove the corollary, note that the
resulting volume bound is increasing in e3 for fixed e2 and decreasing in e2 for fixed
e3. Hence the minimum value of the volume bound over the domain 1 ≤ e2 ≤
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1.4751, 1.4751 ≤ e3 ≤ 1.8135 occurs when e2 = e3 = 1.4751, and at the point
Vol(N) > 2.848. �

The next step is to perform the same analysis in the case where the horoball
diagram for N contains exactly one triple of type (1, 1, 2) and no triples of type
(1, 2, 2). (Note that if N had at least one of each type of triple then N would
have a geometric Mom-2.) This analysis is similar to that of the previous case, and
therefore in what follows some details are omitted.

Lemma 4.8. Let N be a one-cusped hyperbolic 3-manifold whose horoball diagram
contains one triple of type (1, 1, 2). Then

Area(∂B∞/H) ≥ 2π
(e3

2

)2

− overlapArea
(e3

2
,
e3

2
, e2

)

and furthermore

(3) Vol(N) ≥ Area(∂B∞/H)
e2

2

2
− π

(

e2
2 − 1 − 2 log e2

)

Corollary 4.9. Under the same assumptions as in Lemma 4.8, if e3 > 2.1491 then
Vol(N) > 2.848.

Proof: As in the proof of Lemma 4.4, we wish to tile ∂B∞/H with disks of radius
e3/2 centered at the centers of the O(1)-horoballs. But since in this case there is
by assumption a single (1, 1, 2)-triple, such disks will overlap exactly once. This,
together with Lemma 3.10, proves the first part of the lemma. (It is a trivial matter
to confirm that 3.10 applies; the relevant inequality is 0 ≤ e2 ≤ e3.) To prove the
second part, we inflate the cusp to obtain a horoball C centered at infinity and with
Euclidean height 1/e2, and then proceed just as in Theorem 4.2.

The resulting bound on Vol(N) is increasing in e3 for fixed e2 and vice-versa, and
when e2 = 1 and e3 = 2.1491 we get Vol(N) > 2.848; this proves the corollary. �

We now wish to improve the bound on e3 by mimicking the argument used in
the previous case. That is, we wish to construct additional circles in the horoball
diagram of radius e3/e2 − e3/2 corresponding to the O(2) horoballs as before. As
in the previous case, such circles are small enough that the only overlaps between
them and the circles of radius e3/2 will arise as a result of the presence of a (1, 1, 2)-
triple (of which we assume there is at most one) or a (1, 2, 2)-triple (of which we
will assume there are none at all).

Here we run into a problem, however, when we try to confirm that Lemma
3.10 applies, or in other words when we try to confirm that the new circles are
both overlapped by the old ones and not completely contained within the old ones.
According to Lemma 3.4, in the presence of a (1, 1, 2) triple the orthocenter of a
O(2) horoball will be at a distance of 1/e2 from the center of some O(1) horoball.
Therefore Lemma 3.10 applies if and only if the following inequalities hold:

∣

∣

∣

∣

e3

e2
− e3

∣

∣

∣

∣

≤ 1

e2
≤ e3

e2

The right-hand inequality is trivially true since e3 ≥ 1 but the left-hand inequality
simplifies to e3 ≤ (e2 − 1)−1. This last inequality is not always true in the region
1 ≤ e2 ≤ 1.4751, e2 ≤ e3 ≤ 2.1491. So we have to be a little more clever. Note that
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the inequality e3 ≤ (e2−1)−1 fails when e3 and e2 are both large, but the worst case
in the previous lemma occurred when e2 was small. Hence a more sophisticated
version of Corollary 4.9 is required, one which lets us restrict our attention to a
smaller region which does not intersect the curve e3 = (e2 − 1)−1:

Corollary 4.10. Under the assumptions of Lemma 4.8, if e3 > 2.1491 − (e2 − 1)
then Vol(N) > 2.848.

Proof: This follows from two observations. First, that the volume estimate in
Lemma 4.8 is increasing in e3 for fixed e2. Second, if e3 = 2.1491 − (e2 − 1) then
Vol(N) > 2.848, as can be readily verified by direct computation. �

Note that the curve e3 = (e2 − 1)−1 lies above the line e3 = 2.1491 − (e2 − 1).
Thus with the preceding corollary in hand, we can now prove the following:

Lemma 4.11. Let N be a one-cusped hyperbolic 3-manifold containing no triples of
type (1, 2, 2) and one triple of type (1, 1, 2). Furthermore, assume that e2 ≤ 1.4751
and e3 ≤ 2.1491 − (e2 − 1). Then

Area(∂B∞/H) ≥ 2π
(e3

2

)2

+ 2π

(

e3

e2
− e3

2

)2

− overlapArea
(e3

2
,
e3

2
, e2

)

−2 overlapArea

(

e3

e2
− e3

2
,
e3

2
,

1

e2

)

and furthermore

Vol(N) ≥ Area(∂B∞/H)
e3

2

2
− π

(

e3
2 − 1 − 2 log e3 +

e3
2

e2
2
− 1 − 2 log

e3

e2

)

Corollary 4.12. Under the assumptions of Lemma 4.11, if e3 > 1.5152 then
Vol(N) > 2.848.

Proof: As promised this proof will be somewhat light on details due to the extreme
similarity to the previous case. Let {pi} be the orthocenters of the O(1) horoballs
and {qi} the orthocenters of the O(2) horoballs as before. Construct circles of
radius e3/2 around the pi’s. As in Lemma 4.8 there is one overlap between those
two disks, caused by the (1, 1, 2)-triple. In addition, we also have circles of radius
e3/e2 − e3/2 centered at the qi’s. These circles do not intersect each other since
there are by assumption no (1, 2, 2)-triples in N ; however since there is one (1, 1, 2)-
triple there will be two overlaps between these circles and the circles of radius e3/2.
This together with Lemma 3.10 and our observations after Corollary 4.10 prove the
first part of the lemma. To prove the second part, we inflate the cusp to obtain a
horoball C centered at infinity with Euclidean height 1/e3, which at worst extends
past the Ford faces corresponding to the O(1)-horoballs and O(2)-horoballs, then
apply the lessvol function as before. The resulting bound on Vol(N) is increasing
in e3 for fixed e2, and decreasing in e2 for fixed e3, and when e2 = 1.4751 and
e3 = 1.5152 we get Vol(N) > 2.848. This proves the corollary. �

We now finally have enough tools to prove the main result of this section:
Proof of Proposition 4.1: Suppose that N is such that Vol(N) ≤ 2.848. Then
e2 ≤ 1.4751 by Corollary 4.3.
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Suppose that N does not contain a geometric Mom-2 of the type described in
the proposition; we wish to show that this implies e3 ≤ 1.5152. Our assumption
implies that N cannot contain:

• Two or more (1, 1, 2)-triples
• Two or more (1, 2, 2)-triples
• Both a (1, 1, 2)-triple and a (1, 2, 2)-triple.

So if N contains no (1, 1, 2)-triples, then it contains at most one (1, 2, 2)-triple and
Corollary 4.7 applies. If N contains exactly one (1, 1, 2)-triple, then it must contain
no (1, 2, 2)-triples and Corollary 4.12 applies, completing the proof. �

5. Finding a geometric Mom-n, n = 2 or 3

The goal of this section is to strengthen the results of the previous section to
obtain the following:

Proposition 5.1. Let N be a one-cusped hyperbolic 3-manifold with Vol(N) ≤
2.848. Then N possesses a geometric Mom-n structure for n = 2 or 3 which is
torus-friendly.

The technique used to prove the above theorem is identical in principle to the
techniques used to prove Proposition 4.1. Namely, we assume that N does not
possess such a geometric Mom-n structure and then construct a lower bound on the
area of the cusp torus. Specifically we will construct circles around the orthocenters
of horoballs in O(1), O(2), and O(3). The circles we will construct will be large
enough that they will overlap one another, but we can use the lack of a Mom-2
or Mom-3 structure to carefully limit the number of such overlaps that will occur.
Once we have a bound on the area of the cusp torus we can use that (along with a
careful estimate of the volume of the manifold outside the cusp neighborhood) to
find a bound on the volume of N . The difficulties, as we will see, are in the number
of cases to be considered and the complex nature of the volume bounds that result.
But for now, we begin with the following:

Definition 5.2. Let emax = min(e4, 1.5152), and let

A0 =

3
∑

i=1

2π

(

emax(ei
−1 − 1

2
)

)2

Recall that by the results of the previous section we may assume that e3 ≤
1.5152 < 2; therefore emax(ei

−1 − 1/2) is always positive for i ≤ 3. Furthermore,
if pi and pj are the orthocenters of horoballs Bi ∈ O(i) and Bj ∈ O(j), where
i, j ∈ {1, 2, 3}, and if d(Bi, Bj) ≥ o(4), then dE(pi, pj) ≥ e4/eiej by Lemma 3.4.
Then we have the following:

e4

eiej
− emax

(

ei
−1 − 1

2

)

− emax

(

ej
−1 − 1

2

)

≥ e4

eiej
(1 − ei)(1 − ej)

≥ 0

where the last line follows since ei ≥ 1 for all i.
Therefore if we place a circle of radius emax(ei

−1 − 1/2) around the orthocenter
of both of the horoballs in O(i), for i ∈ {1, 2, 3}, and if the manifold N does not
possess any horoball triples involving O(1), O(2), and O(3), then those six circles
will have disjoint interiors and therefore A0 will be a lower bound for the area of
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the cusp torus ∂B∞/H . Of course it is highly unlikely that N will possess no such
triples, and thus we must consider the possibility that some of those six circles will
overlap. This leads to our next definition:

Definition 5.3. Let

li,j,k = overlapApprox

(

emax(ei
−1 − 1

2
), emax(ej

−1 − 1

2
), c

)

where c = min(ek/(eiej), emax(ei
−1 + ej

−1 − 1)).

Recall that overlapApprox(a, b, c) was defined in Definition 3.13, and by Lemma
3.12 it is always greater than or equal to the area of the intersection of a circle
of radius a and a circle of radius b whose centers are c units apart, provided that
|a − b| ≤ c ≤ a + b.

Hence if pi, pj are respectively the orthocenters of horoballs Bi ∈ O(i), Bj ∈
O(j), and if d(Bi, Bj) = o(k), where i, j, and k are all in {1, 2, 3}, then li,j,k
will be greater than or equal to the amount of overlap between a circle of radius
emax(ei

−1 − 1/2) around pi and a circle of radius emax(ej
−1 − 1/2) around pj . We

need to check that the condition |a− b| ≤ c holds. Assuming that ei ≤ ej , we have

c − |a − b| ≥ ek

eiej
− emax

∣

∣ei
−1 − ej

−1
∣

∣

=
1

eiej
(ek − emax(ej − ei))

≥ 1

eiej
(1 − 1.5152(1.5152− 1))

≥ 0

where the second-to-last line used the fact that 1 ≤ ei ≤ ej ≤ 1.5152. Hence we do
in fact have |a− b| ≤ c, i.e. it is not the case that one circle lies entirely inside the
other.

Note that it is entirely possible that ek/(eiej) will be greater than emax(ei
−1 +

ej
−1 − 1), i.e. that the two circles don’t overlap at all. In this case li,j,k will simply

equal 0 since overlapApprox(a, b, a + b) = 0 for all non-negative a and b.
Now suppose that the manifold N possesses a (i, j, k)-triple where i, j, and k are

all elements of {1, 2, 3}. Then there will exist orthocenters pi and pj corresponding
to horoballs Bi ∈ O(i) and Bj ∈ O(j) such that d(Bi, Bj) = o(k), and similarly
for each cyclic permutation of i, j, and k. In other words, an (i, j, k)-triple with i,
j, k ∈ {1, 2, 3} can cause up to three different overlaps in ∂B∞/H . But there will
be no overlaps between the circles that we have constructed that do not come from
such a triple. In other words we have established the following:

Lemma 5.4. Suppose that N possesses horoball triples of the form (i1, j1, k1), . . . ,
(is, js, ks), where ir, jr, kr ∈ {1, 2, 3} for each r = 1,. . . s. Furthermore, suppose
every such triple in N appears in the above list exactly once. Then

Area(∂B∞/H) ≥ A0 −
s
∑

r=1

lir ,jr ,kr
+ ljr,kr ,ir

+ lkr ,ir,jr

Once we have a bound on the area of ∂B∞/H , we can compute the volume
of B∞/H and thereby construct a bound on the volume of N exactly as in the
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previous section. Recall that in the previous section we “inflated” the cusp neigh-
borhood to get a larger neighborhood C/H which was only immersed in N , and
then subtracted the volume of the regions where C/H extended beyond the Ford
domain corresponding to B∞/H . This allowed us to improve our volume bound
by accounting for some of the volume of N − B∞/H . We will do the same here,
“inflating” our cusp neighborhood by replacing B∞ with a new horoball C centered
at infinity but with Euclidean height 1/emax. Then we have the following:

Lemma 5.5. Under the same assumptions as in Lemma 5.4,

Vol(N) ≥ emax
2

2

(

A0 −
s
∑

r=1

lir ,jr,kr
+ ljr ,kr ,ir

+ lkr,ir ,jr

)

−π

(

−3 + emax
2
(

1 + e2
−2 + e3

−2
)

+ log

(

e2
2e3

2

emax
6

))

Unfortunately one very quickly discerns that the volume bounds obtained by the
above lemma simply aren’t large enough for our purposes, particularly when e2, e3,
and e4 are small. For example, if e2 = e3 = e4 = 1 one can quickly determine that
A0 = 3π/2 and that all the li,j,k’s are 0, resulting in a volume bound of 3π/4, which
is less than 2.848. Thus we need to find more area in the case where e4 is small.
Since a small value of e4 implies that the O(4)-horoballs will be close to B∞, it is
natural to try to construct circles around the orthocenters of the O(4)-horoballs to
increase our estimate of the area of B∞/H .

So suppose e4 < 1.5152 (so emax = e4). We construct a circle of radius 1/(e4e2)−
e4/e2 + e4/2 around the orthocenter of each of the two horoballs in O(4). The
reasoning behind the choice of this particular radius is as follows. If q4 is the
orthocenter of such a horoball, and if pi is the orthocenter of Bi ∈ O(i) for i ∈
{2, 3, 4} (assume pi 6= q4), we want the circles constructed around q4 and pi to have
disjoint interiors. Since dE(pi, q4) ≥ 1/(eie4) by Lemma 3.4, this means that when
i = 2 or 3 we require

1

eie4
−
(

1

e4e2
− e4

e2
+

e4

2

)

−
(

e4

ei
− e4

2

)

≥ 0

and when i = 4 we require

1

e4
2
− 2

(

1

e4e2
− e4

e2
+

e4

2

)

≥ 0

The first inequality is equivalent to (e2
−1 − ei

−1)(e4 − e4
−1) ≥ 0, which is clearly

true for i = 2 or 3. The second inequality simplifies to

e4 − 1

e4
2e2

(

2e4
2 + 2e4 − e2(e4

2 + e4 + 1)
)

≥ 0

But 1 ≤ e2 ≤ e4, and the polynomial 2x2 +2x−x(x2 +x+1) is always positive for
1 ≤ x ≤ 1.5152, and hence each factor on the left-hand side of the above inequality
is always non-negative, proving the inequality.

Hence our new circles will not intersect each other, nor will they intersect the
previous circles that were created around the orthocenters of the O(2) or O(3)-
horoballs. Now suppose q4 is the orthocenter of B4 ∈ O(4) as before, and suppose p1

is the orthocenter of a horoball B1 ∈ O(1). Suppose further that d(B1, B4) ≥ o(2),
and that hence dE(p1, q4) ≥ e2/e4 by Lemma 3.4. We wish to know if the circles
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we’ve constructed around p1 and q4 will overlap; that is, we wish to verify the
inequality

e2

e4
−
(

1

e4e2
− e4

e2
+

e4

2

)

− e4

2
≥ 0

⇔ e2 − 1

e4e2

(

e2 + 1 − e4
2
)

≥ 0

This inequality is not always true in the domain 1 ≤ e2 ≤ e4 ≤ 1.5152, particularly
when e2 is small and e4 is large. However, the inequality does hold when we need
it to hold, namely when e2 and e4 are both small. Hence in what follows we will
make the additional assumption that e2 + 1 ≥ e4

2, and take it for granted that if
this assumption fails we don’t need the extra area anyway.

With the additional assumption, we now have circles constructed around the
orthocenters of the O(4)-horoballs which don’t intersect each other, which don’t
intersect the circles around the centers of the O(2)-horoballs and O(3) horoballs,
and which may intersect the circles constructed around a O(1) horoball but only
if that horoball is less than o(2) away from the O(4)-horoballs. In other words,
the new circles do not intersect themselves or any of the previous circles unless N
contains one or more (1, 1, 4)-triples. If N contains exactly one such triple, there
will be two overlaps to account for, while if N contains two or more such triples,
we have a geometric Mom-2 structure. Thus we can conclude the following:

Lemma 5.6. If e4 ≤ 1.5152 and e2 + 1 ≥ e4
2, then either N contains a geomet-

ric Mom-2 structure consisting of two (1, 1, 4)-triples or else the area estimate of
Lemma 5.4 can be increased by

2π

(

1

e4e2
− e4

e2
+

e4

2

)2

− 2 overlapApprox(a, b, c)

where a = e4/2, b = 1/(e4e2) − e4/e2 + e4/2, and c = 1/e4.

Note that a and b are the radii of the circles constructed around the ortho-
centers of the O(1)-horoballs and O(4)-horoballs respectively, while c is the min-
imum possible distance between those orthocenters in the presence of a (1, 1, 4)-
triple. Also we are implicitly assuming that the conditions of Lemma 3.12 are met,
namely that |a − b| ≤ c ≤ a + b. Fortunately the left-hand inequality simplifies
to (e2 + 1 − e4

2)/(e2e4) ≥ 0, which is true by assumption, while the right-hand
inequality simplifies to (e4

2 − 1)(e2 − 1)/(e2e4) ≥ 0.
We can also update our volume bounds:

Lemma 5.7. If e4 ≤ 1.5152 and e2 + 1 ≥ e4
2, then either N contains a geometric

Mom-2 structure consisting of two (1, 1, 4)-triples or else the volume estimate of
Lemma 5.5 can be increased by

e4
2

2

(

2π

(

1

e4e2
− e4

e2
+

e4

2

)2

− 2 overlapApprox(a, b, c)

)

where a = e4/e2, b = 1/(e4e2) − e4/e2 + e4/2, and c = 1/e4.

We now have in principle a procedure for proving Proposition 5.1. First, enu-
merate every possible combination of triples which does not include a geometric
Mom-2 or Mom-3 structure which is torus-friendly. Second, for each combination
construct the volume bounds from Lemma 5.5 and Lemma 5.7 above, which will
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be a function of e2, e3, and e4. Third, show that each such volume bound never
attains a value below 2.848.

The first step is the simplest, and in fact we can make it even simpler: we do
not need to enumerate every possible combination of triples that do not include a
Mom-n, merely the maximal ones, since adding additional triples only decreases the
area bounds in Lemma 5.4 and Lemma 5.6. There are a total of eighteen maximal
combinations of triples that must be considered:

• (1, 1, 2), (1, 1, 3)
• (1, 1, 2), (1, 3, 3)
• (1, 1, 2), (2, 2, 3)
• (1, 1, 2), (2, 3, 3)
• (1, 2, 2), (1, 1, 3)
• (1, 2, 2), (1, 3, 3)
• (1, 2, 2), (2, 2, 3)
• (1, 2, 2), (2, 3, 3)
• (1, 1, 3), (2, 2, 3)
• (1, 1, 3), (2, 3, 3)
• (1, 3, 3), (2, 2, 3)
• (1, 3, 3), (2, 3, 3)
• (1, 1, 2), (1, 2, 3), (1, 2, 3)
• (1, 2, 2), (1, 2, 3), (1, 2, 3)
• (1, 1, 3), (1, 2, 3), (1, 2, 3)
• (1, 3, 3), (1, 2, 3), (1, 2, 3)
• (2, 2, 3), (1, 2, 3), (1, 2, 3)
• (2, 3, 3), (1, 2, 3), (1, 2, 3)

The second step of the procedure is also simple; it can in fact be automated by
a few lines of Mathematica code ([Mil]).

The third step, however, is daunting due to the complicated nature of the volume
bounds that result from Lemmas 5.5 and 5.7. The expressions resulting from these
two lemmas defy analysis by hand.

To handle these complicated expressions, we resort to computer assistance.
Specifically, we use rigorous floating-point arithmetic of the type used in [GMT].
This is not standard interval arithmetic, so we take a moment to review the tech-
niques involved here.

Definition 5.8. An affine 1-jet F = (f0; f1, f2, f3; fǫ) consists of the set of all
functions f : [−1, 1]3 → R such that |f(x1, x2, x3) − (f0 + Σfixi)| ≤ fǫ for all
(x1, x2, x3) ∈ [−1, 1]3. (Note that we require fǫ ≥ 0.)

Note that in [GMT] complex 1-jets were used; however we only require real
numbers here. [GMT] showed how, given two affine 1-jets F and G, a computer
which meets IEEE standards for floating-point arithmetic can compute an affine
1-jet H = (h0; h1, h2, h3; hǫ) which “equals F + G”, in the sense that f + g ∈ H for
each f ∈ F and g ∈ G. Specifically, let hi = fi + gi for i = 0, 1, 2, and 3, and let

hǫ = (1 + ǫa)(ǫt + ǫf)
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where

ǫt = fǫ + gǫ

ǫf =
EPS

2
((|f0 + g0| + |f1 + g1|) + (|f2 + g2| + |f3 + g3|))

ǫa = 3EPS

Here ǫt accounts for the “Taylor error”, i.e. the maximum possible sup-norm dis-
tance between f + g and the linear function represented by h as f and g vary over
F and G respectively. Since we’re only computing a linear function of f and g any-
way, ǫt only needs to account for the error carried over from the operands F and G;
for more complicated operations this term will be more significant. The quantity
ǫf accounts for the floating-point error that may accrue from the calculation of h0

through h3. Here EPS is a (small) computer-dependant constant that measures
the granularity of the set of real numbers that the computer is capable of repre-
senting. Roughly, 1 + EPS will be the smallest real number strictly greater than 1
which has a floating-point representation on the computer in question. Finally ǫa

accounts for the floating-point error that may accrue from calculating ǫt + ǫf . For
any operation involving affine 1-jets, ǫa will always be of the form nEPS where n is
an integer roughly proportional to the base-2 logarithm of the number of arithmetic
operations necessary to compute ǫt + ǫf . Constructed in this way, the error term
hǫ will be large enough to account for the original error terms fǫ and gǫ and for
the floating-point error that might accrue from calculating the terms of H . Similar
constructions exist for “−F”, “FG”, and “F/G” provided the range of g does not
contain 0 for any g ∈ G.

For more specific details on this process, we refer the reader to Sections 5 and 6
of [GMT] which describes the theory behind these formulas and provides numerous
examples.

Now suppose that we have a rational polynomial p(x1, x2, x3) and we wish to
compute the range of possible values of p over a box I1 × I2 × I3 in R3. It is not
possible to compute the exact range of possible values by computer due to floating-
point error. However affine 1-jets do make it possible to rigorously determine an
interval which must contain the range of possible values, as follows. Note that for
clarity’s sake we start with a simplified version of the procedure and fill in certain
troublesome details later.

Define X1 to be the affine 1-jet (a1; b1, 0, 0; 0) where x 7→ a1 + b1x is the
unique nondecreasing linear bijection from [−1, 1] to the interval I1. Define X2 =
(a2; 0, b2, 0; 0) and X3 = (a3; 0, 0, b3; 0) similarly. Then compute the affine 1-jet
p(X1, X2, X3) using the constructions in [GMT] in place of the usual arithmetic op-
erations, and let P = (p0; p1, p2, p3; pǫ) denote the result. If (x1, x2, x3) ∈ I1×I2×I3,
then trivially

(x1, x2, x3) = (f1(u, v, w), f2(u, v, w), f3(u, v, w))

where (u, v, w) ∈ [−1, 1]3 and fi ∈ Xi for i = 1, 2, and 3. (Specifically, we may
choose fi(x) = ai+bix.) Therefore p(x1, x2, x3) must lie in the range of p(f1, f2, f3),
which is an element of P . And therefore

p(x1, x2, x3) ∈ [p0 − |p1| − |p2| − |p3| − pǫ, p0 + |p1| + |p2| + |p3| + pǫ]

In practice, there are several complications. First, the above construction im-
plicitly assumes that the coefficients ai and bi have exact binary representations.
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If they do not, then the affine 1-jets Xi must be modified to have a non-zero ǫ-
term, representing the sup-norm distance between ai + bix and the actual unique
nondecreasing linear bijection from [−1, 1] to Ii. In practice it is usually simpler
to replace Ii with a slightly larger interval whose endpoints do in fact have exact
binary representations. Second, computing whether or not p(x1, x2, x3) lies in the
interval described is itself a floating-point operation, and may introduce error. This
can be dealt with using similar techniques to those used in calculating “F+G” in
the first place. One final complication is that this whole technique will only be
effective if p is very simple or if the intervals Ii are very small. If p is complicated
(and the functions we’re interested in are very complicated) then it is usually nec-
essary to subdivide I1 × I2 × I3 into much smaller sub-boxes to achieve any kind of
accuracy.

Nevertheless, we wish to apply the above techniques to compute a range of possi-
ble values for the volume bounds produced by Lemmas 5.5 and 5.7; if the computed
ranges never include values less than or equal to 2.848 then we’ll be done. Unfor-
tunately those volume bounds are not expressed as rational polynomials; we also
need to be able to rigorously compute both natural logarithms and the minimum
function, two operations that were never implemented in [GMT].

Fortunately while the natural logarithm is not a rational polynomial all of its
derivatives are. This makes it possible to rigorously compute logarithms by using a
Taylor approximation to log x at x = 1, and using Taylor’s theorem to compute an
exact upper bound on the difference between log x and the polynomial approxima-
tion. Since Taylor’s theorem expresses this difference in terms of the derivatives of
log x it is possible to incorporate it into the “Taylor error term” ǫt of the resulting
affine 1-jet and still determine correct upper bounds for the corresponding ǫf and
ǫa terms. Repeated use of the relation log(ax) = log a + log x (where a 6= 1 is
just an arbitrary positive constant; 9/8 was used in our implementation) allows the
program to restrict its use of the Taylor approximation to regions close to x = 1,
where the approximation is the most accurate.

It is tempting at this point to try and implement other non-polynomial functions
in this way. For example, consider the function overlapArea(a, b, c) from Definition
3.11: it is composed of polynomials, square roots, and the function acos(x). Square
roots were successfully implemented using affine 1-jets in [GMT], and the derivatives
of acos(x) are square roots of rational polynomials, so in theory it is possible to
implement the function overlapArea with affine 1-jets. In practice, unfortunately,
this works poorly. The function f(x) = acos(x) − x

√
1 − x2 which is used in the

calculation of overlapArea is composed of two functions which have vertical tangent
lines at the points x = ±1. When computing a function using affine 1-jets, the size
of the resulting error term will always be proportional to the derivative of the
function being computed; as a consequence, computing f(x) for affine 1-jets which
include x = ±1 in their range in practice causes the error term to grow so large as
to make the entire 1-jet useless. This is the entire reason for the existence of Lemma
3.12. While overlapApprox(a, b, c) is only an approximation to overlapArea(a, b, c),
as a polynomial function it is far more useful in this kind of computation.

Continuing, there remains one function to be implemented: a function Max0(F )
such that if f ∈ F and H = Max0(F ) then max(f, 0) ∈ H . (Then the identity
min(f, g) = f −max(f − g, 0) can be used to compute minimums.) If the computer
can rigorously determine that 0 does not lie in the range of f for any f ∈ F then
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Max0(F ) equals either F itself if f0 > 0 or else Max0(F ) = (0; 0, 0, 0; 0) if f0 < 0.
If the computer cannot exclude the possibility that 0 lies in the range of some f ∈ F
then Max0(F ) is defined to be equal to the 1-jet (s; 0, 0, 0; s) where

s =
1

2
(1 + 3EPS)(f0 + ((|f1| + |f2|) + (|f3| + fǫ))

(The factor of (1+3EPS) is there to account for floating-point error that may accrue
during the calculation of the rest the expression.) Note that while this definition is
technically correct in that max(f, 0) will lie in this affine 1-jet for all f ∈ F , from a
practical standpoint it is a terrible definition as s is almost guaranteed to be much,
much larger than the original error term fǫ. Fortunately (and unlike the case with
acos(x) and square roots, above) in practice the cases where the Max0 function
had to be called on affine 1-jets that may have contained 0 in their ranges were rare
enough not to cause significant problems.

With these tools in hand we now consider the following:

Theorem 5.9. Suppose N is a one-cusped hyperbolic 3-manifold with Vol(N) ≤
2.848. Then e2 ≤ 1.4751 < 1.5152 and furthermore N contains a geometric Mom-n
structure which either

• is a geometric Mom-2 structure incorporating only the orthoclasses O(1)
and O(2) and triples constructed from those three orthoclasses, or

• incorporates only the orthoclasses O(1), O(2), and O(3), and triples con-
structed from those three orthoclasses, and is torus-friendly, and in addition
we have e3 ≤ 1.5152, or

• incorporates the orthoclasses O(1) and O(4) and a pair of (1, 1, 4)-triples,
and in addition we have e4 ≤ 1.5152.

The proof of Theorem 5.9, using rigorous computer assistance, proceeds as fol-
lows. If e2 > 1.4751 then Vol(N) > 2.848 by the results of the previous chapter.
So, suppose otherwise. Furthermore, suppose that N does not contain a geometric
Mom-n of one of the three types described. In particular, by Proposition 4.1 we
may assume that e3 ≤ 1.5152, and we may assume that N contains at most one
(1, 1, 4)-triple unless e4 > 1.5152.

Then let (i1, j1, k1), . . . , (is, js, ks) be the complete list of triples in N satisfying
the condition that ir, jr, kr ∈ {1, 2, 3} for all r. This list of triples must be a
subcollection of one of the eighteen collections listed above. For each of those
eighteen collections of triples, we can construct a lower bound on the volume of N
via Lemma 5.5 which we will call f1(e2, e3, e4). In addition, Lemma 5.7 provides a
second, stricter lower bound in the case where e4 ≤ 1.5152 and e2+1 ≥ e4

2; call this
function f2(e2, e3, e4). These bounds depend solely on the parameters e2, e3, and e4

and can be computed using only the four basic arithmetic operations, logarithms,
the minimum function, and some constants. Furthermore we may assume that
(e2, e3, e4) lies in a compact subset of R3. Technically we have not established an
upper bound on e4, but if e4 > 1.5154 then we may simply replace e4 with 1.5152 in
f1 and still obtain a valid lower bound on the volume of N . We cannot do the same
with f2, but in practice f2 is only needed to improve the volume bound for small
values of e4. Subdividing this compact region into a sufficiently small number of
pieces and using the rigorous floating-point arithmetic techniques described above,
we can rigorously demonstrate that max(f1, f2) never attains a value less than or
equal to 2.848.
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This approach has been successfully implemented ([Mil]) and used to prove
Proposition 5.1. The resulting program requires approximately 80 minutes to
establish that max(f1, f2) > 2.848 on the parameter space 1 ≤ e2 ≤ 1.4751,
e2 ≤ e3 ≤ e4 ≤ 1.5152 in each of the 18 cases. To do so the program subdi-
vides each dimension of the parameter space into 28 subintervals. The program
also establishes that f1 > 2.848 whenever 1 ≤ e2 ≤ 1.4751, e2 ≤ e3 ≤ 1.5152, and
e4 = 1.5152, requiring approximately 10 seconds to do so; the number of dimen-
sions in the parameter space has a tremendous affect on the running time. The
programs themselves consist of just under 4800 lines of C++ code (close to half of
which was generated automatically by a short Mathematica program), running in
Redhat Linux on a four-processor PC. �

6. Embedding a geometric Mom-n

Theorem 5.9 establishes conditions under which we can assume that a one-cusped
hyperbolic 3-manifold N possesses a geometric Mom-2 or Mom-3 structure. Now
what we wish to do is thicken the cellular complex ∆ associated to that structure
to obtain a full topological internal Mom-n structure as defined in [GMM2]. Ex-
amining that definition, we see that there are three obstacles to this. The first is
that there is no guarantee that ∆ is embedded in N ; this is the obstacle we will
address in this section. The second obstacle is that the complement of ∆ in N may
have components whose boundaries are not tori, which violates the definition of an
internal Mom-n structure; this obstacle will be addressed in the next section. The
final obstacle, namely determining whether or not ∆ is “full”, will be tackled in
Section 8. We proceed with the question of embeddedness now; specifically we will
to prove the following:

Theorem 6.1. In Theorem 5.9, we may assume that the geometric Mom-n struc-
ture obtained has the property that the cellular complex ∆ = T ∪ {λi} ∪ {σj} is
embedded, where {λi} is the set of 1-cells which are the projections in N of the
shortest arcs joining the horoballs which form the orthopair classes of the Mom-n,
and where {σj} is the set of 2-cells which are the projections in N of the totally
geodesic surfaces spanning the triples of horoballs in the geometric Mom-n structure
and the arcs between them.

For sake of notation, define the O(n)-edge to be the image in N of the shortest
arc between any two horoballs which constitute an element of O(n). All of the
lemmas in this chapter will assume that N is a one-cusped hyperbolic 3-manifold.

Lemma 6.2. If the O(n)-edge intersects the cusp torus for any n, then en > 1.5152.

Proof: Any edge which intersects the cusp torus lifts to an arc contained in a line
which intersects the boundary of B∞, neither of whose endpoints are at infinity.
Such a line clearly must be a half-circle of diameter ≥ 2. But such a line must also
join the centers of two horoballs and hence by Lemma 3.4 we must have ek/(emen) ≥
2 for some k ∈ {1, 2, 3} and for some m and n. This implies that ek ≥ 2 >
1.5152. �

Lemma 6.3. If any two-cell in ∆ corresponding to an (n, m, k)-triple intersects
the cusp torus then one of en, em, or ek is greater than 1.5152.

Proof: A two-cell which intersects the cusp torus lifts to a totally geodesic two-cell
contained in an ideal hyperbolic triangle which intersects B∞, whose ideal vertices
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are the centers of three horoballs A, B, C, with the property that d(A, B) = o(n),
d(B, C) = o(m), and d(C, A) = o(k). There are two possibilities. If one of the three
edges of this ideal triangle also intersects B∞, then the previous lemma applies and
we’re done. So suppose none of the three edges intersect B∞, but instead the
triangle intersects B∞ at some point in its interior.

Let p be the highest point of the ideal triangle as viewed in the upper half-space
model (here “highest” refers to the Euclidean or visual height), and let q be the
highest point of the entire hyperbolic plane containing this triangle. Clearly if
p 6= q then p must be some point on an edge of the ideal triangle as close to q as
possible, contradicting our supposition. So p = q and q is contained in the ideal
triangle. Now view the entire picture from the point at infinity: from above, the
ideal triangle projects onto a Euclidean triangle in B∞ joining the orthocenters
of A, B, and C, and q projects to the circumcenter of this triangle. Since the
projection of q lies in the interior of the triangle, and since the circumradius of
the triangle is ≥ 1, one of the sides of the triangle must have length greater than

or equal to
√

2 − 2 cos 2π
3 =

√
3. Wolog, assume that the side “from B to C” has

this property. Therefore by Lemma 3.4 as before we have ek/(ebec) ≥
√

3 for some

k ∈ {1, 2, 3} and some b and c, and hence ek ≥
√

3 > 1.5152. �

The next step is to establish whether or not any of the O(n)-edges contained
in ∆ can intersect one another. Some of the following lemmas are stronger than
necessary to prove that this is not the case, but the stronger results will be used
later in the argument. We begin with some definitions to simplify notation later:

Definition 6.4. Let δ1 = 0.15, δ2 = cosh−1(1.5152−1 + 1.5152−2) = 0.4337 . . .,
and δ3 = cosh−1(2/1.5152) = 0.7800 . . ..

Note that the value of δ1 comes from Lemma 3.7. The values of δ2 and δ3 are
motivated by the following application of Corollary 3.6:

Lemma 6.5. Suppose A, B, C, D, and the various distances between them are
defined as in Corollary 3.6. In particular suppose that d(A, C) = o(m), d(B, D) =
o(n), and suppose that x is the shortest distance between the line joining the cen-
ters of A and C and the line joining the centers of B and D. Suppose further
that max(em, en) ≤ 1.5152. If x < δ2 then all four of the distances o(h) =
d(A, B), o(j) = d(B, C), o(k) = d(C, D), and o(l) = d(D, A) are strictly less than
min(o(m), o(n)). If x < δ3 then at least three of those four distances are strictly
less than min(o(m), o(n)).

Proof: Without loss of generality suppose that o(m) ≤ o(n), and that therefore
em ≤ en ≤ 1.5152.

Suppose that x < δ2 and that eh ≥ em. Then we have the following:

em + 1 ≤ ehek + ejel

= emen coshx

< (1.5152−1 + 1.5152−2)emen

where the middle step used the result of Corollary 3.6. Dividing both sides by em

and using the fact that em ≤ en ≤ 1.5152 we get

1 +
1

1.5152
≤ 1 +

1

em
< (1.5152−1 + 1.5152−2)en ≤ 1 +

1

1.5152
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which is a contradiction. Hence eh < em, and similarly for ej , ek, and el.
Now suppose that x < δ3. If eh ≥ em and ek ≥ em, then we have

e2
m + 1 ≤ ehek + ejel

= emen coshx

<
2

1.5152
emen

Again, divide both sides by em. Then using en ≤ 1.5152 and the AM-GM inequality
we get

2 ≤ em +
1

em
<

2

1.5152
en ≤ 2

which is a contradiction. On the other hand, if eh ≥ em and ej ≥ em, then we have

em + em ≤ ehek + ejel

= emen coshx

<
2

1.5152
emen

Dividing both sides by em gives 2 < 2
1.5152en ≤ 2, a contradiction. Hence by

symmetry no two of eh, ej , ek, and el can be greater than or equal to em; therefore
at least three of them are strictly less than em. This proves the lemma. �

Lemma 6.6. The O(1)-edge does not intersects or pass within less than δ3 of any
O(n)-edge where en ≤ 1.5152.

Proof: Apply Lemma 6.5 with m = 1 and x < δ3 to conclude that either three of
{o(h), o(j), o(k), o(l)} are less than o(1) = 0, which is ridiculous, or else en > 1.5152,
a contradiction. �

Lemma 6.7. If the O(2)-edge intersects the O(3)-edge, or passes within less than
δ2 of it, and if e3 ≤ 1.5152, then there exists a geometric Mom-2 structure consisting
only of (1, 1, 2)-triples.

Proof: Applying Lemma 6.5 we get that eh = ej = ek = el = e1. Hence d(A, C) =
d(A, D) = d(B, C) = d(B, D) = 0 and therefore {A, B, C} and {A, C, D} are both
(1, 1, 2)-triples. They cannot be equivalent under the action of π1(N), because any
element of the group which maps one triple to the other would have to map the
pair {A, C} to itself, and hence be either elliptic or the identity, a contradiction.
Therefore these two triples are distinct and constitute a geometric Mom-2 structure,
completing the proof. �

Lemma 6.8. If en ≤ 1.5152 then the O(n)-edge neither intersects itself nor passes
within δ1 of itself.

Proof: This is a direct corollary of Lemma 3.7. �

The three preceding lemmas show that if N contains a geometric Mom-2 or
Mom-3 structure of one of the types described in Theorem 5.9 then the O(n)-edges
of the complex ∆ are embedded in N and do not intersect one another, unless the
Mom-n structure includes the O(3)-edge. In that case, either the O(n)-edges of the
complex ∆ are embedded and do not intersect or else there exists another geometric
Mom-n structure, specifically a Mom-2 structure consisting only of (1, 1, 2)-triples.
In other words either the edges in question are embedded and do not intersect, or
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(0,0) (1,0)

Figure 5. An ideal triangle, together with three equidistant
curves for each side.

else we can find a simpler Mom-n structure; hence we may argue by induction that
N must possess a geometric Mom-n structure with embedded edges. This type of
induction argument will be repeated several times throughout this section.

To prove Theorem 6.1 we must also show that the 2-cells of ∆ corresponding
to (n, m, k)-triples are embedded and do not intersect one another. Since the 2-
cells are simply connected and totally geodesic, and since the O(n)-edges in their
boundary are geodesic arcs perpendicular to the horospheres at their endpoints, it
is straightforward to show that if two 2-cells intersect then a mcO(n)-edge in the
boundary of one 2-cell must intersect the other 2-cell. The previous lemmas imply
that this intersection must occur in the interior of the 2-cell. Therefore to complete
the proof of Theorem 6.1 it is sufficient to prove the following:

Proposition 6.9. Suppose N has a geometric Mom-n structure of one of the types
described in Theorem 5.9. If any of the O(n)-edges of the complex ∆ intersect any
of the 2-cells in ∆, then there must exist a simpler geometric Mom-n structure in
N , which is also of one of the types described in Theorem 5.9.

Proof: The idea of the proof is as follows: for every possible case, use the previous
lemmas in this section to either demonstrate a contradiction or reduce the problem
to a strictly previous case. But before enumerating the cases, consider the diagram
in figure 5.

This diagram shows an ideal triangle in the upper half-space model of H2 with
vertices at 0, 1, and ∞, together with nine curves that are each equidistant from
one of the three sides. For each of the three sides of the triangle there are three
curves: one at a distance of δ1 from the side, one at a distance of δ2, and one at
a distance of δ3. (To construct this diagram it is sufficient to note the following.
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A curve in the upper half-space model which is at a constant distance r from the

line from 0 to ∞ is just a line passing through 0 with slope ± (sinh r)
−1

; a curve
which is equidistant from the line from 1 to ∞ is constructed similarly. A curve at
constant distance r from the line from 0 to 1 is a circular arc passing from 0 to 1
through the point (1

2 , 1
2e±r). See for example [Thu].)

From the diagram, the following result is immediate:

Lemma 6.10. If p is a point in the interior of the ideal triangle with vertices at
0, 1, and ∞, and if λ1, λ2, λ3 are the sides of the triangle in any order, then:

(1) If d(p, λ1) ≥ δ3 and d(p, λ2) ≥ δ3, then d(p, λ3) < δ1.
(2) If d(p, λ1) ≥ δ3 and d(p, λ2) ≥ δ1, then d(p, λ3) < δ3.
(3) (Corollary to the previous part) If d(p, λ1) ≥ δ3, then either one of d(p, λ2),

d(p, λ3) is < δ2 or else both of d(p, λ2), d(p, λ3) are < δ3.
(4) If d(p, λi) ≥ δ2 for all i ∈ {1, 2, 3} then d(p, λj) < δ3 for at least two

j ∈ {1, 2, 3}.

�

The conclusion in the third part of the above lemma is annoyingly weak. But
note that the region in the ideal triangle where d(p, λ1) ≥ δ3, d(p, λ2) ≥ δ2, and
d(p, λ3) ≥ δ2 is very small; if δ3 is replaced with even a slightly smaller number
then a stronger conclusion would result. This turns out to be useful enough that
we do so now; the proof of the following lemma, while not following immediately
from the diagram, is elementary enough that we omit it for brevity:

Lemma 6.11. If d(p, λ1) ≥ 0.9, then one of d(p, λ2), d(p, λ3) is < δ2.

�

Now we begin enumerating the various cases to prove Proposition 6.9, according
to which edge is involved and which triple corresponds to the 2-cell involved. In
each case, let p be the point where the edge intersects the 2-cell, and note that
the two-cell is contained in an ideal triangle which is isometric to that used in
Lemma 6.10. We will refer to the sides of the triangle as λj for j ∈ {1, 2, 3} and let
dj = d(p, λj). Also we will let A1, A2, and A3 denote the horoballs such that λ1

goes from A1 to A2, λ2 goes from A2 to A3, and λ3 goes from A3 to A1. Finally
let B1 and B2 be the horoballs at the ends of the O(n)-edge which passes through
p. See figure 6.
Case 1: O(1)-edge, any triple. Part 1 of Lemma 6.10 implies that dj < δ3 for some
j. Now apply Lemma 6.6 to obtain a contradiction.
Case 2: O(2)-edge, (1, 1, 2)-triple. Suppose that λ1 and λ2 contain lifts of the O(1)-
edge while λ3 contains a lift of the O(2)-edge. Part 1 of Lemma 6.10 implies that
either d1 < δ3, d2 < δ3, or d3 < δ1. In the first two cases Lemma 6.6 applies while
in the third case Lemma 6.8 applies. Either possibility leads to a contradiction.
Case 3: O(2)-edge, (1, 2, 2)-triple. Suppose that λ1 contains a lift of the O(1)-edge
while λ2 and λ3 contain lifts of the O(2)-edge. If d1 < δ3 then Lemma 6.6 applies
and we’re done. If either d2 or d3 is less than δ2 then the same argument used in the
proof of Lemma 6.7 proves the existence of a geometric Mom-2 structure involving
only (1, 1, 2)-triples; either this new Mom-2 is embedded or else we reduce to case
2.
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p
A2

A1

A3

B1

B2

λ1

λ2

λ3

Figure 6. The horoballs and edges used in the proof of Proposi-
tion 6.9.

By part 3 of Lemma 6.10 the only remaining possibility is that d1 ≥ δ3, d2 < δ3,
and d3 < δ3. Since d2 < δ3, by Lemma 6.5, at least three of the four horoball
pairs {A2, B1}, {B1, A3}, {A3, B2}, {B2, A2} are elements of O(1). Similarly, since
d3 < δ3 at least three of the four pairs {A3, B1}, {B1, A1}, {A1, B2}, and {B2, A3}
lie in O(1). But {A1, A2} is already in O(1); hence by Corollary 3.3 at least one of
{A1, B1}, {A2, B1} must not lie in O(1), and similarly one of {A1, B2}, {A2, B2}
must not lie in O(1). Up to symmetry, we must have {A1, B1}, {A2, B2} ∈ O(1),
and {A2, B1}, {A1, B2} 6∈ O(1). Hence d(A2, B1) ≥ o(2) and d(A1, B2) ≥ o(2).
Now apply Corollary 3.6 to A1, A2, B1, and B2 to obtain

e2
2 + 1 ≤ e2 cosh d1

⇒ d1 ≥ cosh−1(e2 + e2
−1)

≥ cosh−1 2

Note that cosh−1 2 = 1.3169 . . . so Lemma 6.11 applies. Hence one of d2, d3 is
less than δ2, and a preceding argument applies. This completes the proof in this
case.

We can save a bit of time at this point by noting that the argument in case 3
still works if we replace the (1, 2, 2)-triple with a (1, 2, 3)-triple, a (1, 3, 3)-triple, or
(with minor modifications) a (1, 1, 3)-triple; henceforth we will assume that case 3
encompasses all of these possibilities.
Case 4: O(3)-edge, (1, 1, 2)-triple. Suppose that λ1 and λ2 contain lifts of the
O(2)-edge while λ3 contains a lift of the O(2)-edge. If d1 < δ3 or d2 < δ3 then
Lemma 6.6 applies, giving a contradiction. Otherwise by part 1 of Lemma 6.10 we
have d3 < δ1. Since δ1 < δ2, we can use the argument from Lemma 6.7 to find a
geometric Mom-2 structure using only (1, 1, 2) triples, reducing the problem to case
2.
Case 5: O(3)-edge, (1, 1, 3)-triple. This case is nearly identical to the previous one,
except we use Lemma 6.8 to obtain a contradiction instead of using Lemma 6.7 to
reduce to case 2.
Case 6: O(3)-edge, (1, 2, 2)-triple. Use the argument in case 3 with trivial modifi-
cations.
Case 7: O(2)-edge, (2, 2, 3)-triple. Suppose that λ1 and λ2 contain lifts of the
O(2)-edge while λ3 contains a lift of the O(3)-edge. If di < δ2 for any i ∈ {1, 2, 3}
then we can use the argument from Lemma 6.7 as before to construct a geomet-
ric Mom-2 structure with just (1, 1, 2)-triples and reduce to case 2. So suppose
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di ≥ δ2 for all i ∈ {1, 2, 3}; then by part 4 of Lemma 6.10 we have dj < δ3 for
at least two j ∈ {1, 2, 3}. Suppose that d1 < δ3 and d2 < δ3; the other possi-
bilities can be handled similarly. Then by Lemma 6.5 at least three of the pairs
{A1, B1}, {B1, A2}, {A2, B2}, and {B2, A1} lie in O(1), and at least three of the
pairs {A2, B1}, {B1, A3}, {A3, B2}, and {B2, A2} lie in O(1).

Suppose all three of the pairs {A1, Bi}, {A2, Bi}, and {A3, Bi} were in O(1)
for some i ∈ {1, 2}. Then both of the triples {A1, A2, Bi} and {A2, A3, Bi} are
(1, 1, 2)-triples. If there is an isometry g ∈ π1(N) taking one triple to another, then
that isometry must be a parabolic isometry fixing Bi and taking A1 to A2 and A2

to A3. But this would imply that the arc from A1 to A3 intersects either Bi, A2,
or the arc from Bi to A2, contradicting our assumptions to this point. If there is
no such isometry g, then we have a geometric Mom-2 structure with two distinct
(1, 1, 2)-triples and can reduce to case 2.

So suppose that at least one of the pairs {A1, Bi}, {A2, Bi}, and {A3, Bi} does
not lie in O(1), both for i = 1 and for i = 2. Up to symmetry, the only way this can
happen given our earlier assumptions is if the pairs {A1, B1}, {B1, A2}, {A2, B2},
and {B2, A3} lie in O(1) while the pairs {A1, B2} and {A3, B1} do not. If {A1, B2}
lies in O(2), then the triples {A1, A2, B2} and {B1, B2, A2} form a geometric Mom-
2 structure with one (1, 1, 2)-triple and one (1, 2, 2)-triple, allowing us to reduce
the problem to either case 2 or case 3. So suppose d(A1, B2) ≥ o(3). For similar
reasons we can suppose that d(A3, B1) ≥ o(3). Then applying Corollary 3.6 to A1,
A3, B1, and B2 we obtain

e3
2 + 1 ≤ e2e3 coshd3

≤ e3
2 coshd3

⇒ d3 ≥ cosh−1(1 + e3
−2)

Note that if e3 ≤ 1.5152 then this implies that d3 ≥ 0.9 and hence Lemma 6.11
applies. Therefore at least one of d1, d2 is less than δ2, and a preceding argument
applies. This completes the proof in this case.
Case 8: O(2)-edge, (2, 3, 3)-triple. An almost identical argument to the one in case
7 applies, except that the problem may reduce to case 5 instead of case 2.
Case 9: O(3)-edge, (2, 2, 3)-triple. Suppose that λ1 and λ2 contain lifts of the
O(2)-edge while λ3 contains a lift of the O(3)-edge. If d3 < δ1 then Lemma 6.8
provides a contradiction, while if di < δ2 for i = 1 or 2 then the argument from
Lemma 6.7 will produce a simpler geometric Mom-2 structure. Hence suppose that
d3 ≥ δ1 and di ≥ δ2 > δ1 for i = 1 and 2. Part 2 of Lemma 6.10 then implies that
dj < δ3 for at least two different j ∈ {1, 2, 3}.

Suppose d1 < δ3 and d3 < δ3. Since d1 < δ3, by Lemma 6.5 at least three of
{A1, B1}, {B1, A2}, {A2, B2}, {B2, A1} lie in O(1). Wolog assume that {A1, B1}
and {B1, A2} lie in O(1). If {B1, A3} lies in O(1) then the triples {A1, B1, A2}
and {A2, B1, A3} are both (1, 1, 2)-triples, and form a simpler geometric Mom-2
structure unless they are equivalent by the action of parabolic element g ∈ π1(N)
which fixes B1; but this would imply that the arc from B1 to A3 intersects the
arc from A1 to A2, a simpler case. If {B1, A3} lies in O(2) then {A1, B1, A2} is a
(1, 1, 2)-triple while {A2, B1, A3} is a (1, 2, 2)-triple and we have a simpler Mom-2.
So suppose {B1, A3} 6∈ O(1) ∪ O(2). Then since d3 < δ3, by Lemma 6.5 the pairs
{B2, A1} and {B2, A3} must lie in O(1) ∪ O(2). Now consider {B2, A2}; if this
pair lies in O(1) ∪ O(2) then the triples {A1, A2, B1} and {A1, A2, B2} will form
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a simpler geometric Mom-2 structure, so suppose {B2, A2} 6∈ O(1) ∪ O(2). We
have reached a point where d(B1, A3) ≥ o(3) and d(B2, A2) ≥ o(3), so applying
Corollary 3.6 to the four horoballs A2, A3, B1, B3 we get

e3
2 + 1 ≤ e2e3 coshd2

≤ e3
2 coshd2

⇒ d2 ≥ cosh−1(1 + e3
−2)

Note that if e3 ≤ 1.5152 then this implies that d2 ≥ 0.9 and hence Lemma 6.11
implies that at least one of d1, d3 is less than δ2. But if d1 < δ2 then by Corollary
3.6 we would have {B2, A2} ∈ O(1), while if d3 < δ2 then {B1, A3} ∈ O(1) ∪O(2);
both conclusions contradict our assumptions to this point.

The argument when d2 < δ3 and d3 < δ3 is identical to this one by symmetry,
and the the argument when d1 < δ3 and d2 < δ3 is similar.
Case 10: O(3)-edge, (1, 2, 3)-triple. (This is by far the trickiest case.) Suppose
that λ1 contains a lift of the O(1)-edge, λ2 contains a lift of the O(2)-edge, and λ3

contains a lift of the O(3)-edge. If d1 < δ3, then Lemma 6.6 leads to a contradiction.
If d2 < δ2, then as before we can repeat the argument of Lemma 6.7 to obtain a
simpler Mom-2 and reduce to case 2. While if d3 < δ1 then Lemma 6.8 provides a
contradiction.

So suppose that d1 ≥ δ3, d2 ≥ δ2, and d3 ≥ δ1. Note that by part 2 of Lemma
6.10 this implies that d2 < δ3 and d3 < δ3. By Lemma 6.5, at least three of the
four pairs {A2, B1}, {B1, A3}, {A3, B2}, and {B2, A1} lie in O(1), while at least
three of the four pairs {A1, B1}, {B1, A3}, {A3, B2}, {B2, A1} lie in O(1) ∪ O(2).
Unfortunately this is not quite enough information to construct a simpler Mom-2
or Mom-3, so we must dig deeper.

Let σ be the 2-cell spanning A1, A2, A3, and the arcs between them. Since
{A3, A1} and {B1, B2} are both elements of the orthopair class O(3), there exists a
group element g ∈ π1(N) which sends {A3, A1} to {B1, B2}. Furthermore since σ
is totally geodesic, g(σ)∩σ must contain a geodesic line segment with one endpoint
p in the arc from B1 to B2. Let q be the other endpoint of this line segment. What
are the possible locations of q?

If q lies in the interior of σ then either g(Aj) intersects σ for some j, in which
case we can apply Lemma 6.3, or else either g(λ1) or g(λ2) intersect σ, in which
case the problem reduces to case 1 or case 3 respectively. So suppose q lies on the
boundary of σ. If q lies in the interior of λ1, then g−1(λ1) intersects σ and we can
reduce to case 1. Similarly if q lies in the interior of λ2 then we can reduce to case
3.

If q lies in σ ∩ A2, then g must be a parabolic element of π1(N) fixing A2. But
note that the projections of λ3 and g(λ3) onto the surface of A2 clearly intersect;
if g is parabolic fixing A2, then the only way this can happen is if λ3 and g(λ3)
themselves intersect. This contradicts Lemma 6.8.

If q lies in σ ∩ A3, then g must send the triple {A1, A2, A3} to the triple
{A3, B1, B2}; in particular {A3, B1, B2} is a (1, 2, 3)-triple. Wolog, assume that
{A3, B2} lies in O(2) and {A3, B1} lies in O(1). Since d2 ≤ δ3, this implies that
{A2, B1} and {A2, B2} lie in O(1) as well. Thus {A2, B1, A3} is a (1, 1, 2)-triple
while {A2, B2, A3} is a (1, 2, 2)-triple, forming a simpler geometric Mom-2 structure
and reducing the problem to either case 1, 2, or 3.
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There are two remaining possibilities. Suppose q lies in σ∩A1; then g must send
{A1, A2, A3} to {A1, B1, B2}. Note in particular that we must have g(A2) = A1.
Wolog assume that {A1, B1} lies in O(1) while {A1, B2} lies in O(2). Applying
Lemma 3.2 to the triple {A1, A2, B1} we see that {A2, B1} cannot be in O(1).
Since d2 < δ3, we must have all of {B1, A3}, {A3, B2}, {B2, A2} in O(1) instead.
So {A1, B1, A3} is a (1, 1, 3)-triple, while {A1, B2, A3} is a (1, 2, 3)-triple. Now
consider g−1(σ). Comparing σ and g(σ), we see that g−1(σ) must intersect λ3, and
must be bounded at one corner by A2 = g−1(A1). Specifically g−1(λ1) ∈ O(1) and
g−1(λ3) ∈ O(3) must have one endpoint on A2. If any of the four arcs spanning
the horoball pairs {A1, B1}, {B1, A3}, {A3, B2}, or {B2, A1} (all of which are in
O(1) ∪ O(2)) intersect g−1(σ) then we can reduce to a previous case, so suppose
this doesn’t happen. We still must have g−1(σ) intersecting λ3. If either g−1(λ1)
or g−1(λ2) intersect either of the two-cells spanning the triples {A1, B1, A3} or
{A1, B2, A3}, then we can still reduce the problem to a previous case. The only
way g−1(σ) can intersect λ3 without such an intersection occurring (and without
g−1(σ) intersecting the interior of a horoball, which contradicts Lemma 6.3) is if
g−1(A1) = B2 and g−1(λ3) intersects the two-cell spanning {A1, B1, A3}. But this
merely lets us reduce to case 5 instead.

Thus we come to the final possibility: suppose that q lies in the interior of
λ3. Then the image of the arc from p to q under g−1 must be another geodesic
line segment going from g−1(p) on λ3 to g−1(q) in the interior of σ. Note that
p 6= g−1(q), otherwise g would be elliptic of order 2. Since g−1(q) is the point
where σ intersects the arc from g−1(A1) to g−1(A3), and since this arc is also a
lift of the O(3)-edge, the same arguments that apply to p also apply to g−1(q).
Specifically: if d(g−1(q), λ1) < δ3, d(g−1(q), λ2) < δ2, or d(g−1(q), λ3) < δ1, then
we can apply Lemma 6.6, 6.7, or 6.8 respectively to get either a contradiction or a
reduction to a simpler case. So assume that none of those three inequalities hold.
Note that this implies that d(g−1(q), λ3) < δ3 just as our previous assumptions
implied that d3 = d(p, λ3) < δ3.

Now consider the pairs {B1, B2} and {g−1(A1), g
−1(A3)}. These cannot be the

same pair; if they were, then g2 would fix the pair {B1, B2} and hence be either
elliptic or the identity, a contradiction. So the two pairs are either completely
disjoint or else intersect in a single element. Suppose they intersect in a single
element; wolog, assume in particular that B1 = g−1(A1). Note that we can’t have
g(A1) = B1; if we did then g2 would fix A1 and hence so would g, a contradiction. So
g(A1) = B2, and g(A3) = B1. To summarize we have g(B1) = A1 and g2(B1) = B2,
while at the same time we must have g−1(B1) = A3. Arrange the upper half-space
model of H3 so that B1 is centered at the point at infinity, A1 = g(B1) and A3 =
g−1(B1) are centered on the real line, and A2 is centered at some point with positive
imaginary part. By assumption, the arcs from B1 to B2 and from B1 to g−1(A3)
both intersect the interior of the two-cell spanning the triple {A1, A2, A3}; hence the
centers of B2 = g2(B1) and g−1(A3) = g−2(B1) also have positive imaginary part.
But this is impossible: by direct calculation in PSL(2, C), if g is an element such
that g(∞) and g−1(∞) are both real then either g2(∞) and g−2(∞) are also both
real or else their imaginary parts have opposite signs. Hence, the pairs {B1, B2}
and {g−1(A1), g

−1(A3)} must be completely disjoint, or in other words the arcs
g(λ3) and g−1(λ3) do not share a horoball at their endpoints.
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A1

g-1(A1)

g-1(A3)

B1

B2

A3

Figure 7. A possible collection of horoballs used in case 10; the
solid lines (and three of the four dashed lines) indicate pairs which
lie in O(1) ∪ O(2).

Now suppose that d(λ3, g(λ3)) ≥ δ2 and d(λ3, g
−1(λ3)) ≥ δ2. Examining figure 5

(and remembering our previous assumptions), this implies that both p and g−1(q)
must lie in the small region bounded by the curves d(·, λ1) = δ3, d(·, λ2) = δ2,
and d(·, λ3) = δ2. The diameter of this region can be readily computed (it’s
not a triangle but it is contained inside one), and it is far less than δ1. Hence
d(g(λ3), g

−1(λ3)) < δ1, and hence Lemma 6.8 applies, producing a contradiction.
So therefore one of d(λ3, g(λ3)) and d(λ3, g

−1(λ3)) must be less than δ2, and clearly
if one is then both are by isometry. Furthermore, the diameter of the region in fig-
ure 5 bounded by the curves d(·, λ1) = δ3, d(·, λ2) = δ2, and d(·, λ3) = δ1 can also
be computed to be less than δ3. Then by applying Lemma 6.5 repeatedly, we get
the following:

• All four of the pairs {A1, B1}, {B1, A3}, {A3, B2}, and {B2, A1} lie in
O(1) ∪ O(2).

• All four of the pairs {A1, g
−1(A1)}, {g−1(A1), A3}, {A3, g

−1(A3)}, and
{g−1(A3), A1} lie in O(1) ∪ O(2).

• At least three of the pairs {B1, g
−1(A1)}, {g−1(A1), B2}, {B2, g

−1(A3)},
and {g−1(A3), B1} lie in O(1) ∪ O(2).

So the six horoballs A1, A3, B1, B2, g−1(A1), and g−1(A3) form a picture like the
one in figure 7, where each of solid edges and three of the four dashed edges is a
lift of either the O(1)-edge or the O(2)-edge. Suppose, for sake of example, that
the dashed edge from B1 to g−1(A1) is the only edge which is not a lift of either
the O(1)-edge or the O(2)-edge. Then consider the triple {A1, B2, g

−1(A3)}. This
triple must be an (a, b, b)-triple where a and b are 1 and 2 in some order (i.e., it’s
either a (1, 1, 2)-triple or a (1, 2, 2)-triple). But this triple also has the property
that each edge of the triple is shared by another triple in the diagram which must
also be either a (1, 1, 2)-triple or a (1, 2, 2)-triple. It is straightforward to see that
some pair of these four triples, specifically the pair which shares the edge which is a
lift of the O(a)-edge, must be distinct under the action of π1(N) and hence form a
geometric Mom-2 structure. A similar argument holds for each of the other dashed
edges in the diagram.
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This at last completes the proof in this case.
Case 11: O(3)-edge, (1, 3, 3)-triple. Suppose λ3 contains a lift of the O(1)-edge
while λ1 and λ2 contain lifts of the O(3)-edge. If d3 < δ3 then Lemma 6.6 provides
a contradiction, while if di < δ1 for i = 1 or 2 then Lemma 6.8 provides a contra-
diction. So suppose d1 ≥ δ1, d2 ≥ δ1, and d3 ≥ δ3. Lemma 6.10 implies that d1

and d2 are both less than δ3.
Suppose that in fact d1 < δ2. By Lemma 6.5, all four pairs {A1, B1}, {B1, A2},

{A2, B2}, {B2, A1} and at least three of the four pairs {A2, B1}, {B1, A3}, {A3, B2},
{B2, A2} lie in O(1) ∪ O(2). Wolog, assume that {B1, A3} ∈ O(1) ∪ O(2). We
wish to construct a geometric Mom-2 or Mom-3 structure that only uses triples
considered in previous cases. However we have to be careful to ensure that we
do not construct a Mom-3 which is not torus-friendly; this can be ensured by not
selecting any geometric Mom-3 structure that contains exactly two (1, 2, 3)-triples.
To start with, note that the triple {A2, B1, A3} is of type (1, 1, 2) or (1, 2, 2). Now
consider the four triples {A1, B1, A2}, {A1, B2, A2}, {B1, A1, B2}, and {B1, A2, B2}.
Each of these triples is of type (1, 2, 3), (1, 1, 3), or (2, 2, 3). If all four of these
triples are of type (1, 2, 3), then no two triples can be equivalent under the action
of π1(N) because each two of those triples share a common “edge”. So any three
of those triples will form a geometric Mom-3 structure which is torus-friendly. If
between one and three of these triples are of type (1, 2, 3), choose one triple of type
(1, 2, 3), one triple not of type (1, 2, 3), and {A2, B1, A3} to get a simpler geometric
Mom-3 structure which is torus-friendly. And if none of the four triples is of type
(1, 2, 3), then all four must be of type (a, a, 3) for a fixed a ∈ {1, 2}. Pick two such
triples, say {A1, B1, A2} and {A1, B2, A2}; these triples can’t be equivalent under
the action of π1(N) since that group has no elliptic elements; hence they form a
simpler geometric Mom-2 structure.

So instead suppose that d1 ≥ δ2 and for similar reasons suppose that d2 ≥ δ2.
Suppose now that {A2, B1} 6∈ O(1) ∪ O(2). Since d1 and d2 are both less than δ3,
Lemma 6.5 implies that all of {A1, B1}, {A1, B2}, {A3, B1}, {A3, B2}, and {A2, B2}
are in O(1)∪O(2). Then the triples {A1, B1, A3} and {A1, B2, A3} are each of type
(1, 1, 2) or (1, 2, 2), and the triples {A1, B2, A2} and {A2, B2, A3} are each of type
(1, 1, 3), (1, 2, 3), or (2, 2, 3). If {A1, B2, A2} and {A2, B2, A3} are equivalent due
to the action of g ∈ π1(N), then g must be parabolic fixing B2, and hence λ3 must
intersect the arc from B2 to A2, a previous case. So {A1, B2, A2}, {A2, B2, A3}, and
{A1, B2, A3} are all distinct triples and form a simpler Mom-3 which furthermore is
torus-friendly, unless {A1, B2, A2} and {A2, B2, A3} are both of type (1, 2, 3). That
is only possible if {A1, B2} and {B2, A3} are both in O(2) (the other possibility, that
they are both in O(1), makes {A1, B2, A3} a (1, 1, 1)-triple, which is impossible). In
this case {A1, B2, A3} is of type (1, 2, 2) and cannot be equivalent to {A1, B1, A3}
under the action of π1(N) since a group element sending one triple to another would
have to fix the pair {A1, A3}; thus we have a simpler geometric Mom-2 structure.

So we may assume that {A2, B1} ∈ O(1) ∪ O(2), and by symmetry we may
assume that {A2, B2} ∈ O(1) ∪ O(2). If the same holds for both {A1, B1} and
{A1, B2} then we may proceed exactly as if d1 < δ2. So assume that one of those
two pairs is not in O(1)∪O(2), and similarly assume that one of the pairs {A3, B1},
{A3, B2} is not in O(1) ∪ O(2). Now applying Corollary 3.6 to the four horoballs
A1, A3, B1, and B3, we get either

e3
2 + 1 ≤ e3 cosh d3
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or

2e3 ≤ e3 coshd3

In either case, d3 ≥ cosh−1 2 > 0.9, and hence by Lemma 6.11 one of d1, d2 must
be less than δ2, contradicting our assumptions to this point and completing this
case.
Case 12: O(3)-edge, (2, 3, 3)-triple. Suppose λ1 and λ2 contain lifts of the O(3)-
edge while λ3 contains a lift of the O(2)-edge.

Note that if d1 < δ1 or d2 < δ1 then we get a contradiction from Lemma 6.8,
and if d3 < δ2 then we can produce a simpler geometric Mom-2 structure just as
in Lemma 6.7. So assume d1 ≥ δ1, d2 ≥ δ1, and d3 ≥ δ2 > δ1. By Lemma 6.10 this
implies that at least two of d1, d2, and d3 must be less than δ3, and by Lemma 6.5
that in turn implies that at least two of the following statements are true:

• At least three of {A1, B1}, {B1, A2}, {A2, B2}, {B2, A1} are in O(1)∪O(2).
• At least three of {A2, B1}, {B1, A3}, {A3, B2}, {B2, A2} are in O(1)∪O(2).
• At least three of {A3, B1}, {B1, A1}, {A1, B2}, {B2, A3} are in O(1)∪O(2).

Suppose for a moment that all four of {A1, B1}, {B1, A3}, {A3, B2}, {B2, A1}
are in O(1)∪O(2). I.e., suppose that {A1, B1, A3} and {A1, B2, A3} are both of type
(1, 1, 2) or (1, 2, 2). If these two triples are not equivalent under π1(N) then they
form a simpler geometric Mom-2 structure. If they are equivalent due to g ∈ π1(N),
then either g is elliptic and fixes {A1, A3} (a contradiction), g is parabolic fixing
one of A1 or A3 (in which case the one-cell from B1 to B2 will intersect another
one-cell, reducing the problem to a previous case), or else up to symmetry we may
assume that {A1, B1}, {A3, B2} are in O(1) and {A1, B2}, {A3, B1} are in O(2). In
the latter case, assume wolog that {B1, A2} ∈ O(1) ∪ O(2) (we know this must be
true for one of {B1, A2}, {B2, A2}). Then one of the two triples {A1, A2, B1} and
{A2, A3, B1} must be of type (2, 2, 3) or (1, 1, 3); this triple along with {A1, B1, A2}
and {B1, B2, A1} form a simpler geometric Mom-3 structure where each triple is
of a different type (and hence none are equivalent under π1(N)) and exactly one
triple is of type (1, 2, 3) (so the Mom-3 is torus-friendly).

Hence we may assume that at most three of {A1, B1}, {B1, A3}, {A3, B2},
{B2, A1} are in O(1) ∪ O(2).

If all four of {A1, B1}, {B1, A2}, {A2, B2}, {B2, A1} lie in O(1) ∪ O(2) (or by
symmetry all four of {A2, B1}, {B1, A3}, {A3, B2}, {B2, A2}) then by a similar
argument to the one used in the beginning of the previous case we can also construct
a simpler Mom-2 or a simpler geometric Mom-3 structure which is torus-friendly.
So assume this does not happen either. In summary, we can assume that for none
of the three sets of horoball pairs listed above do all four pairs in the set lie in
O(1)∪O(2). (In particular this implies that di ≥ δ2 for all i ∈ {1, 2, 3}, by Lemma
6.5.)

It is then straightforward to check that at least one of the three statements in
the above list must in fact be false: you cannot choose three pairs from each set
without choosing all four pairs from at least one set. In other words, exactly two
of the three statements in the above list are true.

Now consider the three pairs {A1, B1}, {A2, B1}, and {A3, B1}. Suppose all
three are in O(1) ∪ O(2). Then {A1, B1, A3} is of type (1, 1, 2) or (1, 2, 2), while
{A1, B1, A2} and {A2, B1, A3} are each of type (1, 1, 3), (2, 2, 3), or (1, 2, 3). Note
that if these last two triples are equivalent due to g ∈ π1(N) then g must be
parabolic fixing B1, in which case λ3 must intersect the arc from B1 to A2, a
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previous case. So assume these triples are not equivalent under π1(N). Then the
three triples {A1, B1, A2}, {A2, B1, A3}, and {A3, B1, A1} form a simpler geometric
Mom-3 structure, which is torus-friendly unless {A1, B1, A2} and {A2, B1, A3} are
both of type (1, 2, 3). Note that this is only possible if {A1, B1} and {A3, B1} are in
O(1) while {A2, B1} is in O(2). Now note that {Aj , B2} must be in O(1)∪O(2) for
at least one j ∈ {1, 2, 3}. If j = 2 then {A2, B1, B2} is either a third (1, 2, 3)-triple
(and not equivalent to either {A1, B1, A2} or {A2, B1, A3} since it shares an “edge”
with both) or else it is of type (1, 1, 3) or (2, 2, 3); either way we get a geometric
Mom-3 structure with either one or three triples of type (1, 2, 3), which therefore
is torus-friendly. Suppose j = 1 or 3; by symmetry assume j = 1. Then by our
previous assumptions {A2, B2} and {A3, B3} must not be in O(1) ∪O(2). Now we
can apply Corollary 3.6 to the horoballs A2, A3, B1, and B2 to get

e3e2 + e3 ≤ e3e2 coshd2

⇒ d2 ≥ cosh−1(1 + e2
−1)

Note that e2 ≤ e3 ≤ 1.5152 then implies d2 > 0.9, and hence by Lemma 6.11 one
of d1, d3 must be less than δ2, contradicting our assumptions up to this point.

So assume at least one of {A1, B1}, {A2, B1}, {A3, B1} is not in O(1) ∪ O(2),
and similarly for B2 instead of B1. Now go back to the three statements listed
above; we know exactly one of them is false. Suppose it is the first statement which
is false and the others true (the other possibilities can be handled similarly). The
only way to reconcile this with the sentence at the beginning of this paragraph, is
if {A1, B1} and {A2, B2} are not in O(1) ∪O(2), or the same but with the roles of
B1 and B2 reversed. But in either case, applying Corollary 3.6 to A1, A2, B1, B2

yields

e3
2 + 1 ≤ e3

2 coshd1

⇒ d1 ≥ cosh−1(1 + e3
−2)

And once more, if e3 ≤ 1.5152 then this implies d1 > 0.9, so by Lemma 6.11 one
of d2, d3 must be less than δ2, contradicting our assumptions. This completes the
proof in this case.
Case 13: O(4)-edge, (1, 1, 4)-triple. The exact same argument as in case 2 applies,
with the obvious modifications.

This, finally, completes the proof of Proposition 6.9, and in turn the proof of
Theorem 6.1. �

7. Torus-friendly Mom-n’s

Having established Theorem 6.1, we now have an embedded cellular complex ∆
corresponding to a geometric Mom-n structure in the cusped manifold N . The next
step in upgrading ∆ to an internal Mom-n structure of the type defined in [GMM2]
is to prove the following:

Theorem 7.1. Suppose N is a one-cusped hyperbolic 3-manifold with Vol(N) ≤
2.848 and suppose ∆ is the embedded cellular complex corresponding to the geometric
Mom-n structure produced by Theorems 5.9 and 6.1. Then the components of N−∆
each have torus boundary, or else there exists a simpler geometric Mom-n structure
which is also of the type described in Theorems 5.9 and 6.1.
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Proof: From Theorem 5.9 we know that n = 2 or 3 and that the geometric Mom-n
structure thus constructed is torus-friendly. Recall that this means either n = 2, or
n = 3 and the Mom-3 structure does not have exactly two triples of type (p, q, r)
where p, q, and r are distinct indices. We wish to prove that being torus-friendly
implies that the boundary consists of a collection of tori.

Let M be a thickened neighborhood of ∆; note that by construction χ(∂M) =
2χ(∆) = 0. If ∂M consists of nothing but tori then we’re done. If ∂M contains com-
ponents which are not tori, then one of those components must be a sphere. Hence
we wish to show that ∂M does not contain any spherical components. Since N is
hyperbolic this is equivalent to showing that N −∆ does not have any components
which are 3-balls.

Suppose n = 2 and that one of the components of N − ∆ is a 3-ball B. In the
universal cover H

3, B lifts to a collection of 3-balls; choose one of them and call
it B̃. The boundary of B̃ consists of two types of “faces”. First, there are totally
geodesic faces which are the lifts of 2-cells of ∆ corresponding to triples. Note
that no such 2-cell can possibly contribute more than two faces to ∂B̃. Second,
B̃ has horospherical faces which are lifts of pieces of the cusp torus. There can
be an arbitrary number of such faces, but each such horospherical face must only
be adjacent to totally geodesic faces. (In particular the number of totally geodesic

faces of B̃ must be greater than zero.) We can extrude B̃ in the direction of the
horospherical faces (or equivalently, extrude B in the direction of the cusp of N

before lifting to H3) to obtain an ideal hyperbolic polyhedron which contains B̃,

and whose ideal triangular faces each contain a unique totally geodesic face of B̃.
But a geometric Mom-2 structure only has two triples, and hence B̃ cannot have

more than four totally geodesic faces. Thus, the ideal polyhedron containing B̃ must
be an ideal tetrahedron. But the same argument can be made for any component
of N −∆ which is not the cusp neighborhood, and we’ve already used up all of the
available totally geodesic faces. Therefore B and the cusp neighborhood must be
the only components of N − ∆. This is impossible, since χ(∂M) = 0. Therefore
N − ∆ cannot contain any 3-ball components.

Now suppose n = 3 and that one of the components of N − ∆ is a 3-ball B.
As before, B lifts to a 3-ball B̃ in H

3, which is in turn contained in an ideal
hyperbolic polyhedron whose ideal triangular faces each contain a unique totally
geodesic face of B̃. This time, there are six totally geodesic faces available; since a
polyhedron with triangular faces must have an even number of faces, the number
of totally geodesic faces of B̃ must be either 4 or 6. If the number is 6, then as
before this implies that B and the cusp are the only components of N −∆ which is
impossible. Therefore B̃ has 4 totally geodesic faces, and hence is contained in an
ideal hyperbolic tetrahedron. This implies that B is a truncated ideal hyperbolic
tetrahedron, where the faces arising from the truncation are horospherical instead
of geodesic.

Now consider the 2-cells in ∆ which correspond to triples from the geometric
Mom-3 structure. Since there are only three of them, some pair of faces of B must
arise from two sides of the same 2-cell. Suppose the corresponding triple is of type
(a, b, c) where a, b, and c are distinct integers. The two faces of B must share a

common edge. Lifting up to H3, we see that B̃ has two geodesic faces which project
down to the same 2-cell in ∆, and that these two faces have a common edge. There
must be a group element g ∈ π1(N) which sends one face to the other and fixes the
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a aa
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a ba(a) (b)

Figure 8. Configuration of the three-cell B̃, both (a) invalid and
(b) valid

common edge, either fixing the horoballs at each end of the edge or swapping them.
Therefore g is the identity or is elliptic of order 2; either result is a contradiction.

Therefore the triple in question is of type (a, a, b) for some distinct a and b.
(Lemma 3.2 excludes the possibility that it is of type (a, a, a).) Again, the two
corresponding faces must share a common edge. This edge cannot be the O(b)-
edge (as defined in Section 6) by the same argument as in the previous paragraph;
hence the common edge must be a O(a)-edge. Choose an orientation for this edge;
i.e., make the corresponding 1-cell a directed arc. Lifting to H3 again, this induces
an orientation on at least three of the edges of B̃, namely all of those edges which
project down to the O(a)-edge. There are now two possibilities; see figure 8. First,

all three of those edges may be oriented toward the same horospherical face of B̃, as
in figure 7(a). Note that there is a group element g ∈ π1(N) which sends one face
of type (a, a, b) to the other, and that this group element preserves the orientation
of the O(a)-edges; therefore g must be a parabolic element fixing the horosphere
toward which those edges point. But a parabolic non-trivial element of π1(N)
which takes a horosphere to itself must act on that horosphere by a translation.
This would imply that all three edges labelled a in figure 7(a) lie in the same

hyperbolic plane, and that B̃ therefore is flat, which contradicts our assumption
that ∆ was embedded in N .

The other possibility is that some two of the edges are oriented toward different
horospherical faces. Some thought will show that such a configuration must look
like figure 7(b); we now assume that this is the situation that pertains.

In this situation, we have labelled all but one of the six geodesic edges of B̃;
now we turn our attention to the last edge. Suppose that this edge projects down
to the O(a)-edge or the O(b)-edge. Then at least two of the three triples in our
Mom-3 only incorporate the orthopair classes O(a) and O(b); throwing away the
third triple will leave us with a simpler geometric Mom-2 structure as desired.
Hence, suppose that the last edge projects down to the O(c)-edge, where c is the

remaining index used in the Mom-3. Thus the other two geodesic faces of B̃ both
project to 2-cells corresponding to triples of type (a, b, c). Note that these last two
faces cannot project down to the same 2-cell, since that would imply the existence
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Figure 9. The manifold m170 with a Mom-3 structure which is
not torus-friendly. The indices denote the orthoclasses of the
horoballs.

of a non-trivial g ∈ π1(N) which is elliptic or the identity, just as before. Therefore
the Mom-3 contains exactly two triples of type (a, b, c) where a, b, and c are distinct,
contradicting the assumption that the Mom-3 was torus-friendly. This proves the
theorem. �

It is worth pointing out that embedded geometric Mom-3’s which are not torus-
friendly, where some component of their complement is a 3-ball, do exist; we give
an example below. It is also often the case that a manifold can have both a Mom-3
which is torus-friendly and a Mom-3 which is not. There are several hyperbolic
manifolds which give rise to an embedded “Mom-like” cellular complex with three
1-cells and four 2-cells, such that two or three of the 2-cells are of type (a, b, c). If
one discards one of the four 2-cells, then the resulting geometric Mom-3 structure
may or may not be torus-friendly depending on which 2-cell is discarded. It is easy
to see, however, that if triples of type (a, b, c), (a, b, c), and (a, a, b) have already
been found, then any possible fourth triple can be combined with some two of the
first three triples to produce a Mom-3 which is torus-friendly.

As an example of a manifold containing a geometric Mom-3 which is not torus-
friendly, consider the manifold known as m170 in the SnapPea census; a cusp dia-
gram for this manifold is shown in figure 9. The highlighted triangles in the diagram
are all corners of the same ideal hyperbolic simplex. This simplex is bounded by
only three faces and three edges in the triangulation of m170; those faces and edges
together make up a cellular complex corresponding to a geometric Mom-3 struc-
ture, with one triple of type (2, 2, 3) and two distinct triples of type (1, 2, 3). This
is therefore a geometric Mom-3 which is not torus-friendly. At the same time the
interior of the highlighted simplex is a component of the complement of this cellular
complex, i.e. there is a component of N − ∆ which is a 3-ball. Hence this geo-
metric Mom-3 cannot be turned into a topological Mom-3 of the type described in
[GMM2]. It is worthwhile to note, however, that this manifold does possess other
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geometric Mom-3 structures which are torus-friendly. Specifically there exists a
fourth triple, of type (1, 1, 2), which can be used to construct such a Mom-3.

8. Fullness

Based on the result of Theorem 7.1, throughout this section we assume that N
possesses a geometric Mom-n structure where n = 2 or 3, that the corresponding
cellular complex ∆ is embedded, and that the components of N −∆ which are not
cusp neighborhoods have torus boundary. At this point we switch from discussing
cellular complexes to discussing handle structures as follows: thicken T to T × I
where T × 0 faces the cusp, thicken each 1-cell of ∆ to a 1-handle from T × 1 to
itself, and thicken each 2-cell of ∆ to a 2-handle which runs over T × 1 and three
1-handles counting multiplicity. The reason for this change in focus is solely to
take advantage of the language and conclusions of [GMM2]. Specifically, T × I
and the newly constructed 1-handles and 2-handles form a handle decomposition
of a submanifold M ⊂ N . We will abuse notation and allow ∆ to also refer to the
handle decomposition of M ; it should always be clear in context whether we are
referring to a cellular complex or a handle decomposition. By Theorem 7.1 we may
assume that the boundary of M is a collection of tori. Also, since M is a subset of
a hyperbolic manifold and contains both a cusp torus and a geodesic arc from the
cusp torus to itself, i∗π1(M) cannot be abelian, where i : M → N is the inclusion
map. In other words, i : M → N is a non-elementary embedding. Therefore
(M, T, ∆) is a topological internal Mom-n structure according to [GMM2]. As in
[GMM2], we will adopt the terminology of Matveev and refer to the intersection
of the 1-handles (resp. 2-handles) with T × 1 as islands (resp. bridges), and the
complement in T × 1 of the islands and bridges will be called lakes. The valence of
an island will be defined to be equal to the valence of the corresponding 1-handle,
or equivalently the number of ends of bridges lying on the island. We assume that
these valences are at least two; of any 1-handle has valence one simply remove both
it and the 2-handle adjacent to it to obtain a simpler Mom-n structure.

Clearly each 1-handle in ∆ contributes two islands while each 2-handle con-
tributes three bridges. Suppose σ is a 2-handle corresponding to a triple of type
(a, a, b) where the type is defined as in Section 6. In other words some lift σ̃ of σ
in the universal cover of N is adjacent to three horoballs {A, B, C} such that the
orthopairs {A, B} and {B, C} are in O(a) while {C, A} ∈ O(b). Let a0 and a1

denote the islands which are the endpoints of the 1-handle around the O(a)-edge,
and define b0 and b1 similarly. Then the intersection of σ̃ with ∂B projects down
to a bridge whose endpoints both lie on islands in the set {a0, a1}.

Definition 8.1. If this bridge described above joins a0 to a1 then we will say σ is
a loxodromic 2-handle. If instead this bridge joins ai to itself for i = 1 or 2 then
we will say σ is a parabolic 2-handle.

In either case there exists g ∈ π1(N) which sends {A, B} to {B, C} since those
are in the same orthopair class; furthermore g is uniquely defined. If σ is a parabolic
2-handle then we must in fact have g(A) = C and g(B) = B (i.e. g is a parabolic
group element), and the bridge from ai to itself must follow a straight closed path in
the cusp torus which corresponds to g. Wolog suppose i = 0, i.e. a0 is joined to itself
by a bridge. Then it is not hard to see that the other two bridges corresponding to
σ must join a1 to b0 and b1 respectively. These bridges have equal length by Lemma
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a0

b0

b1

a1 b0

a0

a1

b1

Figure 10. The islands and bridges belonging to a parabolic (left)
and loxodromic (right) 2-handle. Note that the islands labelled a0

and a1 are endpoints of a single 1-handle (and similarly for b0 and
b1).

3.4, and the angle between the bridges at a1 must equal the angle between the two
bridge ends at a0, since both angles are equal to the angle at which σ meets itself
along the O(a)-edge. Clearly this angle is a straight angle at a0, and therefore at
a1 as well. Thus the configuration of islands and bridges resulting from σ is as in
the left side of figure 10.

If σ is instead a loxodromic 2-handle then we must have g(A) = B and g(B) = C
(which implies that g is a loxodromic group element although we will not prove that
here). Again it is not hard to see that wolog the other two bridges corresponding
to σ must join a0 to b0 and a1 to b1 respectively. Again, these two bridges must
have the same length by Lemma 3.4 and the angle formed by the bridge ends at a0

equals the angle formed by the bridge ends at a1. Given that N is orientable the
configuration of islands and bridges arising from σ must look like the right side of
figure 10.

The handle structure ∆ is called full if all of the lakes are simply connected. If
∆ is a full handle structure, then Theorem 4.1 of [GMM2] applies to N . Our goal
in this section is to either prove that ∆ is full or else construct a new topological
internal Mom-n structure in N which is full. Lemma 4.5 of [GMM2] does this in the
case that n = 2. Specifically it shows that a topological internal Mom-2 structure
that is not full can be replaced with one which is. Hence we can combine Theorem
6.1, Theorem 7.1, Theorem 4.1 of [GMM2], and Lemma 4.5 of [GMM2] to conclude
the following:

Proposition 8.2. If N has a geometric Mom-2 structure, wolog that structure
can be thickened into a topological internal Mom-2 structure (M, T, ∆) that is both
full and not false. Consequently, M is hyperbolic and N can be recovered by Dehn
surgery on M . �

The assertion in the second sentence is one of the primary results of [GMM2].
Unfortunately, the topological argument used in that proof does not extend

easily to the n = 3 case. Fortunately in this context we may take advantage of
the fact that our Mom-3 is more than just a topological object; by construction
the 1-handles and 2-handles of ∆ have geodesic cores, an assumption that is not
made in [GMM2]. Call a Mom-n structure with this additional property a geodesic
internal Mom-n structure. Our goal now is to prove the following:
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Theorem 8.3. If (M, T, ∆) is an embedded geodesic internal Mom-3 structure
in a hyperbolic manifold N which is not false, with 1-handles corresponding to
the orthopair classes O(1), O(2), and O(3), then N has a full topological internal
Mom-k structure where k ≤ 3.

Proof: Suppose ∆ is not full; i.e. suppose that ∆ has one or more lakes which
are not simply connected. The possible shapes for such a lake are the following: a
torus with one or more holes, a disk with one or more holes, or an essential annulus
with zero or more holes. In each case we wish to either find a contradiction or else
construct a topological internal Mom-2 structure.

Suppose T ×1 contains a lake which is a torus with holes. Then there is a simple
closed loop γ which bounds a disk in T × 1 containing all of the islands and lakes.
Push that disk into T × I to obtain a compressing disk for M which separates M
into two pieces M1 and M2, such that M1 is homeomorphic to T × I minus a 0-
handle and M2 consists of that 0-handle together with the 1-handles and 2-handles
of ∆. Since (M, T, ∆) is not false all of the boundary components of M are tori;
since M is the connected sum of M1 and M2, and since M1 has torus boundary,
one of the boundary components of M2 must be a 2-sphere. Since N is hyperbolic,
the only possibility is that M2 is contained inside a 3-ball. Therefore M is the
connected sum of T × I and a sub-manifold of N contained inside a 3-ball; this is
impossible if (M, T, ∆) is geodesic.

Now suppose T × I contains a lake which is a disk with holes. Then let γ be
a simple closed curve parallel to the boundary of that disk, such that all of the
islands and lakes inside the disk are also inside γ. Let T0 denote the component of
∂M which contains γ. As before, γ bounds a disk in T × I which is a compressing
disk for M although it may not separate M . If it does separate M , then arguing
as in the previous case we may show that the component of the separated manifold
which does not contain T × 0 is contained in a 3-ball in N , which is a contradiction
if (M, T, ∆) is geodesic. So suppose that the compressing disk does not separate M ;
let M1 be the manifold obtained after the compression. Note that the connectedness
of M1 implies that there must be a 1-handle in ∆ with one endpoint inside γ and
one endpoint outside; this implies that T0 − γ is connected, i.e. γ is essential in T0.
Hence the compression turns T0 into a connected 2-sphere boundary component
of M1; call this sphere S1. M1 also has a handle structure ∆1 consisting of the
0-handle carved out of T × I by the compressing disk, T × I minus that 0-handle
(which is homeomorphic to T × I), and the 1-handles and 2-handles of ∆. Now
S1 must bound a 3-ball in N , and that 3-ball must lie on the outside of M1 since
M1 contains T × 0. Add this 3-ball to M1 as a 3-handle to obtain a new manifold
M2 ⊂ N with torus boundary and new handle structure ∆2. Choose a 1-handle
which connects the 0-handle of ∆2 to T ×I; cancel that 1-handle with the 0-handle,
and cancel the 3-handle with a 2-handle to obtain a handle structure ∆3 with only
1-handles and 2-handles.

We need to know that the embedding i2 : M2 → N is non-elementary, but note
that M2 actually contains M : adding the 3-handle to M1 restores the portion of
M that was removed by the compression. So i2 : M2 → N is non-elementary since
i : M → N is.

Now using the methods of [GMM2], (M2, T, ∆3) can be simplified to obtain a
new topological internal Mom-k structure (M4, T, ∆4) on N . Since the construction
of ∆3 deleted 1-handles and 2-handles without adding new ones, the complexity
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of (M4, T, ∆4) as defined in [GMM2] must be strictly less than the complexity of
(M, T, ∆); hence k ≤ 2. Then by Lemma 4.5 of [GMM2] we may assume that N
contains a full topological internal Mom-k structure with k ≤ 2.

If T × I contains a lake which is an essential annulus with one or more holes,
let γ be a simple closed curve in the lake parallel to the boundary of one of those
holes. Then proceed just as in the previous case.

The remaining possibility, and the one which will require the most analysis, is
that T × 1 contains lakes which are essential annuli without holes and lakes which
are disks. Given six islands and nine lakes, for Euler characteristic reasons there
must be three disk lakes and an unknown number of annulus lakes. Let A1, A2,
. . . , Ar be the annulus lakes, and let B1, B2, . . . , Br be the connected components
of T × 1− (∪r

i=1Ai). Each Bi is also an annulus, composed of islands, bridges, and
disk lakes; furthermore each Bi must contain at least one island.

Lemma 8.4. If r > 1 then N must contain a full topological internal Mom-2
structure.

Proof: Suppose r = 2. Choose simple paths µi, i ∈ {1, 2}, such that µi crosses
Bi transversely for each i, µi does not cross any island for either i, and such that
the total number of bridges crossed by µ1 and µ2 is minimal. Since there are only
three disk lakes total in B1 and B2, the number of bridges crossed by µ1 and µ2

combined is at most five.
Slice M open along A1 × I and A2 × I to obtain a new manifold M1 ⊂ N ; note

that M1 will still have torus boundary and the inclusion i1 : M1 → N will still be
non-elementary. M1 consists of two thickened annuli, namely Bi × I for i ∈ {1, 2},
and the 1-handles and 2-handles of ∆. Each µi forms part of the boundary of a
disk in Bi×I; thicken each disk to obtain a decomposition of Bi×I into a 1-handle
(the thickened disk) and a 0-handle (the complement of the thickened disk). Thus
we obtain a standard handle decomposition ∆1 of M1 consisting of two 0-handles,
two new 1-handles (which we also refer to as µ1 and µ2), and the original 1-handles
and 2-handles of ∆. By construction the total valence of the new 1-handles µ1 and
µ2 is at most five.

Now let λ1, λ2, and λ3 denote the original 1-handles of ∆, ordered in such a
way that the valence of λ1 is maximal. Note that wolog we may assume that at
least one of the λi’s connects the two Bi’s; otherwise we can simply throw away
all of the 1-handles and 2-handles of ∆ which are connected to B1 to obtain a
simpler geometric Mom-n and apply Proposition 8.2. Suppose that λ1 has both
endpoints on B1 (or equivalently on B2). Then in ∆1, λ1 has both endpoints on
the same 0-handle. Drill out the core of λ1 and this 0-handle to obtain a new torus
boundary component T2, and cancel the other 0-handle of ∆1 with one of the λi’s
which connects B1 to B2. The result is a new manifolds M2 ⊂ N and an internal
topological Mom-k structure (M2, T2, ∆2) where ∆2 consists of the remaining λi,
µ1 and µ2, and T2 × I. Since the sum of the valences of the λi’s equals 9, either
the valence of λ1 was at least 4 and the valence of the cancelled λi was at least
2, or else the valence of all the λi’s equals 3. Either way the total valence of the
two λi’s removed to construct ∆2 is at least 6, more than the total valence of the
new 1-handles µ1 and µ2. Therefore the complexity of (M2, T2, ∆2), as defined by
[GMM2], is less than the complexity of (M, T, ∆). Consequently k ≤ 2. Then apply
Lemma 4.5 of [GMM2] to complete the proof. If λ1 connects B1 to B2 but λ2 had
both endpoints on B1, then drill out the core of λ2 and one 0-handle and cancel λ1
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with the other 0-handle then proceed as above. If every λi connects B1 to B2 then
drill out the cores of λ1, λ2, and both 0-handles at the same time to construct T2,
then proceed as above. This completes the proof in this case.

If r = 3 the proof is similar. In this case we can construct µ1, µ2, and µ3 as
paths which cross at most six bridges in total, then split along each Ai × I and
turn the µi’s into new 1-handles with total valence at most 6. The Bi’s must all be
connected by 1-handles; if B1 were not connected to the others then we could throw
away all of the 1-handles and 2-handles of ∆ connected to B1 to obtain a simpler
geometric Mom-n and apply Proposition 8.2. Hence at most one of the λi’s has
both endpoints on the same Bi. Drill out the cores of enough λi’s and 0-handles to
construct a new torus boundary component T2 and cancel any remaining 1-handles
with the remaining 0-handles to obtain an internal topological Mom-k (M2, T2, ∆2).
Since the λi’s have total valence 9 and the µi’s have total valence at most 6, we have
reduced complexity and hence k ≤ 2. Then again apply Lemma 4.5 of [GMM2].

If r ≥ 4 then at least two Bi’s contain only one island each. Since the bridges
follow straight paths and since the Bi’s are annuli, if Bi contains only one island
then it also contains only one bridge. Such an island is the endpoint of a 1-handle
λ1 which is connected to only a single 2-handle in ∆; throw away the 1-handle and
the 2-handle to obtain a simpler geometric Mom-n, then apply Proposition 8.2.
This completes the proof of the lemma. �

So suppose r = 1. Let A = A1 and B = B1 for simplicity. We wish to use an
argument similar to the one in the above lemma to obtain a topological Mom-2
structure. Specifically we wish to find a path µ which crosses B transversely and
which crosses no islands and as few bridges as possible. Suppose µ can be chosen
to cross fewer than v(λ1) bridges, where v(λ1) is the valence of one of the 1-handles
of ∆. Then as in the lemma we can split T × I along A× I, then decompose B × I
into a 0-handle and a 1-handle where the 1-handle is obtained by thickening a disk
with µ in its boundary. Then by drilling out the cores of λ1 and the 0-handle we
will obtain a topological internal Mom-2 structure which is full by Lemma 4.5 of
[GMM2].

Since B contains only three disk lakes we can always choose µ to cross at most
four bridges. Thus we’re done if there exists a 1-handle with valence five or more.
However this is not always the case. Let λ1, λ2, and λ3 be the 1-handles of ∆. We
now consider the possible values for the valences of these three 1-handles. As pre-
viously stated the valence must add up to nine, so there are only three possibilities
up to symmetry.

First suppose v(λ1) = 5 and v(λ2) = v(λ3) = 2. Then we’re done by the above
argument.

Next, suppose v(λ1) = 4, v(λ2) = 3, and v(λ3) = 2. If we can find a path µ
connecting the boundary components of B which crosses no islands and no more
than three bridges then the usual splitting-and-drilling procedure as will result in a
strictly simpler internal Mom-k structure. However it is not immediately apparent
that such a path must exist; further analysis is required.

Let ∂+B and ∂−B denote the two boundary components of B. Consider the
case where ∂+B contains exactly one island, and hence there is a bridge connecting
that island to itself along a straight path in T × 1. That bridge must be one corner
of a parabolic 2-handle, as in the left side of figure 10. The existence of a parabolic
2-handle turns out to have strong geometric consequences as follows:
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Lemma 8.5. Suppose ∂+B contains exactly one island, and that consequently
(M, T, ∆) contains a parabolic 2-handle. If (M, T, ∆) contains a second parabolic
2-handle, then N must have a full geodesic internal Mom-2 structure.

Proof: As before, if λ is the 1-handle corresponding to O(a) then we will denote
the islands at the end of λ by a0 and a1 in some order. Also for brevity we will
say that a 2-handle is “of type (a, b, c)” if it corresponds to a triple of type (a, b, c).
A parabolic 2-handle by definition of type (a, a, b) for some a and b; assume the
island in ∂+B is the island a0. If the second parabolic 2-handle is of type (a, a, b)
or (b, b, a), then clearly we have a geometric Mom-2 structure which is necessarily
full, torus-friendly, embedded, and so forth.

Suppose the second parabolic 2-handle is of type (a, a, c), where O(c) is the
remaining orthopair class in our Mom-3 structure. The only way this is possible
is if the island a1 is also connected to itself by a bridge. But then there would be
two additional bridges which meet at the island a0 at a straight angle, which is
impossible if that is the only island in ∂+B.

Suppose the second parabolic 2-handle is of type (b, b, c). Then wolog the island
b0 is also connected to itself by a bridge; since all of the bridges are contained in
B, an annulus, the path this bridge follows must be in the same homotopy class
as the bridge in ∂+B. Since the bridges are geodesic, this means they must have
the same length. Recall that if ea, eb, and ec are the elements of the Euclidean
spectrum corresponding to O(a), O(b), and O(c) then Lemma 3.4 implies that:

ec

eb
2

=
eb

ea
2
≥ 1

Hence ec ≥ eb ≥ ea, and wolog c ≥ b ≥ a. By the assumptions of Theorem 8.3
this implies that a = 1, b = 2, and c = 3. Now consider the island a1. While there
is not necessarily a bridge connecting this island to itself, there is still a triple of
horoballs corresponding to this island and the translation g ∈ π1(T ) which acts in
the direction of the annulus B. That triple must be of type (a, a, k) for some k.
Therefore Lemma 3.4 implies that

ek

ea
2

=
eb

ea
2

So ek = eb. If k ≤ b = 2 then this implies that N has a geometric Mom-2 structure.
If k ≥ 3 then ek ≥ e3 ≥ e2, i.e. e3 = e2. But e3/e2

2 = ec/eb
2 ≥ 1, so e3 = e2

implies that e3 = e2 = 1. This means that the horoballs centered at the islands b0,
b1, c0, and c1 are all full-sized, i.e. in the upper half-space model they appear as
Euclidean spheres of diameter 1 and are tangent to the horoball at infinity. Since
there is a parabolic 2-handle of type (b, b, c), by Lemma 3.4 the distance from c0

and c1 to b1 is at most 1/ec = 1, and hence the horoballs centered at c0 and c1 abut
the horoball at b1. Similarly the length of the bridge from b0 to itself is ec/eb

2 = 1
so the horoball at b0 abuts itself; by symmetry, so does the horoball centered at b1.
Note that this implies that shortest essential curve on the cusp torus has length
at most one, so any full-sized horoball must abut itself. Finally the horoball at b1

must abut the full-sized horoball centered at a1, thanks to the parabolic triple of
type (a, a, b). This is a contradiction, as there is no way to arrange all of these
full-sized horoballs around the island b1 while keeping their interiors disjoint.

If the second parabolic 2-handle is of type (c, c, a) then permute the variables,
replacing c with a, a with b, and b with c. Then proceed as in the previous case.



MINIMUM VOLUME CUSPED HYPERBOLIC THREE-MANIFOLDS 51

µ

ι0 ι1 ι2 ι3 ι4
β1 β2 β3 β4

Figure 11. Finding a path µ from ∂+B to ∂−B which crosses at
most three bridges.

The remaining possibility is that the second parabolic 2-handle is of type (c, c, b).
Wolog the island c0 is connected to itself by a bridge following a path in the same
homotopy class (and hence of the same length) as the bridge in ∂+B. Define ea,
eb, and ec as before. Then

eb

e2
c

=
eb

e2
a

≥ 1

Therefore eb ≥ ec = ea; hence e2 = e1 and wolog a = 1, c = 2, and b = 3. Note
that the length of the bridge connecting a0 to itself must be e3 by Lemma 3.4. Now
consider the island a1; it is connected by bridges to the islands b0 and b1, and these
bridges both have length 1/e3 and meet at a1 in a straight angle. Similarly, the
island c1 is connected to b0 and b1 by bridges of length 1/e3 which meet at c1 in a
straight angle. The only way this can happen inside the annulus B is if the island
c1 lies exactly halfway along the shortest geodesic path from a1 to itself, and vice
versa. In other words, there are two geodesic paths of length e3/2 connecting a1

to c1. These paths correspond to triples of horoballs of type (1, 2, k) and (1, 2, l)
for some k and l such that ek = el = e3/2 < e3; clearly k, l ∈ {1, 2}. These two
triples cannot be equivalent under the action of π1(N); since they involve the same
two islands, if g ∈ π1(N) mapped one triple to the other than g would also have
to fix the cusp torus T , but the two bridges in question are clearly not equivalent
under the action of π1(T ). Therefore the triples (1, 2, k) and (1, 2, l) constitute a
geometric Mom-2 structure. This completes the proof of the lemma. �

So therefore we may assume that there is at most one island connected to itself
by a bridge; in particular ∂−B contains more than one island.

Next consider a minimum-length sequence γ = {ι0, β1, ι1, . . . , βn, ιn} of islands
and bridges such that ι0 is the sole island in ∂+B and ιn is an island in ∂−B. Note
there are at most four bridges in the sequence (otherwise there would be more than
six islands in total). If γ contains only one or two bridges, it is straightforward to
show that there must be a path µ from ∂+B to ∂−B lying in a small neighborhood
of γ which crosses at most three bridges. (Remember that at most two of the
islands in the sequence γ can have valence 4.) Suppose γ contains four bridges;
then together γ, ∂+B, and ∂−B contain all six islands and at least seven bridges.
If the remaining bridges are not placed in such a way that at least two bridge
ends meet the islands in γ on each side of the sequence (see figure 11), then there
will be a path µ crossing at most 3 bridges. So suppose there are at least two
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additional bridge ends on each side of the sequence; this implies that each of the
two remaining bridges join an island in γ to another island in γ (and not, say to
the other island in ∂−B). Now note that up to reordering of the indices there
are only two combinations of triples which result in a Mom-3 structure which is
torus-friendly and with these valences, and without containing a Mom-2 structure
as a subset: triples of type (a, a, b), (a, a, c), and (b, b, c) for some ordering {a, b, c}
of the indices {1, 2, 3}, or triples of type (a, a, c), (a, b, b), and (a, b, c). There is no
way to place the two remaining bridges that (a) preserves the minimality of γ (b)
doesn’t imply the existence of a second parabolic 2-handle, (c) ensures two islands
of each valence {2, 3, 4}, and (d) ensures that the number of bridges between each
island matches the numbers produced by one of the two combinations of triples
described above. If γ contains 3 bridges then γ, ∂+B, and ∂−B contain at least five
islands and at least six bridges. Again, if there are not two additional bridge ends
on each side of γ then we can find an appropriate path µ; so suppose there are at
least two additional bridge ends on each side. This implies that the missing island
is of valence 2, since otherwise it would account for too many bridge ends. Again,
there is no way to place an island of valence 2 and the three remaining bridges that
satisfies the conditions (a), (b), (c), and (d) above.

Therefore if ∂+B contains exactly one island then we can find a path µ from
∂+B to ∂−B crossing at most 3 bridges.

Suppose then that ∂+B and ∂−B each contain at least two islands. Define γ
as before; there are at most 3 bridges in the sequence. If there are only 1 or 2
bridges, then we can find µ crossing at most three bridges as before, so suppose γ
contains exactly 3 bridges. Then γ, ∂+B, and ∂−B contain all six islands and at
least seven bridges. Furthermore the two missing bridges must each join an island
in γ to another island in γ or else there will be less than two additional bridge ends
on one side of the sequence and hence a path µ crossing at most 3 bridges. But
there is no way to place the two missing bridges that (a) preserves the minimality
of γ, (b) ensures each missing bridge joins γ to itself, (c) ensures two islands of each
valence {2, 3, 4}, and (d) ensures that the number of bridges between each island
matches the numbers produced by one of the two combinations of triples described
earlier.

This completes the proof in the case where v(λ1) = 4, v(λ2) = 3, and v(λ3) = 2.
The remaining case is where v(λ1) = v(λ2) = v(λ3) = 3. Define ∂+B and

∂−B as before. If ∂+B and ∂−B each contain exactly one island, then Lemma
8.5 above shows N has a full internal Mom-2 structure. Suppose ∂+B and ∂−B
each contain at least two islands. Consider the minimum-length sequence γ =
{ι0, β1, ι1, . . . , βn, ιn} as before; γ has no more than three bridges. If γ has two or
fewer bridges, then since each island has valence 3 there must be a path µ from
∂+B to ∂−B which crosses at most two bridges; split, thicken, and drill just as
before to construct a topological internal Mom-2 structure. If γ has exactly three
bridges, then γ, ∂+B, and ∂−B contain all six islands at at least seven bridges, but
there is no way to place the missing two bridges that (a) preserves the minimality
of γ and (b) ensures all six islands have valence 3, except for configurations like the
one shown in figure 12, in which there is clearly a path µ which crosses only two
bridges.

So wolog assume that ∂+B contains exactly 1 island and ∂−B contains at least
2. If ∂+B contains exactly one island then the Mom-3 structure must contain a
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µ

ι0

ι1

ι2

ι3

β1

β2 β3

Figure 12. If each island has valence 3 and γ has exactly three
bridges then we can always find a path µ crossing two bridges.

a0

b1

a1

b0c1

c0

Figure 13. The islands and bridges corresponding to a parabolic
2-handle of type (a, a, b) and a loxodromic 2-handle of type (b, b, c).
Note there is no way to include a loxodromic 2-handle of type
(c, c, a) as well.

parabolic 2-handle of type (a, a, b) for some a and b ∈ {1, 2, 3}, a 6= b. We may
assume the island in ∂+B is the one denoted a0, and hence the islands b0 and b1 are
each joined to a1 by bridges which meet at a1 in a straight angle. Consider the other
two 2-handles in the Mom-3 structure; we may assume they are either of type (b, b, c)
and (c, c, a), or of type (c, c, b) and (a, b, c), where c is the remaining element of
{1, 2, 3}, as no other combination produces 1-handles of the given valences without
also including a geometric Mom-2 structure. Suppose the other 2-handles are of
type (b, b, c) and (c, c, a). If either of these 2-handles are parabolic then we can
apply Lemma 8.5; so suppose neither is parabolic. A loxodromic 2-handle of type
(b, b, c) implies that there is a bridge joining b0 to b1; this bridge together with
the two-step path from b0 to a1 to b1 must form a homotopically non-trivial loop
in B. Also, wolog the island ci is joined to bi by a bridge for i = 0, 1. Moreover
since (M, T, ∆) is a geodesic structure, the angles subtended by the three bridges
at b0 must equal the angles subtended by the three bridges at b1, albeit in opposite
order since N is orientable. Thus the bridges and islands must be arranged as in
figure 13; note in particular that c0 and c1 must be on opposite sides of the path
b0 → a1 → b1 → b0. Now the third 2-handle, which is of type cca and which we are
assuming is non-parabolic, must imply the existence of a bridge in B which joins
c0 to c1 without crossing any other bridge, which is clearly impossible.
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a0

c0

b0

a1

b1

c1

Figure 14. The islands and bridges corresponding to a parabolic
2-handle of type (a, a, b) and a loxodromic 2-handle of type (c, c, b).
Note there is no way to insert another bridge from a1 to any of the
bi’s or the ci’s.

Suppose then that the other 2-handles in the Mom-3 structure are of type (c, c, b)
and (a, b, c). Again, we may assume the 2-handle of type (c, c, b) is a loxodromic
2-handle, not a parabolic one. Wolog as in Figure 10 there exist bridges joining
b0 to c0, c0 to c1, and c1 to b1. These bridges together with the bridges joining
b0 and b1 to a1 must again follow a homotopically non-trivial loop in B. In order
to form such a loop in the annulus B, the angle at b0 between the bridge to a1

and the bridge to c0 must equal the angle at b1 between the bridge to a1 and the
bridge to c1, and those angles must be in the same direction. But since (M, T, ∆)
is a geodesic structure and since M is orientable those angles must in fact be equal
in the opposite direction as well. Hence those two angles are both straight angles;
see figure 14. The last 2-handle, of type (a, b, c), implies that there are three more
bridges: one joining ai to bj for some i and j, another joining bk to cl for some k
and l where k 6= j, and a third joining cs to at where s 6= l and t 6= i. In particular
there must be a another bridge joining a1 to one of b0, b1, c0, or c1, but there is
no way to lay such a bridge without intersecting a pre-existing bridge. This is a
contradiction.

This completes the proof of the theorem. �

9. Proof of Theorem 1.1 and applications

We begin by tying together the last three sections along with [GMM2] and com-
pleting the proof of Theorem 1.1.

Suppose N is a one-cusped hyperbolic 3-manifold with Vol(N) ≤ 2.848. Then
by Theorem 5.9 N contains a geometric Mom-2 or Mom-3 structure (which is not
false), and by Theorem 6.1 we may assume that the corresponding cellular complex
∆ is embedded in N . By Theorem 7.1, we may further assume that the components
of N − ∆ which are not cusp neighborhoods have torus boundary. Then by either
Proposition 8.2 or Theorem 8.3 as appropriate, we may assume that the submanifold
M and handle decomposition ∆ obtained by thickening the geometric Mom-2 or
Mom-3 structure satisfy the definition of a full topological internal Mom-k structure
as given in [GMM2].

Then by Theorem 4.1 of [GMM2] we can conclude that there exists a full topo-
logical internal Mom-k structure (M, T, ∆) in N where k ≤ 3 and M is hyperbolic.
(Note this Mom-k structure may bear little to no resemblance to the structure we
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started with!) This implies that N can be recovered from M by a hyperbolic Dehn
filling on all but one of the cusps of M .

Finally Theorem 5.1 of [GMM2] enumerates the possible choices for M . There
are only 21 hyperbolic manifolds M which can form part of a full topological internal
Mom-k structure (M, T, ∆) for k ≤ 3, and these are precisely the manifolds listed
in the table in figure 1. This completes the proof of Theorem 1.1. �

Theorem 1.1 does not in itself constitute an enumeration of all one-cusped man-
ifolds with volume less than 2.848. However it is possible to analyze the Dehn
surgery spaces of each of the 21 manifolds listed in figure 1. We use the following
theorem from [FKP]:

Theorem 9.1. (Futer, Kalfagianni, and Purcell): Let M be a complete, finite-
volume hyperbolic manifold with cusps. Suppose C1, . . . , Ck are disjoint horoball
neighborhoods of some subset of the cusps. Let s1, . . . , sk be slopes on ∂C1, . . . ,
∂Ck, each with length greater than 2π. Denote the minimal slope length by lmin. If
M(s1, . . . , sk) satisfies the geometrization conjecture, then it is a hyperbolic mani-
fold, and

Vol(M(s1, . . . , sk)) ≥
(

1 −
(

2π

lmin

)2
)3/2

Vol(M).

Therefore if M is one of the two-cusped manifolds listed in figure 1, and if we wish
to enumerate all one-cusped manifolds with volume less than or equal to 2.848 that
can be obtained by filling, then it is only necessary to examine surgery coefficients
with slope less than or equal to

2π





√

1 −
(

2.848

Vol(M)

)2/3




−1

As an example, suppose M is the Whitehead link complement, known as m129
in the SnapPea census. This manifold admits a symmetry which exchanges the
cusps, therefore it does not matter which cusp we choose to fill in. (This is true for
all of the manifolds listed in figure 1 except s785.) Using SnapPea, we see that the
volume of m129 is 3.6638 . . ., which implies that we need only consider Dehn fillings
along slopes of length less than 15.99. Given that a maximal cusp torus around one
cusp has a longitude of length 2

√
2 and a meridian of length

√
2 at right angles to

the longitude, we need only consider Dehn fillings with coefficients (a, b) where a
and b are relatively prime integers satisfying 2a2 + 8b2 ≤ 256, clearly a finite and
manageable number of cases. For each such filling, we can use SnapPea, [Mos],
and other such tools to confirm rigorously whether or not the resulting one-cusped
manifold is hyperbolic and has volume less than 2.848.

For s776, the only three-cusped manifold in figure 1, we need to fill in two cusps
to obtain a one-cusped manifold. However Theorem 9.1 only provides an upper
bound on one of the corresponding slopes. Nevertheless, there are finite number
of possibilities for that one slope and therefore filling in that one slope results in a
finite number of two-cusped manifolds for which we can repeat the above analysis.
Note that s776 admits symmetries which permute all of its cusps, so again it does
not matter which cusps we fill. It should also be pointed out that Martelli and
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Petronio have already determined the complete list of fillings on s776 that result in
non-hyperbolic manifolds ([MP]).

The results of the above analysis will be presented in detail in an upcoming
paper ([MM]); for now we present the results of that analysis without proof:

Theorem 9.2. The only one-cusped orientable hyperbolic 3-manifolds with volume
less than or equal to 2.848 are the manifolds known in the SnapPea census as m003,
m004, m006, m007, m009, m010, m011, m015, m016, and m017.

Theorem 1.1 can also be used to analyze closed hyperbolic 3-manifolds. Lemma
3.1 of [ACS] states the following:

Lemma 9.3. Suppose that M is a closed orientable hyperbolic 3-manifold and that
C is a shortest geodesic in M such that tuberad(C) ≥ (log 3)/2. Set N = drillC(M).
Then Vol(N) < 3.02 Vol(M).

Here tuberad(C) refers to the tube radius, i.e. the maximal radius of an embed-
ded tubular neighborhood around C, while drillC(M) is simply the manifold M−C
equipped with a complete hyperbolic metric. In other words N is a one-cusped hy-
perbolic 3-manifold from which the closed manifold M can be recovered by Dehn
filling. Two remarks are in order at this point. First, the Weeks manifold has vol-
ume less than 2.848/3.02 and is the smallest known closed orientable hyperbolic 3-
manifold. Second, according to [GMT] if the condition that tuberad(C) ≥ (log 3)/2
fails then M must have volume greater than that of the Weeks manifold anyway.
Thus combining the above lemma with Theorem 9.2 yields the following:

Theorem 9.4. Suppose that M is a closed orientable hyperbolic 3-manifold with
volume less than that of the Weeks manifold. Then M can be obtained by a Dehn
filling on one of the 10 one-cusped manifolds listed in Theorem 9.2.

Clearly we can use this result to identify the minimum-volume closed hyperbolic
3-manifold, using [FKP] as before to limit the number of Dehn fillings that need to
be considered. The results of such an analysis will also be presented in [MM].

Of future interest is the problem of strengthening the bound of 2.848 in Theorem
1.1, and thus improving the classification of both closed and cusped low-volume hy-
perbolic 3-manifolds. The SnapPea census of cusped manifolds suggests that the
number 2.848 should be far higher: the smallest known manifold which does not
possess an internal Mom-2 structure is m069, which has a volume greater than 3.4.
It would not be unreasonable to attempt to prove a stronger version of Theorem 1.1
which would apply to all one-cusped manifolds with volume less than or equal to
3.7; with such a result it would be possible to determine the first infinite string of
volumes of one-cusped hyperbolic manifolds limiting on the volume of the White-
head link complement. Similarly it should be possible to determine the first infinite
string of volumes of closed manifolds limiting on the figure-eight knot complement.

Finally we expect that Mom-technology can be applied directly to closed man-
ifolds, and not just indirectly via the use of Lemma 9.3. The obstacles to this are
primarily geometrical rather than conceptual. While the definition of a geometrical
Mom-n structure can easily be extended to closed manifolds (by considering triples
of geodesics rather than triples of horoballs), difficulties arise when we consider the
lessvol and overlapArea functions defined in Lemmas 3.8 and 3.10. In the cusped
case the lessvol function uses the fact that the equidistant surface between two
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horoballs is a plane. In the closed case the equidistant surface between neighbour-
hoods of two geodesics is a more complicated surface. Similarly the overlapArea
function uses the fact that the shadow of one horoball on the surface of another is a
Euclidean circle; in the closed case, the shadow of one tubular neighbourhood on the
surface of another is typically a not-quite-elliptical region whose shape depends on
the both the distance and the angle between the corresponding core geodesics. De-
veloping a Mom-based theorey for closed manifold will require a more sophisticated
analysis of these two geometrical problems.
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