ON THE TOPOLOGY OF ENDING LAMINATION SPACE

DAVID GABAI

Abstract

We show that if S is a finite type orientable surface of genus g and p punctures where $3 g+p \geq 5$, then $\mathcal{E} \mathcal{L}(S)$ is $(n-1)$-connected and $(n-1)$ locally connected, where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1=6 g+2 p-7$. Furthermore, if $g=0$, then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to the $p-4$ dimensional Nobeling space.

0. Introduction

This paper is about the topology of the space $\mathcal{E} \mathcal{L}(S)$ of ending laminations on a finite type hyperbolic surface, i.e. a complete hyperbolic surface S of genus-g with p punctures. An ending lamination is a geodesic lamination \mathcal{L} in S that is minimal and filling, i.e. every leaf of \mathcal{L} is dense in \mathcal{L} and any simple closed geodesic in S nontrivally intersects \mathcal{L} transversely.

Since Thurston's seminal work on surface automorphisms in the mid 1970's, laminations in surfaces have played central roles in low dimensional topology, hyperbolic geometry, geometric group theory and the theory of mapping class groups. From many points of view, the ending laminations are the most interesting laminations. For example, the stable and unstable laminations of a pseudo Anosov mapping class are ending laminations [Th1] and associated to a degenerate end of a complete hyperbolic 3-manifold with finitely generated fundamental group is an ending lamination [Th4], [Bon]. Also, every ending lamination arises in this manner [BCM].

The Hausdorff metric on closed sets induces a metric topology on $\mathcal{E} \mathcal{L}(S)$. Here, two elements $\mathcal{L}_{1}, \mathcal{L}_{2}$ in $\mathcal{E} \mathcal{L}(S)$ are close if each point in \mathcal{L}_{1} is close to a point of \mathcal{L}_{2} and vice versa. In 1988, Thurston [Th2] showed that with this topology $\mathcal{E} \mathcal{L}(S)$ is totally disconnected and in 2004 Zhu and Bonahon [ZB] showed that with respect to the Hausdorff metric, $\mathcal{E} \mathcal{L}(S)$ has Hausdorff dimension zero.

It is the coarse Hausdorff topology that makes $\mathcal{E} \mathcal{L}(S)$ important for applications and gives $\mathcal{E} \mathcal{L}(S)$ a very interesting topological structure. This is the topology on $\mathcal{E} \mathcal{L}(S)$ induced from that of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$, the space of projective measured laminations of S. Let $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ denote the subspace of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ consisting of those measured laminations whose underlying lamination is an ending lamination. (Fact: every ending lamination fully supports a measure.) Then $\mathcal{E} \mathcal{L}(S)$ is a quotient of $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and is topologized accordingly. Equivalently, a sequence $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots$ converges to \mathcal{L} in the coarse Hausdorff topology if after passing to subsequence, the sequence converges in the Hausdorff topology to a diagonal extension of \mathcal{L}, i.e. a lamination obtained by adding finitely many leaves, [Ha]. From now on $\mathcal{E} \mathcal{L}(S)$ will have the coarse Hausdorff topology.

In 1999, Erica Klarreich $[\mathrm{K}]$ showed that $\mathcal{E} \mathcal{L}(S)$ is the Gromov boundary of $\mathcal{C}(S)$, the curve complex of S . (See also [H1].) As a consequence of many results

[^0]in hyperbolic geometry e.g. [Ber], [Th3], [M], [BCM], [Ag], [CG]; Leininger and Schleimer [LS] showed that the space of doubly degenerate hyperbolic structures on $S \times \mathbb{R}$ is homeomorphic to $\mathcal{E} \mathcal{L}(S) \times \mathcal{E} \mathcal{L}(S) \backslash \Delta$, where Δ is the diagonal. For other applications see $[\mathrm{RS}]$ and $\S 18$.

If S is the thrice punctured sphere, then $\mathcal{E L}(S)=\emptyset$. If S is the 4 -punctured sphere or once-punctured torus, then $\mathcal{E} \mathcal{L}(S)=\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)=\mathbb{R} \backslash \mathbb{Q}$. In 2000 Peter Storm conjectured that if S is not one of these exceptional surfaces, then $\mathcal{E} \mathcal{L}(S)$ is connected. Various partial results on the connectivity and local connectivity of $\mathcal{E} \mathcal{L}(S)$ were obtained by Leininger, Mj and Schleimer, [LS], [LMS].

Using completely different methods, essentially by bare hands, we showed [G1] that if S is neither the 3 or 4 -punctured sphere nor the once-punctured torus, then $\mathcal{E L}(S)$ is path connected, locally path connected, cyclic and has no cut points. We also asked whether ending lamination spaces of sufficiently complicated surfaces were n-connected.

Here are our two main results.
Theorem 0.1. Let S be a finite type hyperbolic surface of genus-g and p-punctures. Then $\mathcal{E L}(S)$ is $(n-1)$-connected and ($n-1$)-locally connected, where $2 n+1=$ $\operatorname{dim}(\mathcal{P M L}(S))=6 g+2 p-7$.
Theorem 0.2. Let S be a $(4+n)$-punctured sphere. Then $\mathcal{E L}(S)$ is homeomorphic to the n-dimensional Nobeling space.
Remark 0.3. Let T denote the compact surface of genus g with p open discs removed and S the p-punctured genus-g surface. It is well known that there is a natural homeomorphism between $\mathcal{E L}(S)$ and $\mathcal{E L}(T)$. In particular, the topology of $\mathcal{E} \mathcal{L}(S)$ is independent of the hyperbolic metric and hence all topological results about $\mathcal{E} \mathcal{L}(S)$ are applicable to $\mathcal{E} \mathcal{L}(T)$. Thus the main results of this paper are purely topological and applicable to compact orientable surfaces.

The m-dimensional Nobeling space $\mathcal{R}_{m}^{2 m+1}$ is the space of points in $\mathcal{R}^{2 m+1}$ with at most m rational coordinates. In 1930 G. Nobeling [N] showed that the m dimensional Nobeling space is a universal space for m-dimensional separable metric spaces, i.e. any m-dimensional separable metric space embeds in $\mathcal{R}_{m}^{2 m+1}$. This extended the work of his mentor K. Menger [Me] who in 1926 defined the m dimensional Menger spaces $M_{m}^{2 m+1}$, showed that the Menger curve is universal for 1-dimensional compact metric spaces and suggested that $M_{m}^{2 m+1}$ is universal for m-dimensional compact metric spaces. It is known to experts (e.g. see [Be]) that any map of a compact $\leq m$-dimensional space into $M_{m}^{2 m+1}$ can be approximated by an embedding. This was generalized by Nagorko [Na] who proved that any map of a $\leq m$-dimensional complete separable metric space into $\mathcal{R}_{m}^{2 m+1}$ is approximatible by a closed embedding.

A recent result of Ageev [Av], Levin [Le] and Nagorko [Na] gave a positive proof of a major long standing conjecture characterizing the m-dimensional Nobeling space. (The analogous conjecture for Menger spaces was proven by Bestvina [Be] in 1984.) Nagorko [HP] recast this result to show that the m-dimensional Nobeling space is one that satisfies a series of topological properties that are discussed in detail in $\S 7$, e.g. the space is $(m-1)$-connected, $(m-1)$-locally connected and satisfies the locally finite m-discs property. To prove Theorem 16.1 we will show that $\mathcal{E L}(S)$ satisfies these conditions for $m=n$.

Using [G1], Sebastian Hensel and Piotr Przytycki [HP] earlier showed that if S is either the 5 -punctured sphere or twice-punctured torus, then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to the one dimensional Nobeling space. They also boldly conjectured that all ending lamination spaces are homeomorphic to Nobeling spaces.

Independently, in 2005 Bestvina and Bromberg [BB] asked whether ending lamination spaces are Nobeling spaces. They were motivated by the fact that Menger spaces frequently arise as boundaries of locally compact Gromov hyperbolic spaces, Klarreich's theorem and the fact that the curve complex is not locally finite.

Theorem 0.2 gives a positive proof of the Hensel - Przytycki conjecture for punctured spheres. In section $\S 19$ we offer various conjectures on the topology of ending lamination spaces including three duality conjectures relating the curve complex with ending lamination space.

The methods of this paper are essentially also by bare hands. There are two main difficulties that must be overcome to generalize the methods of [G1] to prove Theorem 0.1. First of all it is problematic getting started. To prove path connectivity, given $\mu_{0}, \mu_{1} \in \mathcal{E} \mathcal{L}(S)$ we first chose $\lambda_{0}, \lambda_{1} \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\phi\left(\lambda_{i}\right)=\mu_{i}$ where ϕ is the forgetful map. The connectivity of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ implies there exists a path $\mu:[0,1] \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\mu(0)=\mu_{0}$ and $\mu(1)=\mu_{1}$. In [G1] we found an appropriate sequence of generic such paths, projected them into lamination space, and took an appropriate limit which was a path in $\mathcal{E} \mathcal{L}(S)$ between μ_{0} and μ_{1}. To prove simple connectivity, say for $\mathcal{E} \mathcal{L}(S)$ where S is the surface of genus 2 , the first step is already problematic, for there is a simple closed curve γ in $\mathcal{E} \mathcal{L}(S)$ whose preimage in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ does not contain a loop projecting to γ. (See Theorem 18.7.) In the general case, the preimage is a Cech-like loop and that turns out to be good enough. The second issue is that points along a generic path in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ project to laminations that are almost filling almost minimal, a property that was essential in order to take limits in [G1]. In the general case, the analogous laminations are not close to being either almost filling or almost minimal. To deal with this we introduce the idea of markers that is a technical device that enables us to take limits of laminations with the desired controlled properties.

This paper basically accomplishes two things. It shows that if $k \leq n$, then any generic PL map $f: B^{k} \rightarrow \mathcal{P} \mathcal{M L}(S)$ can be ϵ-approximated by a map $g: B^{k} \rightarrow$ $\mathcal{E} \mathcal{L}(S)$ and conversely any map $g: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ can be ϵ-approximated by a map $f: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$. Here $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$. See section $\S 13$ for the precise statements.

In §1 we provide some basic information and facts about ending lamination space, point out an omission in $\S 7$ [G1] and prove the following. See [LMS] and [LS] for earlier partial results.
Theorem 0.4. If S is a finite type hyperbolic surface that is not the 3 or 4-holed sphere or 1 -holed torus, then $\mathcal{F} \mathcal{P} \mathcal{M L}(S)$ is connected.

In $\S 2$ we show that if $g: S^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ is continuous, then there exists a continuous map $F: B^{k+1} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ that extends g. Here $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is the disjoint union of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mathcal{E} \mathcal{L}(S)$ appropriately topologized. In $\S 3$ we introduce mark-
 we give a criterion for a sequence f_{1}, f_{2}, \cdots of maps of B^{k+1} into $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ that restrict to $g: S^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ to converge to a continuous map $G: B^{k+1} \rightarrow \mathcal{E} \mathcal{L}(S)$, extending g. The core technical work of this paper is carried out in $\S 6-10$. In $\S 11-12$ we prove Theorem 0.1. In $\S 13$ we isolate out our $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mathcal{E} \mathcal{L}(S)$ approximation
theorems. In $\S 14$ we develop a theory of good cellulation sequences of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$, which may be of independent interest. In $\S 15$ we give various upper and lower estimates of $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$ and prove that $\operatorname{dim}\left(S_{0, n+4}\right)=n$ and that $\pi_{n}\left(S_{0, n+4}\right) \neq 0$. In $\S 16$ we state Nagorko's recharacterization of Nobeling spaces. In $\S 17$ we prove that $S_{0, n+4}$ satisfies the locally finite n-discs property. In $\S 18$ various applications are given. In $\S 19$ we offer some problems and conjectures.

Acknowledgements 0.5. We learned about ending lamination spaces from hearing many beautiful lectures by Saul Schleimer and Chris Leininger. We are grateful to Andrzej Nagorko for informative communications about Nobeling spaces and to Piotr Przytycki for many discussions and his interest in this work. We thank Mladen Bestvina, Alexander Dranishnikov and Ross Geoghegan for very helpful conversations and communications.

1. Basic definitions and facts

In what follows, S or $S_{g, p}$ will denote a complete hyperbolic surface of genus g and p punctures. We will assume that the reader is familiar with the basics of Thurston's theory of curves and laminations on surfaces, e.g. $\mathcal{L}(S)$ the space of geodesic laminations with topology induced from the Hausdorff topology on closed sets, $\mathcal{M} \mathcal{L}(S)$ the space of measured geodesic laminations endowed with the weak* topology, $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ projective measured lamination space, as well as the standard definitions and properties of of train tracks. For example, see [PH], [Ha], [M], [Th1], or [FLP]. All laminations in this paper will be compactly supported. See [G1] for various ways to view and measure distance between laminations as well as for standard notation. For example, $d_{P T(S)}(x, y)$ denotes the distance between the geodesic laminations x and y as measured in the projective unit tangent bundle. Unless said otherwise, distance between elements of \mathcal{L} are computed via the Hausdorff topology on closed sets in $P T(S)$. Sections $\S 1$ and $\S 2$ (through Remark 2.5) of [G1] are also needed. Among other things, important aspects of the PL structure of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mathcal{M} \mathcal{L}(S)$ are described there.

Notation 1.1. We denote by $p: \mathcal{M} \mathcal{L}(S) \backslash 0 \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$, the canonical projection and $\phi: \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{L}(S)$ and $\hat{\phi}: \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{L}(S)$, the forgetful maps. If τ is a train track, then $V(\tau)$ will denote the cell of measures supported on τ and $P(\tau)$ the polyhedron $p(V(\tau) \backslash 0)$.

Definition 1.2. Let $\mathcal{E} \mathcal{L}(S)$ denote the set of ending laminations on S , i.e. the set of geodesic laminations that are filling and minimal. A lamination $\mathcal{L} \in \mathcal{L}(S)$ is minimal if every leaf is dense and filling if the metric closure (with respect to the induced path metric) of $S \backslash \mathcal{L}$ supports no simple closed geodesic.

The following is well known.
Lemma 1.3. If $x \in \mathcal{P} \mathcal{M L}(S)$, then $\phi(x)$ is the disjoint union of minimal laminations. In particular $\phi(x) \in \mathcal{E} \mathcal{L}(S)$ if and only if $\phi(x)$ is filling.

Proof. Since the measure on x has full support, no non compact leaf L is proper, i.e. non compact leaves limit on themselves. It follows that $\phi(x)$ decomposes into a disjoint union of minimal laminations. If $\phi(x)$ is filling, then there is only one such component.

Notation 1.4. Let $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ denote the subspace of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ consisting of filling laminations and $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ denote the subspace of unfilling laminations. Thus $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ is the disjoint union of $\mathcal{F} \mathcal{P} \mathcal{M L}(S)$ and $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$.
Definition 1.5. Topologize $\mathcal{E L}(S)$ by giving it the quotient topology induced from the surjective map $\phi: \mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{E} \mathcal{L}(S)$ where $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ has the subspace topology induced from $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. After [H1] we call this the coarse Hausdorff topology. Hamenstadt observed that this topology is a slight coarsening of the Hausdorff topology on $\mathcal{E} \mathcal{L}(S)$; a sequence $\mathcal{L}_{1}, \mathcal{L}_{2} \cdots$ in $\mathcal{E} \mathcal{L}(S)$ limits to $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$ if and only if any convergent subsequence in the Hausdorff topology converges to a diagonal extension \mathcal{L}^{\prime} of \mathcal{L}. A diagonal extension of \mathcal{L} is a lamination obtained by adding finitely many leaves.
Remark 1.6. It is well known that $\mathcal{E} \mathcal{L}(S)$ is separable and complete. Separability follows from the fact that $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a sphere and $\mathcal{F P} \mathcal{M} \mathcal{L}(S)$ is dense in $\mathcal{P} \mathcal{M L}(S)$. (E.g. $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is the complement of countably many codimension-1 PL-cells in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$.) Masur and Minsky [MM] showed that the curve complex $\mathcal{C}(S)$ is Gromov-hyperbolic and Klarreich [K] (see also [H1]) showed that the Gromov boundary of $\mathcal{C}(S)$ is homeomorphic to $\mathcal{E} \mathcal{L}(S)$ with the coarse Hausdorff topology. Being the boundary of a Gromov hyperbolic space, $\mathcal{E} \mathcal{L}(S)$ is metrizable. Bonk and Schramm showed that with appropriate constants in the Gromov product, the induced Gromov metric is complete [BS]. See also [HP].

The following are characterizations of continuous maps in $\mathcal{E} \mathcal{L}(S)$ analogous to Lemmas 1.13-1.15 of [G1]. Here X is a metric space.

Lemma 1.7. A function $f: X \rightarrow \mathcal{E} \mathcal{L}(S)$ is continuous if and only if for each $t \in X$ and each sequence $\left\{t_{i}\right\}$ converging to $t, f(t)$ is the coarse Hausdorff limit of the sequence $f\left(t_{1}\right), f\left(t_{2}\right), \cdots$.
Lemma 1.8. A function $f: X \rightarrow \mathcal{E} \mathcal{L}(S)$ is continuous if and only if for each $\epsilon>0$ and $t \in X$ there exists a $\delta>0$ such that $d_{X}(s, t)<\delta$ implies that the maximal angle of intersection between leaves of $f(t)$ and leaves of $f(s)$ is $<\epsilon$.

Lemma 1.9. A function $f: X \rightarrow \mathcal{E} \mathcal{L}(S)$ is continuous if and only if for each $\epsilon>0$ and $t \in X$ there exists a $\delta>0$ such that $d_{X}(s, t)<\delta$ implies that $d_{P T(S)}\left(f^{\prime}(t),\left(f^{\prime}(s)\right)<\epsilon\right.$, where $f^{\prime}(s)\left(\right.$ resp $\left.f^{\prime}(t)\right)$ is any diagonal extension of $f(s)$ (resp. $f(t)$).

The forgetful map $\phi: \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{L}(S)$ is discontinuous, for any simple closed curve viewed as a point in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ is the limit of filling laminations and any Hausdorff limit of a sequence of filling laminations is filling.
Definition 1.10. Let X_{1}, X_{2}, \cdots be a sequence of subsets of the topological space Y. We say that the subsets $\left\{X_{i}\right\}$ super converges to X if for each $x \in X$, there exists $x_{i} \in X_{i}$ so that $\lim _{i \rightarrow \infty} x_{i}=x$. In this case we say X is a sublimit of $\left\{X_{i}\right\}$.

We will repeatedly use the following result that first appears in [Th4]. See Proposition 3.2 [G1] for a proof.

Proposition 1.11. If the projective measured laminations $\lambda_{1}, \lambda_{2}, \cdots$ converge to $\lambda \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$, then $\phi\left(\lambda_{1}\right), \phi\left(\lambda_{2}\right), \cdots$ super converges to $\phi(\lambda)$ as subsets of $P T(S)$.

The following consequence of super convergence, Proposition 1.11 is repeatedly used in this paper and in [G1].

Lemma 1.12. If z_{1}, z_{2}, \cdots is a convergent sequence in $\mathcal{E} \mathcal{L}(S)$ limiting to z_{∞} and x_{1}, x_{2}, \cdots is a sequence in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that for all i, $\phi\left(x_{i}\right)=z_{i}$, then any convergent subsequence of the x_{i} 's converges to a point of $\phi^{-1}\left(z_{\infty}\right)$.
Proof. After passing to subsequence it suffices to consider the case that x_{1}, x_{2}, \ldots coverges to x_{∞} in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and that z_{1}, z_{2}, \cdots converges to $\mathcal{L} \in \mathcal{L}(S)$ with respect to the Hausdorff topology. By super convergence, Proposition $1.11 \phi\left(x_{\infty}\right)$ is a sublamination of \mathcal{L} and by definition of coarse Hausdorff topology \mathcal{L} is a diagonal extension of z_{∞}. Since z_{∞} is minimal and each leaf of $\mathcal{L} \backslash z_{\infty}$ is non compact and proper it follows that $\phi\left(x_{\infty}\right)=z_{\infty}$.

Corollary 1.13. If $L \subset \mathcal{E} \mathcal{L}(S)$ is compact, then $\phi^{-1}(L) \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is compact.

Corollary 1.14. $\phi: \mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{E} \mathcal{L}(S)$ is a closed map.
Lemma 1.15. If $\mu \in \mathcal{E} \mathcal{L}(S), x_{1}, x_{2}, \cdots \rightarrow x$ is a convergent sequence in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\lim _{i \rightarrow \infty} d_{P T(S)}\left(\phi\left(x_{i}\right), \mu^{\prime}\right)=0$ for some diagonal extension μ^{\prime} of μ, then $x \in$ $\phi^{-1}(\mu)$.

Proof. After passing to subsequence and super convergence $\phi\left(x_{1}\right), \phi\left(x_{2}\right), \cdots$ converges to $\mathcal{L} \in \mathcal{L}(S)$ with respect to the Hausdorff topology where $\phi(x) \subset \mathcal{L}$. If $\phi(x) \neq \mu$, then $d_{P T(S)}\left(\mathcal{L}, \mu^{\prime}\right)>0$ and hence $d_{P T(S)}\left(\phi\left(x_{i}\right), \mu^{\prime}\right)$ is uniformly bounded away from 0 for every diagonal extension μ^{\prime} of μ.

Lemma 1.16. Let τ be a train track and $\mu \in \mathcal{E} \mathcal{L}(S)$. Either τ carries μ or $\inf \left\{d_{P T(S)}(\phi(t), \mu) \mid t \in P(\tau)\right\}>0$.
Proof. If $\inf \left\{d_{P T(S)}(\phi(t), \mu) \mid t \in P(\tau)\right\}=0$, then by compactness of $P(\tau)$ and the previous lemma, there exists $x \in P(\tau)$ such that $\phi(x)=\mu$ and hence τ carries μ.

The following is well known, e.g. it can be deduced from Proposition 1.9 [G1].
Lemma 1.17. If $z \in \mathcal{E} \mathcal{L}(S)$, then $\phi^{-1}(z)=\sigma_{z}$ is a compact convex cell, i.e. if τ is any train track that carries z, then $\sigma_{z}=p(V)$, where $V \subset V(\tau)$ is the open cone on a compact convex cell in $V(\tau)$.
Theorem 1.18. If S is a finite type hyperbolic surface that is not the 3 or 4-holed sphere or 1 -holed torus, then $\mathcal{F} \mathcal{P} \mathcal{M L}(S)$ is connected.
Proof. If $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is disconnected, then it is the disjoint union of non empty closed sets A and B. By the previous lemma, if $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$, then $\phi^{-1}(\mathcal{L})$ is connected. It follows that $\phi(A) \cap \phi(B)=\emptyset$ and hence by Lemma $1.14, \mathcal{E} \mathcal{L}(S)$ is the disjoint union of the non empty closed sets $\phi(A), \phi(B)$ and hence $\mathcal{E} \mathcal{L}(S)$ is disconnected. This contradicts [G1].

Remark 1.19. In the exceptional cases, $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}\left(S_{0,3}\right)=\emptyset, \mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}\left(S_{0,4}\right)=$ $\mathcal{F P M} \mathcal{M}\left(S_{1,1}\right)=\mathbb{R} \backslash \mathbb{Q}$.

Definition 1.20. The curve complex $\mathcal{C}(S)$ introduced by Harvey [Ha] is the simplicial complex with vertices the set of simple closed geodesics and (v_{0}, \cdots, v_{p}) span a simplex if the v_{i} 's are pairwise disjoint.

There is a natural injective continuous map $\hat{I}: \mathcal{C}(S) \rightarrow \mathcal{M} \mathcal{L}(S)$. If v is a vertex, then $I(v)$ is the measured lamination supported on v with transverse measure
$1 /$ length (v). Extend \hat{I} linearly on simplices. Define $I: \mathcal{C}(S) \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ by $I=p \circ \hat{I}$.

Remark 1.21. The map I is not a homeomorphism onto its image. If $\mathcal{C}(S)_{\text {sub }}$ denotes the topology on $\mathcal{C}(S)$ obtained by pulling back the subspace topology on $I\left(\mathcal{C}(S)\right.$), then $\mathcal{C}(S)_{\text {sub }}$ is coarser than $\mathcal{C}(S)$. Indeed, if C is a vertex, then there exists a sequence C_{0}, C_{1}, \cdots of vertices that converges in $\mathcal{C}(S)_{\text {sub }}$ to C, but does not have any limit points in $\mathcal{C}(S)$. See $\S 19$ for some conjectures relating the topology of $\mathcal{C}(S)$ and $\mathcal{C}(S)_{\text {sub }}$.

Correction 1.22. In $\S 7$ of [G1] the author states without proof Corollary 7.4 which asserts that if S is not one of the three exceptional surfaces, then $\mathcal{E} \mathcal{L}(S)$ has no cut points. It is not a corollary of the statement of Theorem 7.1 because as the figure- 8 shows, cyclic does not imply no cut points. It is not difficult to prove Corollary 7.4 by extending the proof of Theorem 7.1 to show that given $x \neq y \in \mathcal{E} \mathcal{L}(S)$, there exists a simple closed curve in $\mathcal{E} \mathcal{L}(S)$ passing through both x and y. Alternatively, no cut points immediately follows from the locally finite 1-discs property, Proposition 17.8 and Remark 16.3.

Notation 1.23. If X is a space, then $|X|$ denotes the number of components of X. If X and Y are sets, then $X \backslash Y$ is X with the points of Y deleted, but if $X, Y \in \mathcal{L}(S)$, then $X \backslash Y$ denotes the union of leaves of X that are not in Y. Thus by Lemma 1.3 if $X=\phi(x), Y=\phi(y)$ with $x, y \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$, then $X \backslash Y$ is the union of those minimal sublaminations of X which are not sublaminations of Y.

2. Extending maps of spheres into $\mathcal{E} \mathcal{L}(S)$ to maps of balls into $\mathcal{P M} \mathcal{L E L}(S)$

Definition 2.1. Let $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ (resp. $\mathcal{M} \mathcal{L E} \mathcal{L}(S)$) denote the disjoint union $\mathcal{P} \mathcal{M L}(S) \cup \mathcal{E} \mathcal{L}(S)$ (resp. $\mathcal{M} \mathcal{L}(S) \cup \mathcal{E} \mathcal{L}(S))$. Define a topology on $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ (resp. $\mathcal{M} \mathcal{L E} \mathcal{L}(S))$ as follows. A basis consists of all sets of the form $U \cup V$ where $\phi^{-1}(V) \subset U\left(\right.$ resp. $\left.\hat{\phi}^{-1}(V) \subset U\right)$ where U is open in $\mathcal{P} \mathcal{M} \mathcal{L}(S)($ resp. $\mathcal{M} \mathcal{L}(S))$ and V (possibly \emptyset) is open in $\mathcal{E} \mathcal{L}(S)$. We will call this the PMLEL topology (resp. MLEL topology).

Lemma 2.2. The PMLEL (resp. MLEL) topology has the following properties.
i) $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ (resp. $\mathcal{M} \mathcal{L}(S) \cup \mathcal{E} \mathcal{L}(S)$) is non Hausdorff. In fact x and y cannot be separated if and only if $x \in \mathcal{E} \mathcal{L}(S)$ and $y \in \phi^{-1}(x)$ (resp. $y \in \hat{\phi}^{-1}(x)$), or vice versa.
ii) $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ (resp. $\mathcal{M} \mathcal{L}(S)$) is an open subspace.
iii) $\mathcal{E} \mathcal{L}(S)$ is a closed subspace.
iv) If $U \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a neighborhood of $\phi^{-1}(x)$ where $x \in \mathcal{E} \mathcal{L}(S)$, then there exists an open set $V \subset \mathcal{E} \mathcal{L}(S)$, such that $x \in V$ and $\phi^{-1}(V) \subset U$, i.e. $U \cup V$ is open in $\mathcal{P M} \mathcal{L E} \mathcal{L}(S)$.
v) A sequence x_{1}, x_{2}, \cdots in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ converges to $x \in \mathcal{E} \mathcal{L}(S)$ if and only if every limit point of the sequence lies in $\phi^{-1}(x)$. A sequence x_{1}, x_{2}, \cdots in $\mathcal{M} \mathcal{L}(S)$ bounded away from both 0 and ∞ converges to $x \in \mathcal{E} \mathcal{L}(S)$ if and only if every limit point of the sequence lies in $\hat{\phi}^{-1}(x)$.

Proof. Parts i)-iii) and v) are immediate. Part iv) follows from Lemma 1.12.

Definition 2.3. Let V be the underlying space of a finite simplicial complex. A generic PL map $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a PL map transverse to each $B_{a_{1}} \cap \cdots B_{a_{r}} \cap$ $\delta B_{b_{1}} \cap \cdots \cap \delta B_{b_{s}}$, where $a_{1}, \cdots, a_{r}, b_{1}, \cdots, b_{s}$ are simple closed geodesics. (Notation as in [G1].) More generally $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is called a generic $P L$ map if $f^{-1}(\mathcal{E} \mathcal{L}(S))=W$ is a subcomplex of V and $f \mid(V \backslash W)$ is a generic PL map.

Lemma 2.4. Let $L=I\left(L_{0}\right)$ where L_{0} is a finite q-subcomplex of $\mathcal{C}(S)$. If f : $V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is a generic PL-map where $\operatorname{dim}(V)=p$ and $p+q \leq 2 n$, then $f(V) \cap L=\emptyset$. If either $p+q \leq 2 n-1$ or $p \leq n$, then for every simple closed geodesic $C, f(V) \cap Z=\emptyset$, where $Z=\phi^{-1}(C) *\left(\partial B_{C} \cap L\right)$.

Proof. By genericity and the dimension hypothesis, the first conclusion is immediate. For the second, $L \cap \partial B_{C}$ is at $\operatorname{most} \min (q, n-1)$ dimensional, hence any simplex in the cone $\left(L \cap \partial B_{C}\right) * C$ is at most $\min (q+1, n)$ dimensional. Thus the result again follows by genericity.
Remark 2.5. In this paper, V will be either a B^{k} or $S^{k} \times I$ and $X=\partial B^{k}$ or $S^{k} \times 1$.

Notation 2.6. Fix once and for all a map $\psi: \mathcal{E} \mathcal{L}(S) \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\phi \circ \psi=i d_{\mathcal{E L}(S)}$. If $i: \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{M} \mathcal{L}(S)$ is the map sending a projective measured geodesic lamination to the corresponding measured geodesic lamination of length 1, then define $\hat{\psi}: \mathcal{E} \mathcal{L}(S) \rightarrow \mathcal{M} \mathcal{L}(S)$ by $\hat{\psi}=i \circ \psi$. Let $p: \mathcal{M} \mathcal{L}(S) \backslash 0 \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ denote the standard projection map and let $\hat{\phi}=\phi \circ p$.

While ψ is very discontinuous, it is continuous enough to carry out the following which is the main result of this section.

Proposition 2.7. Let $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ be continuous where $k \leq \operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$. Then there exists a generic PL map $F: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)\left(\right.$ resp. $\hat{F}: B^{k} \rightarrow$ $\mathcal{M} \mathcal{L E L}(S))$ such that $F \mid S^{k-1}=g\left(\right.$ resp. $\left.\hat{F} \mid S^{k-1}=g\right)$ and $F\left(\operatorname{int}\left(B^{k}\right)\right) \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ (resp. $\left.\hat{F}\left(\operatorname{int}\left(B^{k}\right)\right) \subset \mathcal{M} \mathcal{L}(S)\right)$.
Idea of Proof for $\mathcal{P} \mathcal{M} \mathcal{L}(S)$: It suffices to first find a continuous extension and then perturb to a generic PL map. To obtain a continuous extension F, consider a sequence K_{1}, K_{2}, \cdots of finer and finer triangulations of S^{k-1}. For each i, consider the map $f_{i}: S^{k-1} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ defined as follows. If κ is a simplex of K_{i} with vertices v_{0}, \cdots, v_{m}, then define $f_{i}\left(v_{j}\right)=\psi\left(g\left(v_{j}\right)\right)$ and extend f_{i} linearly on κ. Extend f_{1} to a map of B^{k} into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and extend f_{i} and f_{i+1} to a map of $F_{i}: S^{k-1} \times[i, i+1]$ into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. Concatenating these maps and taking a limit yields the desired continuous map $F: B^{k} \cup S^{k-1} \times[1, \infty] \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ where ∂B^{k} is identified with $S^{k-1} \times 1, G \mid S^{k-1} \times[i, i+1]=F_{i}$ and $H \mid S^{n} \times \infty=g$.

Remark 2.8. The key technical issue is making precise the phrase "extend f_{i} linearly on σ ".

Before we prove the Proposition we establish some notation and then prove a series of lemmas.

Notation 2.9. Let Δ be the cellulation on $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ whose cells are the various $P\left(\tau_{i}\right)$'s, where the τ_{i} 's are the standard train tracks to some fixed parametrized pants decomposition of S. If $\sigma=P\left(\tau_{i}\right)$ is a cell of Δ and $Y \subset \sigma$, then define the convex hull of Y to be $p\left(C\left(p^{-1}(Y)\right)\right)$, where $C(Z)$ is the convex hull of Z in $V\left(\tau_{i}\right)$.

If $x \in \mathcal{E} \mathcal{L}(S)$, then let τ_{x} denote the unique standard train track that fully carries x and σ_{x} the cell $P\left(\tau_{x}\right)$.

If $\mathcal{L} \in \mathcal{L}(S)$, then \mathcal{L}^{\prime} will denote a diagonal extension of \mathcal{L}, i.e. a lamination obtained by adding finitely many non compact leaves.

Remark 2.10. It follows from Lemma 1.17 that $\phi^{-1}(x) \subset \operatorname{int}\left(\sigma_{x}\right)$ and is closed and convex.

Lemma 2.11. Let $x_{1}, x_{2}, \cdots \rightarrow x$ be a convergent sequence in $\mathcal{E} \mathcal{L}(S)$. If $y \in$ $\mathcal{P} \mathcal{M L}(S)$ is a limit point of $\left\{\psi\left(x_{i}\right)\right\}$, then $\phi(y)=x$.

Proof. This follows from Lemma 1.12.
Definition 2.12. Fix $\epsilon_{1}<1 / 1000\left(\min \left(\left\{d\left(\sigma, \sigma^{\prime}\right) \mid \sigma, \sigma^{\prime}\right.\right.\right.$ disjoint cells of $\left.\Delta\right\}$. For each cell σ of Δ define a retraction $r_{\sigma}: N\left(\sigma, \epsilon_{1}\right) \rightarrow \sigma$. For every $\delta<\epsilon_{1}$ define a discontinuous map $\pi_{\delta}: \mathcal{P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ as follows. Informally, π_{δ} retracts a closed neighborhood of δ^{0} to δ^{0}, then after deleting this neighborhood retracts a closed neighborhood of Δ^{1} to Δ^{1}, then after deleting this neighborhood retracts a closed neighborhood of Δ^{2} to Δ^{2} and so on. As $\delta \rightarrow 0$, the neighborhoods are required to get smaller. More formally, let $\delta(0)=\delta$. If σ is a 0 -cell of Δ, then define $\pi_{\delta}\left|N(\sigma, \delta(0))=r_{v}\right|\left(N(\sigma, \delta(0))\right.$. Now choose $\delta(1) \leq \delta$ such that if σ, σ^{\prime} are distinct 1-cells, then $N(\sigma, \delta(1)) \cap N\left(\sigma^{\prime}, \delta(1)\right) \subset N\left(\Delta^{0}, \delta\right)$. If σ is a 1-cell, then define $\pi_{\delta}\left|N(\sigma, \delta(1)) \backslash N\left(\Delta^{0}, \delta(0)\right)=r_{\sigma}\right| N(\sigma, \delta(1)) \backslash N\left(\Delta^{0}, \delta(0)\right)$. Having defined π_{δ} on $N\left(\Delta^{0}, \delta(0)\right) \cup \cdots \cup N\left(\Delta^{k}, \delta(k)\right)$, extend π_{δ} in a similar way over $N\left(\Delta^{k+1}, \delta(k+1)\right)$ using a sufficiently small $\delta(k+1)$. We require that if $\delta<\delta^{\prime}$, then for all $i, \delta(i)<\delta^{\prime}(i)$.

Remark 2.13. Let $x \in \sigma$ a cell of Δ. If $\delta_{1}<\delta_{2} \leq \epsilon_{1}$ and σ_{1}, σ_{2} are the lowest dimensional cells of Δ respectively containing $\pi_{\delta_{1}}(x), \pi_{\delta_{2}}(x)$, then σ_{2} is a face of σ_{1} which is a face of σ.

Lemma 2.14. Let $f_{i}: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ be a sequence of maps such that $f_{i}\left(B^{k}\right) \rightarrow$ $x \in \mathcal{E} \mathcal{L}(S)$ in the Hausdorff topology on closed sets in $\mathcal{E L}(S)$.
i) Then for i sufficiently large $\psi\left(f_{i}\left(B^{k}\right)\right) \subset \operatorname{st}\left(\sigma_{x}\right)$, the open star of σ_{x} in Δ.
ii) Given $\epsilon>0$ and $\delta<\epsilon_{1}$, then for i sufficiently large, if $t \in C_{i}$, where C_{i} denotes the convex hull of $r_{\sigma_{x}}\left(\psi\left(f_{i}\left(B^{k}\right)\right)\right)$ in σ_{x}, then $x \in d_{P T(S)}(\phi(t), \epsilon)$.

Proof. If i) is false, then after passing to subsequence, for each i there exists $a_{i} \in B^{k}$ such that $\psi\left(f_{i}\left(a_{i}\right)\right) \notin \operatorname{st}\left(\sigma_{x}\right)$. This contradicts Lemma 2.11 which implies that any limit point of $\psi\left(f_{i}\left(a_{i}\right)\right)$ lies in $\phi^{-1}(x) \subset \sigma_{x}$.

This argument actually shows that if U is any neighborhood of $\phi^{-1}(x)$, then $\psi\left(f_{i}\left(B^{k}\right)\right) \subset U$ for i sufficiently large and hence $r_{\sigma_{x}}\left(\psi\left(f_{i}\left(B^{k}\right)\right)\right) \subset U \cap \sigma_{x}$ for i sufficiently large. Since $\phi^{-1}(x)$ is convex it follows that $C_{i} \subset U$ for i sufficiently large. By super convergence there exists a neighborhood V of $\phi^{-1}(x)$ such that if $y \in V$, then $x \in d_{P T(S)}(\phi(y), \epsilon)$. Now choose U so that the $r_{\sigma_{x}}(U) \subset V$.

Lemma 2.15. If $\epsilon>0$ and $x_{1}, x_{2}, \cdots \rightarrow x \in \mathcal{E} \mathcal{L}(S)$, then there exists $\delta>0$ such that for i sufficiently large $x \subset N_{P T(S)}\left(\phi\left(\pi_{\delta}\left(\psi\left(x_{i}\right)\right)\right), \epsilon\right)$.

Proof. Let U be a neighborhood of $\phi^{-1}(x)$ such that $\lambda \in U$ implies $x \subset N_{P T(S)}(\phi(\lambda), \epsilon)$. Next choose $\delta>0$ so that $\pi_{\delta}\left(N\left(\phi^{-1}(x), \delta\right)\right) \subset U$. Now apply Lemma 2.11 to show that for i sufficiently large the conclusion holds.

Lemma 2.16. Let $\epsilon>0, g_{i}: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ and $g_{i}\left(B^{k}\right) \rightarrow x$. There exists $N \in$ $\mathbb{N}, \delta>0$, such that if $\delta_{1}, \delta_{2} \leq \delta, i \geq N$ and σ a simplex of Δ, then if C_{i} is the convex hull of $\sigma \cap\left(\pi_{\delta_{1}}\left(\psi\left(g_{i}\left(B^{k}\right)\right)\right) \cup \pi_{\delta_{2}}\left(\psi\left(g_{i}\left(B^{k}\right)\right)\right) \cup\left(\psi\left(g_{i}\left(B^{k}\right)\right)\right)\right)$ and $t \in C_{i}$, then $x \subset N_{P T(S)}(\phi(t), \epsilon)$.
Proof. Let V be a neighborhood of $\phi^{-1}(x)$ such that if $y \in V$, then $x \in N_{P T(S)}(\phi(y), \epsilon)$. Let $V_{1} \subset V$ be a neighborhood of $\phi^{-1}(x)$ such that for each cell $\sigma \subset \Delta$ containing σ_{x} as a face, the convex hull of $V_{1} \cap \sigma \subset V$. Also assume that $\bar{V}_{1} \cap \kappa=\emptyset$ if κ is a cell of Δ disjoint from σ_{x}. Choose $\delta<\epsilon_{1}$ so that $d\left(\kappa, V_{1}\right)>2 \delta$ for all cells κ disjoint from σ_{x}. Choose N so that $i \geq N$ and $\delta^{\prime} \leq \delta$, then $\pi_{\delta^{\prime}}\left(g_{i}\left(B^{k}\right)\right) \subset V_{1}$ and $g_{i}\left(B^{k}\right) \subset V_{1}$. Therefore, if $\delta_{1}, \delta_{2}<\delta$ and $i \geq N$ then C_{i} lies in V.

We now address how to approximate continuous maps into $\mathcal{E} \mathcal{L}(S)$ by PL maps into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$.

Definition 2.17. Let σ be a cell of Δ. Let κ be a p-simplex and $H^{0}: \kappa^{0} \rightarrow \sigma$, where κ^{0} are the vertices of κ. Define the induced map $H: \kappa \rightarrow \sigma$, such that $H \mid \kappa^{0}=H^{0}$ as follows. Let \hat{H} be the linear map of κ into $\hat{\sigma}=p^{-1}(\sigma)$ such that $\hat{H} \mid \kappa^{0}=i \circ H^{0}$. Then define $H=p \circ \hat{H}$. In a similar manner, if K is a simplicial complex and $h \mid K^{0} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is such that for each simplex $\kappa, h\left(\kappa^{0}\right) \subset \sigma$, for some cell σ of Δ, then h extends to a map $H: K \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ also called the induced map. Since the linear structure on a face of a cell of $\mathcal{M L}(S)$ is the restriction of the linear structure of the cell, H is well defined.
Lemma 2.18. Let $g: K_{1} \rightarrow \mathcal{E} \mathcal{L}(S)$ be continuous where K_{1} is a finite simplicial complex. Let K_{1}, K_{2}, \cdots be such that mesh $\left(K_{i}\right) \rightarrow 0$ and each K_{i+1} is a subdivision of K_{i}. For every $\delta<\epsilon_{1}$ there exists an $i(\delta) \in \mathbb{N}$, monotonically increasing as $\delta \rightarrow 0$, such that if $\delta^{\prime} \leq \delta, i=i(\delta)$ and κ is a simplex of K_{i}, then $\pi_{\delta^{\prime}}(\psi(g(\kappa))) \cup \pi_{\delta}(\psi(g(\kappa)))$ is contained in a cell of Δ.

Given $\epsilon>0$ there exist $\delta(\epsilon)>0$ and $N(\epsilon) \in \mathbb{N}$ such that if $i=N(\epsilon)$, κ is a simplex of K_{i}, σ a simplex of $\Delta, \delta_{1}, \delta_{2} \leq \delta(\epsilon)$ and C is the convex hull of $\sigma \cap\left(\pi_{\delta_{1}}(\psi(g(\kappa))) \cup \pi_{\delta_{2}}(\psi(g(\kappa))) \cup \psi(g(\kappa))\right)$, then given $z_{1} \in \kappa, z_{2} \in C_{i}$ we have $d_{P T(S)}\left(g\left(z_{1}\right), \phi\left(z_{2}\right)\right)<\epsilon$.

Fix $\epsilon>0$. If δ is sufficiently small, $i>i(\delta)$ and $H_{i}: K_{i} \rightarrow \mathcal{P} \mathcal{M L}(S)$ is the induced map arising from $\pi_{\delta} \circ \psi \circ g \mid K_{i}^{0}$, then for each $z \in K_{1}, d_{P T(S)}\left(\phi\left(H_{i}(z)\right), g(z)\right)<$ ϵ.

Proof. Fix $0<\delta<\epsilon_{1}$. For each $x \in \mathcal{E} \mathcal{L}(S)$, there exists a neighborhood V_{x} of $\phi^{-1}(x)$ such that $\pi_{\delta}\left(V_{x}\right) \subset \sigma_{x}$. By Lemma 2.2 iv) there exists a neighborhood U_{x} of x such that $\psi\left(U_{x}\right) \subset V_{x}$. By compactness there exist $U_{x_{1}}, \cdots, U_{x_{n}}$ that cover $g(K)$. There exists $i(\delta)>0$ such that if $i \geq i(\delta)$ and κ is a simplex of K_{i}, then $g(\kappa) \subset U_{x_{j}}$ for some j and so $\pi_{\delta}(\psi(g(\kappa))) \subset \sigma_{x_{j}}$. Since each $\phi^{-1}(x)$ lies in the interior of a cell, it follows that $\sigma_{x_{j}}$ is the lowest dimensional cell of Δ that contains any point of $\pi_{\delta}\left(\psi(g(\kappa))\right.$. Now let $\delta^{\prime}<\delta$. As above, $\pi_{\delta^{\prime}}(\psi(g(\kappa))) \subset \sigma_{y}$ for some $y \in g\left(K_{1}\right)$ where σ_{y} is a minimal dimensional cell. It follows from Remark 2.13 that $\sigma_{x_{j}}$ is a face of σ_{y}.

The proof of the second conclusion follows from that of the first and the proof of Lemma 2.16.

If the third conclusion of the lemma is false, then after passing to subsequence there exist $\left(\kappa_{1}, \omega_{1_{j}}, \delta_{1}, t_{1}\right),\left(\kappa_{2}, \omega_{2_{j}}, \delta_{2}, t_{2}\right), \cdots$ such that for all i, κ_{i+1} is a codimension0 subsimplex of κ_{i} which is a simplex of $K_{i}, \omega_{i_{j}} \subset \kappa_{i}$ is a simplex of $K_{i_{j}}$ some
$i_{j} \geq i, \delta_{i} \rightarrow 0$ and for some $t_{i} \in \omega_{i_{j}}, d_{P T(S)}\left(\phi\left(H_{i_{j}}\left(t_{i}\right)\right), g\left(t_{i}\right)\right)>\epsilon$, where $H_{i_{j}}$ is the induced map corresponding to δ_{i} and $K_{i_{j}}$. Also $1_{j}<2_{j}<\cdots$. If $t=\cap_{i=1}^{\infty} \kappa_{i}$ and B is homeomorphic to κ_{1}, then there exists maps $g_{i}: B \rightarrow \mathcal{E} \mathcal{L}(S)$ such that $g_{i}(B)=g\left(\kappa_{i}\right)$ and $\lim _{i \rightarrow \infty} g_{i}(B)=g(t)$. Let σ_{i} be a cell of Δ that contains $H_{i_{j}}\left(t_{i}\right)$. Since $H_{i_{j}}\left(t_{i}\right)$ lies in the convex hull of $\pi_{\delta_{i}}\left(\psi\left(g_{i}(B)\right)\right) \cap \sigma_{i}$ it follows by Lemma 2.16 that for i sufficiently large $g(t) \subset N_{P T(S)}\left(\phi\left(H_{i_{j}}\left(t_{i}\right), \epsilon / 2\right)\right.$. Convergence in the coarse Hausdorff topology implies that for i sufficiently large if $z \in \kappa_{i}$ then $g(t) \subset$ $N_{P T(S)}(g(z), \epsilon / 2)$. Taking $z=t_{i}$ we conclude that $d_{P T(S)}\left(\phi\left(H_{i_{j}}\left(t_{i}\right), g\left(t_{i}\right)\right)<\epsilon\right.$, a contradiction.

Proof of Proposition 2.7: Let K_{1}, K_{2}, \cdots be subdivisions of S^{k-1} such that mesh $\left(K_{i}\right) \rightarrow$ 0 and each K_{i+1} is a subdivision of K_{i}. Pick $\delta_{j}<\delta(1 / j)$ and $n_{j}>\max \left\{i\left(\delta_{j}\right), N(1 / j)\right\}$ such that for $i \geq n_{j}$ and $\delta \leq \delta_{j}$ the induced map $H_{k}: K_{i} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ arising from $\pi_{\delta} \circ \psi \circ g \mid K_{i}^{0}$ satisfies the third conclusion of Lemma 2.18. Assume that $n_{1}<n_{2}<\cdots$. Replace the original $\left\{K_{i}\right\}$ sequence by the subsequence $\left\{K_{n_{i}}\right\}$. With this new sequence, let $f_{j}: K_{j} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ be the induced map arising from $\pi_{\delta_{j}} \circ \psi \circ g \mid K_{i}^{0}$.

Apply Lemma 2.18 to find, after passing to a subsequence of the K_{i} 's, a sequence of maps $f_{j}: K_{j} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ so that each f_{j} satisfies the conclusions of those results for $\epsilon=1 / j$. Let δ_{j} denote the δ used to define f_{j}. Note that with this new sequence of K_{i} 's, each K_{j} satisfies the first two conclusions of Lemma 2.18 using δ_{j}.

Define a triangulation \mathcal{T} on $S^{k-1} \times[0, \infty)$ by first letting $\mathcal{T} \mid S^{k-1} \times j=K_{j}$ and then extending in a standard way to each $S^{k-1} \times[j, j+1]$ so that if ζ is a simplex of $\mathcal{T} \mid S^{k-1} \times[j, j+1]$, then $\zeta^{0} \subset\left(\kappa^{0} \times j\right) \cup\left(\kappa_{1}^{0} \times(j+1)\right)$ where κ is a simplex of K_{j} and $\kappa_{1} \subset \kappa$ is a simplex of K_{j+1}. By Lemma 2.18, $\pi_{\delta_{j}}\left(\psi\left(g\left(\kappa^{0}\right)\right)\right) \cup \pi_{\delta_{j+1}}\left(\psi\left(g\left(\kappa_{1}^{0}\right)\right)\right)$ lie in the same cell of Δ so the induced maps on $\mathcal{T} \mid S^{k-1} \times\{j, j+1\}$ extend to one called $f_{j, j+1}$ on $\mathcal{T} \mid S^{k-1} \times[j, j+1]$.

Since $k \leq \operatorname{dim} \mathcal{P} \mathcal{M} \mathcal{L}(S), f_{1}$ extends to a map f_{1}^{\prime} of B^{k} into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. Define $F: B^{k} \cup S^{k-1} \times[1, \infty]$ to $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ so that $F\left|B^{k}=f_{1}^{\prime}, F\right| S^{k-1} \times[i, i+1]=$ $f_{i, i+1}$ and $F \mid S^{k-1} \times \infty=g$. It remains to show that F is continuous at each $(z, \infty) \in S^{k-1} \times \infty$. Let $\left(z_{1}, t_{1}\right),\left(z_{2}, t_{2}\right), \cdots \rightarrow(z, \infty)$. By passing to subsequence we can assume that $\phi\left(F\left(z_{i}, t_{i}\right)\right) \rightarrow \mathcal{L} \in \mathcal{L}(S)$ where convergence is in the Hausdorff topology. If \mathcal{L} is not a diagonal extension of $g(z)$, then \mathcal{L} is transverse to $g(z)$ and hence $d_{P T(S)}\left(F\left(z_{i}, t_{i}\right), g(z)\right)>\epsilon$ for i sufficiently large and some $\epsilon>0$. By passing to subsequence we can assume that $z_{i} \in \kappa_{i}$, where κ_{i} is a simplex in K_{i}, where $\kappa_{1} \supset \kappa_{2} \supset \cdots$ is a nested sequence of simplicies and $\cap \kappa_{i}=z$. Let n_{i} denote the greatest integer in t_{i}. Apply the second conclusion of Lemma 2.18 to $\kappa_{i}, \delta_{n_{i}}, \delta_{n_{i}+1}$ to conclude that $\lim _{i \rightarrow \infty} d_{P T(S)}\left(z, \phi\left(F\left(z_{i}, t_{i}\right)\right)\right)=0$, a contradiction.

Remark 2.19. If there exists a train track τ such that each $z \in g\left(S^{k-1}\right)$ is carried by τ and $V \subset P(\tau)$ is the convex hull of $\phi^{-1}\left(g\left(S^{k-1}\right)\right)$, then there exists a continuous extension $F: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ such that $F\left(\operatorname{int}\left(B^{k}\right)\right) \subset V$. Indeed, since V is convex we can dispense with the use of the π_{δ} 's and directly construct the maps $f_{i}, f_{i, i+1}, f_{1}^{\prime}$ to have values within V.

The following local version is needed to prove local $(k-1)$-connectivity of $\mathcal{E} \mathcal{L}(S)$, when $k \leq n$ and $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$.

Proposition 2.20. If $z \in \mathcal{E L}(S)$, then for every neighborhood U of $\phi^{-1}(z)$ there exists a neighborhood V of $\phi^{-1}(z)$ such that if $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ is continuous and
$\psi^{-1}\left(g\left(S^{k-1}\right)\right) \subset V$, then there exists a generic PL map $F: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ such that $F \mid\left(\operatorname{int}\left(B^{k}\right)\right) \subset U$ and $F \mid S^{k-1}=g$.
Proof. There exists a parametrized pair of pants decomposition of S such that z is fully carried by a maximal standard train track τ. Thus $\hat{\phi}^{-1}(z)$ is a closed convex set in $\operatorname{int}(V(\tau))-0$. If $\hat{U}=p^{-1}(U)$, then $\hat{U} \cap(\operatorname{int}(V(\tau)))$ is a neighborhood of $\hat{\phi}^{-1}(z)$, since τ is maximal. Let $\hat{V} \subset \operatorname{int}(V(\tau))$ be a convex neighbohood of $\hat{\phi}^{-1}(z)$ saturated by open rays through the origin such that $\hat{V} \subset \hat{U}$. Let $V=p(\hat{V})$. Then V is a convex neighborhood of $\phi^{-1}(x)$ with $V \subset U$. By Remark 2.19 if $\psi\left(g\left(S^{k-1}\right)\right) \subset V$, then there exists a continuous map $F: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ such that $F \mid S^{k-1}=g$ and $F\left(\operatorname{int}\left(B^{k}\right)\right) \subset V$. Now replace F by a generic perturbation.

3. Markers

In this section we introduce the idea of a marker which is a technical device for controlling geodesic laminations in a hyperbolic surface. In the next section, using markers, we will show that under appropriate circumstances a sequence of maps $f_{i}: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S), i=1,2, \cdots$ extending a given continuous map $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ converges to an extension $f_{\infty}: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$. As always, S will denote a finite type surface with a fixed complete hyperbolic metric.

Definition 3.1. Let α_{0}, α_{1} be open embedded geodesic arcs in S. A path from α_{0} to α_{1} is a continuous map $f:[0,1] \rightarrow S$ such that for $i=0,1, f(i) \subset \alpha_{i}$. Two paths are path homotopic if they are homotopic through paths from α_{0} to α_{1}. Given two path homotopic paths f, g from α_{0} to α_{1}, a lift $\tilde{\alpha}_{0}$ of α_{0} to \mathbb{H}^{2} determines unique lifts $\tilde{f}, \tilde{g}, \tilde{\alpha}_{1}$ respectively of f, g, α_{1} so that \tilde{f}, \tilde{g} are homotpic paths from $\tilde{\alpha}_{0}$ to $\tilde{\alpha}_{1}$. Define $d_{\tilde{H}}(f, g)=d_{H}(\tilde{f}(I), \tilde{g}(I))$, where d_{H} denotes Hausdorff distance measured in $P T(\tilde{S})$. Note that this is well defined independent of the lift of α_{0}.
Definition 3.2. A marker \mathcal{M} for the hyperbolic surface S consists of two embedded (though not necessarily pairwise disjoint) open geodesic $\operatorname{arcs} \alpha_{0}, \alpha_{1}$ called posts and a path homotopy class $[\alpha]$ from α_{0} to α_{1}. A representative β of $[\alpha]$ is said to span \mathcal{M}. The marker \mathcal{M} is an ϵ-marker if whenever β and β^{\prime} are geodesics in S spanning \mathcal{M}, then $d_{\tilde{H}}\left(\beta, \beta^{\prime}\right)<\epsilon$ and length $(\beta) \geq 1$.

Let C be a simple closed geodesic in S. A C-marker is a marker \mathcal{M} such that if β is a geodesic arc spanning \mathcal{M}, then β is transverse to C and $|\beta \cap C|>4 g+p+1$ where $g=\operatorname{genus}(S)$ and p is the number of punctures.

In a similar manner we define the notion of closed ϵ or closed C-marker. Here the posts are closed geodesic arcs. In this case the requirement $d_{\tilde{H}}\left(\beta, \beta^{\prime}\right)<\epsilon$ is replaced by $d_{\tilde{H}}\left(\beta, \beta^{\prime}\right) \leq \epsilon$. If \mathcal{M} is an ϵ or C-marker, then $\overline{\mathcal{M}}$ will denote the corresponding closed ϵ or C-marker.

Definition 3.3. We say that the geodesic L hits the marker \mathcal{M} if there exists ≥ 3 distinct embedded arcs in L that $\operatorname{span} \mathcal{M}$. We allow for the possibility that distinct arcs have non trivial overlap. We say that the geodesic lamination \mathcal{L} hits the marker \mathcal{M} if there exists a leaf L of \mathcal{L} that hits \mathcal{M}. If b_{1}, \cdots, b_{m} are simple closed geodesics, then we say that \mathcal{M} is \mathcal{L}-free of $\left\{b_{1}, \cdots, b_{m}\right\}$ if some leaf $L \notin\left\{b_{1}, \cdots, b_{m}\right\}$ of \mathcal{L} hits \mathcal{M}.
Lemma 3.4. Let S be a finite type hyperbolic surface with a fixed hyperbolic metric. Given $\epsilon>0$ there exists $N(\epsilon) \in \mathbb{N}$ such that if β is an embedded geodesic arc,
length $(\beta) \leq 2$ and $\mathcal{L} \in \mathcal{L}(S)$ is such that $|\mathcal{L} \cap \beta|>N(\epsilon)$, then there exists an ϵ-marker \mathcal{M} hit by \mathcal{L} with posts $\alpha_{0}, \alpha_{1} \subset \beta$.

Proof. \mathcal{L} has at most $6|\chi(S)|$ boundary leaves. Thus some leaf of \mathcal{L} hits β at least $|\mathcal{L} \cap \beta| /(6|\chi(S)|)$ times. Since length (β) is uniformly bounded, if $|\mathcal{L} \cap \beta|$ is sufficiently large, then three distinct segments of some leaf must have endpoints in β, be nearly parallel and have length ≥ 2. Now restrict to appropriate small arcs of β to create α_{0} and α_{1} and let $[\alpha]$ be the class represented by the three segments.

Lemma 3.5. If $\mathcal{L} \in \mathcal{L}(S)$ has a non compact leaf L, then for every $\epsilon>0$ there exists an ϵ-marker hit by $L \in \mathcal{L}$.

Corollary 3.6. If $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$, then for every $\epsilon>0$ there exists an ϵ-marker hit by \mathcal{L}.

The next lemma states that hitting a marker is an open condition.
Lemma 3.7. If $\mathcal{L} \subset \mathcal{L}(S)$ hits the marker \mathcal{M}, then there exists a $\delta>0$ such that if $\mathcal{L}^{\prime} \in \mathcal{L}(S)$ and $\mathcal{L} \subset N_{P T(S)}\left(\mathcal{L}^{\prime}, \delta\right)$, then \mathcal{L}^{\prime} hits \mathcal{M}.

By super convergence we have
Corollary 3.8. If $x \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is such that $\phi(x)$ hits the marker \mathcal{M}, then there exists an open set U containing x such that $y \in U$ implies that $\phi(y)$ hits \mathcal{M}.
Lemma 3.9. Let $C \subset S$ a simple closed geodesic. There exists a $k>0$ such that if $\mathcal{L} \in \mathcal{L}(S)$ and $|C \cap \mathcal{L}|>k$, then there exists a C-marker that is hit by \mathcal{L}.

Proof. An elementary topological argument shows that if k is sufficiently large, then there exists a leaf L containing 5 distinct, though possibly overlapping embedded subarcs u_{1}, \cdots, u_{5} with endpoints in C which represent the same path homotopy class rel C such that the following holds. Each arc u_{j} intersects C more than $4 g+p+1$ times and fixing a preimage \tilde{C} of C to \tilde{S}, these arcs have lifts to arcs $\bar{u}_{1}, \cdots, \bar{u}_{5}$ in \tilde{S} starting at \tilde{C} and ending at the same preimage \tilde{C}^{\prime}. After reordering we can assume that \bar{u}_{1} and \bar{u}_{5} are outermost.

Let $\hat{\alpha}_{0}$ and $\hat{\alpha}_{1}$ be the maximal closed arcs respectively in \tilde{C} and \tilde{C}^{\prime} with endpoints in $\cup \bar{u}_{i}$ and for $i=0,1$ let $\bar{\alpha}_{i}=\pi\left(\hat{\alpha}_{i}\right)$, where π is the universal covering map.

This gives rise to a C-marker \mathcal{M} with posts α_{0}, α_{1} where $\alpha_{i}=\operatorname{int}\left(\bar{\alpha}_{i}\right)$ and u_{2}, u_{3}, u_{4} represent the path homotopy class. Note that if the geodesic arc β spans $\overline{\mathcal{M}}$, then β lifts to $\hat{\beta}$ with endpoints in $\hat{\alpha}_{0}$ and $\hat{\alpha}_{1}$. Being a geodesic it lies in the geodesic rectangle formed by $\hat{\alpha}_{0}, \hat{\alpha}_{1}, \bar{u}_{1}, \bar{u}_{5}$. Thus it intersects C more than $4 g+p+1$ times.

In the rest of this section V will denote the underlying space of a finite simplicial complex. In application, $V=B^{k}$ or $S^{k} \times I$.

Definition 3.10. A marker family \mathcal{J} of V is a finite collection $\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ where each \mathcal{M}_{i} is a marker and each W_{j} is a compact subset of V. Let $f: V \rightarrow$ $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$. We say that f hits the marker family \mathcal{J} if for each $1 \leq i \leq m$ and $t \in W_{i}, \phi(f(t))$ hits \mathcal{M}_{i}. Let $C=\left\{b_{1}, \cdots, b_{q}\right\}$ be a set of simple closed geodesics. We say that \mathcal{J} is f-free of C if for each $1 \leq i \leq m$ and $t \in W_{i}, \mathcal{M}_{i}$ is $\phi(f(t))$-free of C. More generally, if $U \subset V$, then we say that f hits \mathcal{J} along U (resp. \mathcal{J} is f-free of C along U) if for each $1 \leq i \leq m$ and $t \in U \cap W_{i}, \phi(f(t))$ hits \mathcal{M}_{i} (resp.
\mathcal{M}_{i} is $\phi(f(t))$-free of $\left.C\right)$. We say that the homotopy $F: V \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is \mathcal{J}-marker preserving if for each $t \in I, F \mid V \times t$ hits \mathcal{J}.

Note that if \mathcal{J} is F-free of C, then F is in particular a \mathcal{J}-marker preserving homotopy.

An ϵ-marker cover (resp. C-marker cover) of V is a marker family $\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ where each \mathcal{M}_{i} is an ϵ-marker (resp. C-marker) and the interior of the W_{i} 's form an open cover of V.

The next lemma gives us conditions for constructing ϵ and C-marker families.
Lemma 3.11. Let S is a finite type hyperbolic surface such that $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$. Let V be a finite simplical complex.
i) If $\epsilon>0$ and $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is a generic PL map such that $\operatorname{dim}(V) \leq n$, then there exists an ϵ-marker family \mathcal{E} hit by f.
ii) Given the simple closed geodesic C, there exists $N(C) \in \mathbb{N}$ such that if f : $V \rightarrow \mathcal{P M} \mathcal{L E} \mathcal{L}(S)$ is such that for all $t \in V,|\phi(f(t)) \cap C| \geq N(C)$, then there exists a C-marker family \mathcal{S} hit by f.

Proof of i). Since $k \leq n$ and f is generic, for each $t \in V, \mathcal{A}(\phi(t)) \neq \emptyset$, where $\mathcal{A}(\phi(t))$ is the arational sublamination of $\phi(t)$. By Lemma 3.4 for each $t \in V$ there exists an ϵ-marker \mathcal{M}_{t} and compact set W_{t} such that $t \in \operatorname{int}\left(W_{t}\right)$ and for each $s \in W_{t}$, $\phi(f(s))$ hits \mathcal{M}_{t}. The result follows by compactness of V.

Proof of ii). Given C, choose $N(C)$ as in Lemma 3.9. Thus for each $t \in V$ there exists a C-marker \mathcal{M}_{t} and compact set U_{t} such that $t \in \operatorname{int}\left(U_{t}\right)$ and for each $s \in U_{t}$, $\phi(f(s))$ hits \mathcal{M}_{t}. The result follows by compactness of V.

4. CONVERGENCE LEMMAS

This section establishes various criteria to conclude that a sequence of ending laminations converges to a particular ending lamination or to show that two ending laminations are close in $\mathcal{E} \mathcal{L}(S)$. We also show that markers give neighborhood bases of elements $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$ and sets in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ of the form $\phi^{-1}(\mathcal{L})$, where $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$.

Lemma 4.1. Let $\mu \in \mathcal{E} \mathcal{L}(S)$ and

$$
W_{\epsilon}(\mu)=\left\{\mathcal{L} \in \mathcal{E} \mathcal{L}(S) \mid d_{P T(S)}\left(\mathcal{L}, \mu^{\prime}\right)<\epsilon, \mu^{\prime} \text { is a diagonal extension of } \mu\right\} .
$$

Then $\mathcal{W}(\mu)=\left\{W_{\epsilon}(\mu) \mid \epsilon>0\right\}$ is a neighborhood basis of $\mu \in \mathcal{E} \mathcal{L}(S)$.
Proof. By definition of coarse Hausdorff topology, $W_{\epsilon}(\mu)$ is open in $\mathcal{E} \mathcal{L}(S)$. Therefore if the lemma is false, then there exists a sequence $\mathcal{L}_{1}, \mathcal{L}_{2}, \cdots$ such that $\mathcal{L}_{i} \in$ $W_{1 / i}(\mu)$ all i and a $c>0$ such that for all $i, \mathcal{L}_{i} \notin N_{P T(S)}\left(\mu^{\prime}, c\right)$ for all diagonal extensions μ^{\prime} of μ. After passing to subsequence we can assume that $\left\{\mathcal{L}_{i}\right\} \rightarrow \mathcal{L}_{\infty}$ with respect to the Hausdorff topology. If \mathcal{L}_{∞} is not a diagonal extension of μ, then \mathcal{L}_{∞} is transverse to each diagonal extension of μ and hence there exists an $\epsilon>0$ such that $d_{P T(S)}\left(\mu^{\prime}, \mathcal{L}_{i}\right)>\epsilon$ for all i sufficiently large and every diagonal extension of μ, a contradiction.

Lemma 4.2. Let $\mu \in \mathcal{E} \mathcal{L}(S), \mu^{\prime}$ a diagonal extension and $x_{1}, x_{2}, \cdots \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\lim _{i \rightarrow \infty} d_{P T(S)}\left(\phi\left(x_{i}\right), \mu^{\prime}\right)=0$, then after passing to subsequence $x_{i} \rightarrow$ $x_{\infty} \in \phi^{-1}(\mu)$.

Proof. After passing to subsequence we can assume that $x_{i} \rightarrow x_{\infty} \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$. If $\phi\left(x_{\infty}\right) \neq \mu$, then $\phi\left(x_{\infty}\right)$ intersects μ transversely. Let $p \in \phi\left(x_{\infty}\right) \cap \mu$ and L the leaf of μ containing p. Then $\phi\left(x_{\infty}\right)$ intersects L at p at some angle $\theta>0$. By super convergence, for i sufficiently large $\phi\left(x_{i}\right)$ intersects μ at $p_{i} \in L$ at angle θ_{i}, where p_{i} is very close to p (distance measured intrinsically in L) and θ_{i} is very close to θ. Since every leaf of μ^{\prime} is dense in μ, it follows that there exists $N>0$ such that if J is a segment of a leaf of μ^{\prime} at least length N and i is sufficiently large, then $J \cap \phi\left(x_{i}\right) \neq \emptyset$ with angle of intersection at some point at least $\theta / 2$. Thus $d_{P T(S)}\left(\phi\left(x_{i}\right), \mu^{\prime}\right)$ must be uniformly bounded below, else some $\phi\left(x_{i}\right)$ would have a transverse self intersection.

Lemma 4.3. If $K \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $L \subset \mathcal{E} \mathcal{L}(S)$ are compact and $K \cap \phi^{-1}(L)=\emptyset$, then there exists $\delta>0$ such that if $d_{P T(S)}(\phi(x), \mu)<\delta$ where $x \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mu \in L$, then $x \notin K$.

Proof. Otherwise there exists sequences $x_{1}, x_{2}, \cdots \rightarrow x_{\infty}, \mu_{1}, \mu_{2}, \cdots \rightarrow \mu_{\infty}$ such that the $x_{i}^{\prime} s \in K$ and the $\mu_{j}^{\prime} s \in L$ and $\lim _{i \rightarrow \infty} d_{P T(S)}\left(\phi\left(x_{i}\right), \mu_{i}\right)=0$. After passing to subsequence we can assume that the μ_{i} 's converge to a diagonal extension of μ_{∞}. This contradicts Lemma 4.2.

Lemma 4.4. If $L \subset \mathcal{E L}(S)$ is compact and $U \subset \mathcal{P M} \mathcal{L}(S)$ is open such that $\phi^{-1}(L) \subset U$, then there exists a neighborhood V of L such that $\phi^{-1}(V) \subset U$.
Proof. Let $W_{\epsilon}(L)=\left\{\mathcal{L} \in \mathcal{E} \mathcal{L}(S) \mid d_{P T(S)}\left(\mathcal{L}, \mu^{\prime}\right)<\epsilon, \mu^{\prime}\right.$ is a diagonal extension of $\mu \in$ $L\}$. Then $W_{\epsilon}(L)$ is open and for ϵ sufficiently small $\phi^{-1}\left(W_{\epsilon}(L)\right) \subset U$ otherwise taking $K=\mathcal{P} \mathcal{M L}(S) \backslash U$ one obtains a contradiction to the previous lemma.

Lemma 4.5. Let $\mu \in \mathcal{E} \mathcal{L}(S)$ and $\mathcal{M}_{1}, \mathcal{M}_{2}, \cdots$ a sequence of markers such that for every $i \in \mathbb{Z}, \mathcal{M}_{i}$ is a $1 / i$-marker hit by μ. If $U_{i}=\left\{\mathcal{L} \in \mathcal{E} \mathcal{L}(S) \mid \mathcal{L}\right.$ hits $\left.\mathcal{M}_{i}\right\}$, then $\mathcal{U}=\left\{U_{i}\right\}$ is a neighborhood basis of μ in $\mathcal{E} \mathcal{L}(S)$.

Proof. By definition of $1 / i$-marker, if \mathcal{L} hits \mathcal{M}_{i}, then $d_{P T(S)}(\mathcal{L}, \mu)<1 / i$. Therefore, for all $i, U_{i} \subset W_{1 / i}$. Since each U_{i} is open in $\mathcal{E} \mathcal{L}(S)$ the result follows.

Lemma 4.6. Let $\mu \in \mathcal{E} \mathcal{L}(S)$. For each $\epsilon>0$ there exists $\delta>0$ such that if $\left\{\mathcal{L}^{1}, \mathcal{L}^{2}, \cdots, \mathcal{L}^{k}, z\right\} \subset \mathcal{L}(S), d_{P T(S)}\left(\mathcal{L}^{k}, z\right)<\delta, d_{P T(S)}\left(\mathcal{L}^{i}, \mathcal{L}^{i+1}\right)<\delta$ for $1 \leq$ $i \leq k-1$ and $d_{P T(S)}\left(\mu^{\prime}, \mathcal{L}^{1}\right)<\delta$ for some diagonal extension μ^{\prime} of μ, then $d_{P T(S)}(\mu, z)<\epsilon$.

Proof. We give the proof for $k=1$, the general case being similar. If the Lemma is false, then there exists a sequence $\left(\mathcal{L}_{i}, z_{i}, \delta_{i}\right)$ for which the lemma fails, where $\delta_{i} \rightarrow 0$. After passing to subsequence we can assume that $\mathcal{L}_{i} \rightarrow \mathcal{L}_{\infty}$ and $z_{i} \rightarrow z_{\infty}$ with respect to the Hausdorff topology. Since z_{∞} is nowhere tangent to μ, it is transverse to μ. Since the ends of every leaf of every diagonal extension of μ is dense in μ and μ is filling, there exists $K>0$ such that any length K immersed segment lying in a leaf of z_{∞} intersects any length K segment lying in any diagonal extension of μ at some angle uniformly bounded away from 0 . Thus a similar statement holds for each z_{i}, i sufficiently large, where K is replaced by $K+1$. Therefore if δ_{i} is sufficiently small and i is sufficiently large, then \mathcal{L}_{i} has length $K+2$ immersed segments σ_{1}, σ_{2} such that σ_{1} is nearly parallel to a leaf of μ^{\prime} and σ_{2} is nearly parallel to a leaf of z_{i}. This implies that σ_{1} nontrivially intersects σ_{2} transversely, a contradiction.

Lemma 4.7. Let $\epsilon>0$. Let $\tau_{1}, \tau_{2}, \cdots$ be a full unzipping sequence of the transversely recurrent train track τ_{1}. If each τ_{i} fully carries the geodesic lamination \mathcal{L}, then there exists $N>0$ such that if \mathcal{L}_{1} is carried by τ_{i}, for some $i \geq N$, then $d_{P T(S)}\left(\mathcal{L}_{1}, \mathcal{L}\right)<\epsilon$.
Proof. This follows from the proof of Lemma 1.7.9 [PH] (see also Proposition 1.9 [G1]). That argument shows that each biinfinite train path of each τ_{i} is a uniform quasi-geodesic and that given $L>0$, there exists $N>0$ such that any length L segment lying in a leaf of a lamination carried by $\tau_{i}, i \geq N$, is isotopic to a leaf of \mathcal{L} by an isotopy such that the track of a point has uniformly bounded length.

Lemma 4.8. If τ is a train track that carries $\mu \in \mathcal{E} \mathcal{L}(S)$, then τ fully carries a diagonal extension of μ.

Proof. By analyzing the restriction of τ to each closed complementary region of μ, it is routine to add diagonals to μ to obtain a lamination fully carried by τ.

Lemma 4.9. Let κ be a transversely recurrent train track that carries $\mu \in \mathcal{E} \mathcal{L}(S)$. Given $\delta>0$ there exists $N>0$ so that if τ is obtained from κ by a sequence of $\geq N$ full splittings (i.e. along all the large branches) and τ carries both μ and $\mathcal{L} \in \mathcal{L}(S)$, then $d_{P T(S)}(\mathcal{L}, \mu)<\delta$.

Proof. It suffices to show that $d_{P T(S)}\left(\mathcal{L}, \mu^{\prime}\right)<\delta_{1}$ for some diagonal extension μ^{\prime} of μ and some $\delta_{1}>0$, that depends on δ and μ. Since there are only finitely many train tracks obtained from a given finite number of full splittings of κ it follows that if the lemma is false, then there exist $\tau_{1}, \tau_{2}, \cdots$ such that $\tau_{1}=\kappa, \tau_{i}$ is a full splitting of τ_{i-1} and for each $i \in \mathbb{N}$ there exists $\mathcal{L}_{i} \in \mathcal{L}(S)$ carried by some splitting of $\tau_{n_{i}}$ with $d_{P T(S)}\left(\mathcal{L}_{i}, \mu\right)>\delta$ and $n_{i} \rightarrow \infty$. Note that \mathcal{L}_{i} is also carried by $\tau_{n_{i}}$. Since μ has only finitely many diagonal extensions we can assume from the previous lemma that each τ_{i} fully carries a fixed diagonal extension μ^{\prime} of μ.

On the other hand, there is a full unzipping sequence $\tau_{1}^{\prime}=\tau_{1}, \tau_{2}^{\prime}, \cdots$ with the property that each τ_{i}^{\prime} carries exactly the same laminations as some $\tau_{m_{i}}$ and $m_{i} \rightarrow$ ∞. Thus by Lemma 4.7 it follows that for i sufficiently large $d_{P T(S)}\left(\mathcal{L}_{i}, \mu^{\prime}\right)<\delta_{1}$, a contradiction.

For once and for all fix a parametrized pants decomposition of S, with the corresponding finite set of standard train tracks.

Proposition 4.10. Given $\epsilon>0, \mu \in \mathcal{E} \mathcal{L}(S)$, there exists $N>0, \delta>0$ such that if τ is obtained from a standard train track by N full splittings and τ carries μ, then the following holds. If $\mathcal{L} \in \mathcal{L}(S)$ is carried by $\tau, z \in \mathcal{L}(S)$ and $d_{P T(S)}(\mathcal{L}, z)<\delta$, then $d_{P T(S)}(\mu, z)<\epsilon$. In particular, if \mathcal{L} is carried by τ, then $d_{P T(S)}(\mu, \mathcal{L})<\epsilon$.
Proof. Apply Lemmas 4.9 and 4.6.

5. A CRITERION FOR CONSTRUCTING CONTINUOUS MAPS OF COMPACT MANIFOLDS INTO $\mathcal{E} \mathcal{L}(S)$

This section is a generalization of the corresponding one of [G1] where a criterion was established for constructing continuous paths in $\mathcal{E} \mathcal{L}(S)$. Our main result is much more general and is technically much simpler to verify. It will give a criterion for extending a continuous map $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ to a continuous map $\mathcal{L}: B^{k} \rightarrow$ $\mathcal{E} \mathcal{L}(S)$, though it is stated in a somewhat more general form.

Recall that our compact surface S is endowed with a fixed hyperbolic metric. Let $\left\{C_{i}\right\}_{i \in \mathbb{N}}$ denote the set of simple closed geodesics in S.

Notation 5.1. If \mathcal{U}_{j} is a finite open cover of a compact set V, then its elements will be denoted by $U_{j}(1), \cdots U_{j}\left(k_{j}\right)$.

Proposition 5.2. Let V be the underlying space of a finite simplicial complex and W the subspace of a subcomplex. Let $g: W \rightarrow \mathcal{E} \mathcal{L}(S)$ and for $i \in \mathbb{N}$ let $f_{i}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be continuous extensions of g. Let $\mathcal{L}_{m}(t)$ denote $\phi\left(f_{m}(t)\right)$. Let $\epsilon_{1}, \epsilon_{2}, \cdots$ be such that for all $i, \epsilon_{i} / 2>\epsilon_{i+1}>0$. Let $\mathcal{U}_{1}, \mathcal{U}_{2}, \cdots$ be a sequence of finite open covers of V. Suppose that each $U_{j}(k)$ is assigned both an ϵ_{j}-marker $\alpha_{j}(k)$ and a C_{j}-marker $\beta_{j}(k)$. Assume that the following two conditions hold.
(sublimit) For each $t \in U_{j}(k)$ and $m \geq j, \mathcal{L}_{m}(t)$ hits $\alpha_{j}(k)$.
(filling) For each $t \in U_{j}(k)$ and $m \geq j, \mathcal{L}_{m}(t)$ hits $\beta_{j}(k)$.
Then there exists a continuous map $\mathcal{L}: V \rightarrow \mathcal{E} \mathcal{L}(S)$ extending g so that for $t \in V, \mathcal{L}(t)$ is the coarse Hausdorff limit of $\left\{\mathcal{L}_{m}(t)\right\}_{m \in \mathbb{N}}$.

Proof. Fix t. We first construct a minimal and filling $\mathcal{L}(t)$. After passing to subsequence we can assume that the sequence $\mathcal{L}_{m_{i}}(t)$ converges in the Hausdorff topology to a lamination $\mathcal{L}^{\prime}(t)$. If $t \in U_{i}(j)$, then the filling and sublimit conditions imply that if $k>i$, then some arcs $\gamma_{i}(k), \sigma_{i}(k)$ in leaves of $\mathcal{L}_{k}(t)$ respectively span the ϵ_{i} and C_{i}-markers $\alpha_{i}(j)$ and $\beta_{i}(j)$. This implies that arcs in $\mathcal{L}^{\prime}(t)$ span the corresponding closed markers and hence, $\mathcal{L}^{\prime}(t)$ intersects each C_{i} transversely and hence $\mathcal{L}^{\prime}(t)$ contains no closed leaves. Thus spanning arcs in $\mathcal{L}^{\prime}(t)$ are embedded (as opposed to wrapping around a closed geodesic) and hence $\left|\mathcal{L}^{\prime}(t) \cap C_{i}\right|>4 g+p+1$ for all i. Let $\mathcal{L}(t)$ be a minimal sublamination of $\mathcal{L}^{\prime}(t)$. If $\mathcal{L}(t)$ is not filling, then there exists a simple closed geodesic C, disjoint from $\mathcal{L}(t)$ that can be isotoped into any neighborhood of $\mathcal{L}(t)$ in S. An elementary topological argument shows that $\left|C \cap \mathcal{L}^{\prime}(t)\right| \leq 4 g+p+1$, contradicting the filling condition.

We next show that $\mathcal{L}(t)$ is independent of subsequence. Let $\mathcal{L}_{0}^{\prime}(t) \in \mathcal{E} \mathcal{L}(S)$ be a lamination that is the Hausdorff limit of the subsequence $\left\{\mathcal{L}_{k_{i}}(t)\right\}$ and $\mathcal{L}_{0}(t)$ the sublamination of $\mathcal{L}_{0}^{\prime}(t)$ in $\mathcal{E} \mathcal{L}(S)$. By the sublimit condition each of $\mathcal{L}^{\prime}(t), \mathcal{L}_{0}^{\prime}(t)$ have arcs that span the same set $\left\{\bar{\alpha}_{i}\right\}$ of closed markers, where α_{i} is an ϵ_{i}-marker with associated open set $U_{i} \subset V$, where $t \in U_{i}$. Since $\epsilon_{i} \rightarrow 0$, the lengths of the initial posts $\left\{\alpha_{i_{0}}\right\}$ go to 0 . Thus after passing to a subsequence of the initial posts, $\left\{\alpha_{i_{0}}\right\} \rightarrow x \in S$. Now let $v_{i_{j}}$ be the unit tangent vector to the initial point of some spanning arc of $\alpha_{i_{j}}$. After passing to another subsequence, $v_{i_{j}} \rightarrow v$ a unit tangent vector to x. The sublimit condition implies that v is tangent to a leaf of both $\mathcal{L}^{\prime}(t)$ and $\mathcal{L}_{0}^{\prime}(t)$ and hence $\mathcal{L}^{\prime}(t)$ and $\mathcal{L}_{0}^{\prime}(t)$ have a leaf in common. It follows that $\mathcal{L}(t)=\mathcal{L}_{0}(t)$.

We apply Lemma 1.9 to show that f is continuous at t. Let v and $\left\{\alpha_{i_{j}}\right\}_{i \in \mathbb{N}}$ be as in the previous paragraph, where $\left\{\alpha_{i_{j}}\right\}_{i \in \mathbb{N}}$ is the final subsequence produced in that paragraph. Fix $\epsilon>0$. There exists $N \in \mathbb{N}$ such that for $i \geq N, d_{P T(S)}\left(v_{i_{j}}^{\prime}, v\right) \leq \epsilon$ where $v_{i_{j}}^{\prime}$ is any unit tangent vector to the initial point of a spanning arc of $\bar{\alpha}_{i_{j}}$. Therefore if $m \geq N_{j}$ and $s \in U_{N_{j}}$, then $d_{P T(S)}\left(\mathcal{L}_{m}(s), v\right) \leq \epsilon$. Since this is true for all $m \geq N_{j}$ it follows that for all $s \in U_{N_{j}}, \quad d_{P T(S)}\left(\mathcal{L}^{\prime}(s), \mathcal{L}^{\prime}(t)\right) \leq \epsilon$.

6. Pushing off of B_{C}

Given a generic PL map $f: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ and a simple closed geodesic C, this section will describe homotopies of f such that if f_{1} is a resulting map, then $f_{1}^{-1}\left(B_{C}\right)=\emptyset$. The map f_{1} is said to be obtained from f by pushing off of C. Various technical properties associated with such push off's will be obtained. The concept of relatively pushing f off of C will be introduced and analogous technical results will be established. In subsequent sections we will produce a sequence f_{1}, f_{2}, \cdots satisfying the hypothesis of Proposition 5.2 , where f_{i+1} is obtained by relatively pushing f_{i} off of a finite set of geodesics, one at a time.

Remark 6.1. Recall the convention that n is chosen so that $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$. Let C be a simple closed geodesic. Let λ_{C} denote the projective measure lamination with support C. As in [G1], we denote by B_{C} the PL $2 n$-ball consisting of those projective measured laminations that have intersection number 0 with λ_{C}. Recall that B_{C} is the cone of the PL $(2 n-1)$-sphere δB_{C} to λ_{C}, where δB_{C} consists of those points of B_{C} which do not have C as a leaf. Furthermore, if $x \in B_{C} \backslash \lambda_{C}$, then $x=p\left((1-t) \hat{\lambda}+t \hat{\lambda}_{C}\right)$, for some $\hat{\lambda} \in \mathcal{M} \mathcal{L}(S)$ representing a unique $\lambda \in \delta C$, some $\hat{\lambda}_{C} \in \mathcal{M L}(S)$ representing λ_{C} and some $t<1$.
Definition 6.2. The ray through $x \in B_{C} \backslash \lambda_{C}$ is the set of points $r(x)$ in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ represented by measured laminations of the form $\left\{t \hat{\lambda}+(1-t) \hat{\lambda}_{C} \mid 0 \leq t \leq 1\right\}$ where $\hat{\lambda}$ and $\hat{\lambda}_{C}$ are as above. If $K \subset B_{C}$ and $K \cap \lambda_{C}=\emptyset$, then define $r(K)=\cup_{x \in K} r(x)$.
Remarks 6.3. Note that $r(x)$ is well defined and $r(K)$ is compact if K is compact.
Using the methods of [Th1], $[\mathrm{PH}]$ or [G1] it is routine to show that there exists a neighborhood of B_{C} homeomorphic to $2 B^{2 n} \times[-1,1]$, where $2 B^{2 n}$ denotes the radius- $22 n$-ball about the origin in $\mathbb{R}^{2 n}$, such that B_{C} is identified with $B^{2 n} \times 0$, λ_{C} is identified with $(0,0)$ and for each $x \in B_{C} \backslash \lambda_{C}, r(x)$ is identified with a ray through the origin with an endpoint on $S^{2 n-1} \times 0$.

While the results in this section are stated in some generality, on first reading one should imagine that if $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$, then $V=B^{k}$ and $f^{-1}(\mathcal{E} \mathcal{L}(S))=S^{k-1}$, where $k \leq 2 n$.

Definition 6.4. Let V be the underlying space of a finite simplicial complex and W that of a subcomplex. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ and $W=f^{-1}(\mathcal{E} \mathcal{L}(S))$, then the generic PL map $f_{1}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is said to be obtained from f by δ-pushing off of B_{C} if there exists a homotopy $F: V \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$, called a (C, δ) push off homotopy such that
i) $f_{1}^{-1}\left(B_{C}\right)=\emptyset$,
ii) $F(t, s)=f(t)$ if either $s=0$ or $d_{V}\left(t, f^{-1}\left(B_{C}\right)\right) \geq \delta$ or $d_{V}(t, W) \leq \delta$ or $\left.d_{\mathcal{P M \mathcal { L }}(S)}\left(f(t), B_{C}\right)\right) \geq \delta$ and
iii) for each $t \in V$ such that $d_{\mathcal{P M L}(S)}\left(f(t), B_{C}\right)<\delta$ there exists an $x \in f(V) \cap B_{C}$ such that for all $s \in[0,1], d_{\mathcal{P M \mathcal { L }}(S)}(F(t, s), r(x))<\delta$. Furthermore if $F(t, s) \in B_{C}$, then $F(t, s) \in r(f(t))$.

Lemma 6.5. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E L}(S)$ is a generic $P L$ map, $\operatorname{dim}(V) \leq 2 n$ and C is a simple closed geodesic, then for all sufficiently small $\delta>0$ there exists a (C, δ) push off homotopy of f.
Proof. It follows by super convergence and compactness that if C is a simple closed geodesic, then $f^{-1}\left(B_{C}\right)$ is a compact set disjoint from some neighborhood
of W. By genericity of f, i.e. Lemma 2.4, there exists an $\epsilon_{1}>0$ such that $d_{\mathcal{P M}(S)}\left(f(V), \lambda_{C}\right) \geq \epsilon_{1}$. Consider a natural homotopy $F_{\epsilon}:\left(\left(2 B^{2 n} \backslash \epsilon B^{2 n}\right) \times\right.$ $[-1,1]) \times I \rightarrow 2 B^{2 n} \times[-1,1]$ from the inclusion to a map whose image is disjoint from $B^{2 n} \times 0$, which is supported in an ϵ-neighborhood of $\left(B^{2 n} \backslash \epsilon B^{2 n}\right) \times 0$ and where points in $\left(B^{2 n} \backslash \epsilon B^{2 n}\right) \times 0$ are pushed radially out from the origin. Let $g: N\left(B_{C}\right) \rightarrow 2 B^{2 n} \times[-1,1]$ denote the parametrization given by Remark 6.3. The desired (C, δ)-homotopy is obtained by appropriately interpolating the trivial homotopy outside of a very small neighborhood of $f^{-1}\left(B_{C}\right)$ with $g^{-1} \circ F_{\epsilon} \circ g \circ f$ restricted to a small neighborhood of $f^{-1}\left(B_{C}\right)$ where ϵ is sufficiently small and then doing a small perturbation to make f_{1} generic.

Lemma 6.6. Let C be a simple closed geodesic and $f: V \rightarrow \mathcal{P M} \mathcal{L E} \mathcal{L}(S)$ be a generic PL map with $\operatorname{dim}(V) \leq 2 n$. Let \mathcal{J} be a marker family of V hit by f that is free of C. If δ is sufficiently small, then any (C, δ) homotopy F from f to f_{1} is \mathcal{J} marker preserving, free of C.

Proof. Since there are only finitely many markers in a marker family, it suffices to show that if $K \subset V$ is compact and $\phi(f(t))$ hits the marker \mathcal{M} free of C at all $t \in K$, then for δ sufficiently small $\phi(F(t, s))$ hits \mathcal{M} free of C at all $t \in K$ and $s \in I$. This is a consequence of super convergence and compactness. Indeed, if $x \in f(K) \cap B_{C}$, then there exists a leaf of $\phi(x)$ distinct from C hits \mathcal{M}. Since all points in $r(x) \backslash \lambda_{C}$ have the same underlying lamination this fact holds for all $y \in r(x)$. By super convergence it holds at all points in a neighborhood of $r(x)$ in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. Let U be the union of these neighborhoods over all $x \in f(K) \cap B_{C}$. By compactness of K and B_{C}, there exists a $\eta>0$ such that if $y \in B_{C}$ and $d_{\mathcal{P M \mathcal { L }}(S)}(y, f(t)) \leq \eta$ for some $t \in K$, then $N_{\mathcal{P} \mathcal{M L}(S)}(r(y), \eta) \subset U$. Any (C, δ) homotopy with $\delta<\eta$ satisfies the conclusion of the lemma.

Definition 6.7. If $x \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and A is a simple closed geodesic, then define $g(x, A) \in \mathbb{Z}_{>0} \cup \infty$ the geometric intersection number of x with A by $g(x, A)=$ $\min \left\{\mid \phi(x) \cap A^{\prime} \| A^{\prime}\right.$ is isotopic to $\left.A\right\}$. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ define the geometric intersection number of f with A by $g(f, A)=\min \{g(\phi(f(t)), A) \mid t \in V\}$. If $0<$ $g(f, A)<\infty$, then we say that the multi-geodesic J is a stryker curve for A if for some $t \in V, J \subset \phi(f(t))$ and $|J \cap A|=g(f, A)$. We call J the $f(t)$-stryker curve or sometimes the stryker curve at $f(t)$.

Remark 6.8. Note that $\left|\phi(x) \cap A^{\prime}\right|$ is minimized when $A=A^{\prime}$ unless A is a leaf of $\phi(x)$ in which case $g(x, A)=0$.

Lemma 6.9. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E L}(S), A$ is a simple closed geodesic and $0<$ $g(f, A)<\infty$, then the set of stryker curves is finite. Also $m(f, A)=\{t \in$ $V \| \phi(f(t)) \cap A \mid=g(f, A)\}$ is compact. Finally $m(f, A)$ is the disjoint union of the compact sets $m_{J_{1}}(f, A), \cdots, m_{J_{m}}(f, A)$ where $t \in m_{J_{i}}(f, A)$ implies that J_{i} is the stryker curve at $f(t)$.

Proof. Super convergence implies that $V \backslash m(f, A)$ is open, hence $m(f, A)$ is compact. If the first assertion is false, then there exists t_{1}, t_{2}, \cdots converging to t such that if J_{i} denotes the stryker curve at t_{i}, then the J_{i} 's are distinct. By compactness, $t \in m(f, A)$, so let J be the stryker curve at t. Super convergence implies that if s is sufficiently close to t, then either $s \notin m(f, A)$ or J is the stryker curve at s, a contradiction. The final assertion again follows from super convergence.

Lemma 6.10. Let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic $P L$ map and A and C disjoint simple closed geodesics such that $0<g(f, A)<\infty$. Then for δ sufficiently small, any (C, δ) push off f_{1} satisfies $g\left(f_{1}, A\right) \geq g(f, A)$. If equality holds and J is a stryker curve for f_{1}, then J is a stryker curve for f.
Proof. If $t \in f^{-1}\left(B_{C}\right)$, then $|(\phi(f(t)) \backslash C) \cap A|=|\phi(f(t)) \cap A| \geq g(f, A)$. By super convergence there exists a neighborhood U^{\prime} of $r(f(t))$ such that $y \in U^{\prime}$ implies that $g(\phi(y), A) \geq g(f, A)$ and hence there exists a neighborhood U of $r\left(f(V) \cap B_{C}\right)$ with the same property. If δ is sufficiently small to have any (C, δ) push off homotopy supported in U, then $g\left(f_{1}, A\right) \geq g(f, A)$.

Now assume that equality holds. If $t \in m(f, A) \cap f^{-1}\left(B_{C}\right)$ and J is the stryker curve at $f(t)$, then by super convergence there exists a neighborhood U^{\prime} of $r(f(t))$ such that if $x \in U^{\prime}$ and $g(x, A)=g(f, A)$, then J is the stryker curve at x. Thus, there exists a neighborhood U of $f(V) \cap B_{C}$ such that $x \in U$ and $g(x, A)=g(f, A)$, then the stryker curve at x is a stryker curve of f. If δ is sufficiently small to have any (C, δ) push off of f supported in U, then the second conclusion holds.

This argument proves the following sharper result.
Lemma 6.11. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ and $\eta>0$, then there exists $\delta>0$ such that if δ is sufficiently small and f_{1} is the result of $a(C, \delta)$ push off homotopy of f, then $m\left(f_{1}, A\right) \subset N_{V}(m(f, A), \eta)$ and if $t \in m\left(f_{1}, A\right)$ and $d_{V}\left(t, m_{J_{i}}(f, A)\right)<\eta$, then J_{i} is the stryker curve at $f_{1}(t)$.

We need relative versions of generalizations of the above results.
Definition 6.12. Let V be the underlying space of a finite simplicial complex and W that of a finite subcomplex. Let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic PL map with $f^{-1}(\mathcal{E} \mathcal{L}(S))=W$. Let $K \subset f^{-1}\left(B_{C}\right)$ be closed. We say that the generic PL $\operatorname{map} f_{1}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is obtained from f by (C, δ, K) pushing off if there exists a homotopy $F: V \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ called a (C, δ, K) push off homotopy such that
i) $f_{1}(K) \cap B_{C}=\emptyset$,
ii) $F(t, s)=f(t)$ if either $s=0$ or $d_{V}(t, K) \geq \delta$ or $d_{V}(t, W) \leq \delta$ or $d_{\mathcal{P M \mathcal { L }}(S)}(f(t), f(K)) \geq$ δ.
iii) for each $t \in V$ such that $d_{\mathcal{P M L}(S)}(f(t), f(K))<\delta$ there exists an $x \in r(f(K))$ such that for all $s \in[0,1], \quad d_{\mathcal{P} \mathcal{M L}(S)}(F(t, s), r(x))<\delta$. Furthermore, if $F(t, s) \in$ B_{C}, then $F(t, s) \in r(f(t))$ and if $f_{1}(t) \in \operatorname{int}\left(B_{C}\right)$, then $f(t) \in \operatorname{int}\left(B_{C}\right)$.
Lemma 6.13. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is a generic $P L$ map, $\operatorname{dim}(V) \leq 2 n, C a$ simple closed geodesic and K a closed subset of $f^{-1}\left(B_{C}\right)$, then for every sufficiently small $\delta>0$ there exists a (C, δ, K) push off homotopy of f.
Proof. For δ sufficiently small let $U \subset V \backslash N_{V}(W, \delta)$ be open such that $K \subset U \subset$ $N_{V}(K, \delta / 10) \cap f^{-1}\left(N_{\mathcal{P M L}(S)}(r(f(K)), \delta / 10)\right)$. Let $\rho: V \rightarrow[0,1]$ be a continuous function such that $\rho(K)=1$ and $\rho(V \backslash U)=0$. If $F(t, s)$ defines a (C, δ) push off homotopy, then $F(t, \rho(t) s)$ suitably perturbed defines a (C, δ, K) push off homotopy.

Lemma 6.14. Let V be a finite p-complex and $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E L}(S)$ a generic $P L$ map, C a simple closed geodesic, $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ a finite q-subcomplex of $\mathcal{C}(S)$ and K a closed subset of $f^{-1}\left(B_{C}\right)$. If $p+q \leq 2 n-1$ or $p \leq n$, then for every sufficiently small $\delta>0$ any (C, δ, K) push off homotopy of f is supported away from L.

Proof. Let $Z=\left(\partial B_{C} \cap L\right) * C$. By Lemma 2.4, $f(V) \cap(Z \cup L)=\emptyset$ and hence $r(f(K)) \cap(Z \cup L)=\emptyset$. Thus the conclusion of the lemma holds provided $\delta<$ $d_{\mathcal{P M L}(S)}(r(f(K)), Z \cup L)$.

We have the following relative version of Lemma 6.6.
Lemma 6.15. Let $b_{1}, b_{2}, \cdots, b_{r}, C$ be simple closed geodesics, $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ a generic $P L$ map and $K \subset f^{-1}\left(B_{C}\right)$ be compact. Let \mathcal{J} be a marker family that is f-free of $\left\{b_{1}, \cdots, b_{r}, C\right\}$. If δ is sufficiently small, then \mathcal{J} is F-free of $\left\{b_{1}, \cdots, b_{r}, C\right\}$ for any (C, δ, K) push off homotopy F of f.

Definition 6.16. Let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$. Let Y be a compact subset of V and A a simple closed geodesic. Define $g(f, A ; Y)=\min \{g(f(t), A) \mid t \in Y\}$, the Y-geometric intersection number of f and A. If $0<g(f, A ; Y)<\infty$, define the Y stryker curves for f and A to be those multi-geodesics σ such that for some $t \in Y$, $\sigma \subset \phi(f(t))$ and $|\sigma \cap A|=g(f, A, Y)$. Define $m(f, A ; Y)=\{t \in Y \mid g(f(t), A)=$ $g(f, A ; Y)\}$ and if σ is a Y-stryker curve then define $m_{\sigma}(f, A ; Y)=\{t \in Y \mid \sigma \subset$ $\phi(f(t))$ and $|\sigma \cap A|=g(f, A, Y)\}$. We say that the set B of simple closed geodesics solely hits the marker \mathcal{M} at t if each leaf of the lamination $\phi(f(t))$ that hits \mathcal{M} lies in B. If $Z \subset V$ then let $S(f, \mathcal{M}, B, Z)$ denote the set of points in Z where f solely hits \mathcal{M}.

The proof of Lemma 6.9 holds for in the relative case.
Lemma 6.17. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S), A$ is a simple closed geodesic, $Y \subset V$ is compact and $0<g(f, A ; Y)$, then the set of Y-stryker curves is finite. Also $m(f, A ; Y)$ is compact and is the disjoint union of compact sets $m_{J_{1}}(f, A ; Y), \cdots, m_{J_{m}}(f, A ; Y)$ where $t \in m_{J_{i}}(f, A ; Y)$ implies that J_{i} is a Y-stryker curve at $f(t)$.

By super convergence we have the following result.
Lemma 6.18. If $f: V \rightarrow \mathcal{P M} \mathcal{L E L}(S)$ is a generic $P L$ map, B is a finite set of simple closed geodesics, $Z \subset V$ is compact, then $S(f, \mathcal{M}, B, Z)$ is compact.

We have the following analogy of Lemma 6.10.
Lemma 6.19. Let $f: V \rightarrow \mathcal{P} \mathcal{M L E L}(S)$, be a generic $P L$ map, $\eta>0$ and A and C disjoint simple closed geodesics. Let K be a closed subset of $f^{-1}\left(B_{C}\right)$ and $Y \subset V$ be compact. If $0<g(f, A ; Y)<\infty$, then there exists a neighborhood U of Y such that for δ sufficiently small, any (C, δ, K) push off f_{1} satisfies $g\left(f_{1}, A ; \bar{U}\right) \geq g(f, A ; Y)$. If equality holds, then $m\left(f_{1}, A ; \bar{U}\right) \subset N_{V}(m(f, A ; Y), \eta)$ and if $t \in m\left(f_{1}, A ; \bar{U}\right)$ and $d_{V}\left(t, m_{J_{i}}(f, A ; Y)\right)<\eta$, then J_{i} is the \bar{U}-stryker curve to A at $f_{1}(t)$.

7. Marker tags

Definition 7.1. Let A be a simple closed multi-geodesic in S. We say that τ is a tag for A, if τ is a compact embedded geodesic curve (with $\partial \tau$ possibly empty) transverse to A such that $\partial \tau \subset A$ and $\operatorname{int}(\tau) \cap A \neq \emptyset$.

Let \mathcal{M} be a marker hit by the simple closed multi-geodesic A. Then $r \geq 3$ distinct subarcs of A span \mathcal{M}, where $r \in \mathbb{N}$ is maximal. These arcs run from α_{0} to α_{1}, the posts of \mathcal{M}. Suppose that the initial points of these arcs intersect α_{0} at c_{1}, \cdots, c_{r}. Let τ be the maximal subarc of α_{0} with endpoints in $\left\{c_{1}, \cdots, c_{r}\right\}$. Such a tag is called a marker tag.

Given $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ that hits the marker \mathcal{M} we may need to find a new f that hits the marker \mathcal{M} free of a particular multi-geodesic. Tags are introduced to measure progress in that effort. We will find a sequence of push off homotopies whose resulting maps intersect a given tag more and more so that we can ultimately invoke the following result.

Lemma 7.2. Let $f: V \rightarrow \mathcal{P M} \mathcal{L E L}(S)$, \mathcal{M} a marker, A a simple closed multigeodesic that hits \mathcal{M} and τ the corresponding marker tag. Let b_{1}, \cdots, b_{r} be simple closed geodesics such that for all $t \in f^{-1}\left(B_{A}\right),\left|\left(\phi(f(t)) \backslash\left(\cup_{i=1}^{r} b_{i} \cup A\right)\right)\right| \cap \tau \geq$ $3(3 g-3+p)$, then \mathcal{M} is f-free of $\left\{A, b_{1}, \cdots, b_{r}\right\}$ along $f^{-1}\left(B_{A}\right)$.

Proof. If $f(t) \in B_{A}$, then any leaf L of $\phi(f(t))$ distinct from A with $L \cap \tau \geq m$ has at least m distinct subarcs that span \mathcal{M}. If L is a non compact leaf of $\phi(f(t))$ and $L \cap \tau \neq \emptyset$, then $|L \cap \tau|=\infty$, since L is non proper. If only closed geodesics of $\phi(f(t))$ intersect τ, then since $\phi(f(t))$ can have at most $3 g-3+p$ such geodesics, one of them L distinct from $\left\{b_{1}, \cdots, b_{r}, A\right\}$ must satisfy $|L \cap \tau| \geq 3$.
Definition 7.3. Let τ be a tag for the multi-geodesic $A, f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ a generic PL map and Y a compact subset of $f^{-1}\left(B_{A}\right)$. Define $g(f, \tau, Y)=$ $\min \{\mid(\phi(f(t)) \backslash A) \cap \tau \| t \in Y\}$ the geometric intersection number of f with τ along Y.

If $0<g(f, \tau, Y)<\infty$, then define the multi-geodesic J to be a Y-stryker curve for τ if $J \subset \phi(f(t)), J \cap A=\emptyset$ and $|J \cap \tau|=g(f, \tau, Y)$.

The proof of Lemma 6.9 readily generalizes to the following result.
Lemma 7.4. If $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is a generic $P L$ map, τ is a tag for the simple closed geodesic A and Y is closed in $f^{-1}\left(B_{A}\right)$, then the set of Y-stryker curves is finite. Also the set $m(f, \tau, Y)=\{t \in Y|g(f, \tau, Y)=|(\phi(f(t)) \backslash A) \cap \tau|\}$ is compact and and canonically partitions as the disjoint union of the compact sets $m_{J_{1}}(f, \tau, Y), \cdots, m_{J_{k}}(f, \tau, Y)$ where J_{i} is the Y-stryker curve to τ at all $t \in$ $m_{J_{i}}(f, \tau, Y)$.

Similarly, Lemma 6.19 generalizes to the following result.
Lemma 7.5. Let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic $P L$ map, τ a tag for the simple closed geodesic A, Y a closed subset of $f^{-1}\left(B_{A}\right)$ and $0<g(f, \tau, Y)<\infty$. Let C be a simple closed geodesic such that $C \cap(A \cup \tau)=\emptyset$ and K a closed subset of $f^{-1}\left(B_{C}\right)$. If $\eta>0$, then there exists a neighborhood U of Y such that for δ sufficiently small, any (C, δ, K) push off f_{1} satisfies $g\left(f_{1}, \tau, Y_{1}\right) \geq g(f, \tau, Y)$, where $Y_{1}=f_{1}^{-1}\left(B_{A}\right) \cap \bar{U}$. If equality holds, then $m\left(f_{1}, \tau, Y_{1}\right) \subset N_{V}(m(f, \tau, Y), \eta)$ and if $t \in m\left(f_{1}, \tau, Y_{1}\right)$ and $d_{V}\left(t, m_{J_{i}}(f, \tau, Y)\right)<\eta$, then J_{i} is the Y_{1} stryker curve to τ at $f_{1}(t)$. In particular if J is a Y_{1}-stryker curve for f_{1} and τ, then J is a Y-stryker curve for f and τ.

8. Marker Cascades

This very technical section begins to address the following issue. To invoke Proposition 5.2 we need to find a sequence f_{1}, f_{2}, \cdots satisfying the sublimit and filling conditions, in particular satisfying the property that $f_{j}^{-1}\left(B_{C_{i}}\right)=\emptyset$ for $i \leq j$. We cannot just create f_{i} from f_{i-1} by pushing off of C_{i}, because C_{i} may be needed to hit previously constructed markers. To make C_{i} free of these markers we may need to relatively push off of other curves. We may not be able to push off of those
curves because they in turn are needed to hit markers. In subsequent sections we shall see that finiteness of S, genericity of f and the $k \leq n$ condition will force this process to terminate. Thus before we push off of C_{i} we will do a sequence of relative push offs of other curves.

We introduce the notion of marker cascade to keep track of progress. Given f : $V \rightarrow \mathcal{P} \mathcal{M L E} \mathcal{L}(S)$, markers $\mathcal{M}_{1}, \cdots, \mathcal{M}_{m}$ and pairwise disjoint simple closed curves a_{1}, \cdots, a_{v} a marker cascade is a (complicated) measure of how far $\mathcal{M}_{1}, \cdots, \mathcal{M}_{m}$ are from being free of a_{1}, \cdots, a_{v}. At the end of this section we will show that under appropriate circumstances relative pushing preserves freedom as measured by a marker cascade. The next section shows that judicious relative pushing increases the level of freedom. See Proposition 9.1.

Definition 8.1. Let V be the underlying space of a finite simplicial complex. Associated to $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ a generic PL map, $\mathcal{J}=\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ a marker family hit by $f, \mathcal{M}_{1}<\cdots<\mathcal{M}_{m}$ the ordering induced from this enumeration and a_{1}, \cdots, a_{v} a sequence of pairwise disjoint simple closed geodesics we define a marker cascade \mathcal{C} which is a $v+1$-tuple $\left(\mathcal{A}_{1}, \cdots, \mathcal{A}_{v}, \mathcal{P}\right)$ where each \mathcal{A}_{i} is a 3 -tuple $\left(\mathcal{A}_{i}(i), \mathcal{A}_{i}(i i), \mathcal{A}_{i}(i i i)\right)$ that is defined below and \mathcal{P} is a finite set of v-tuples defined in Definition 8.5. To start with \mathcal{A}_{i} is organized as follows.
$\mathcal{A}_{i}(i)$ is either a marker $\mathcal{M}_{i_{j}}$ or ∞.
$\mathcal{A}_{i}(i i) \in \mathbb{Z}_{\geq 0} \cup \infty$ is the geometric intersection number of f with the tag τ_{i} associated to a_{i} and $\mathcal{M}_{i_{j}}$ along the compact set $m_{i}(\mathcal{C}) \subset V$, unless $\mathcal{A}_{i}(i)=\infty$ in which case $\mathcal{A}_{i}(i i)=\infty$.
$\mathcal{A}_{i}(i i i)$ is the set of stryker curves for τ_{i} along the compact set $m_{i}(\mathcal{C}) \subset V$ unless $\mathcal{A}_{i}(i i)=\infty$ in which case $\mathcal{A}_{i}(i i i)=\infty$.

We define the \mathcal{A}_{i} 's and the auxiliary $m_{i}(\mathcal{C})$'s as follows.
$\mathcal{A}_{1}(i)$ is defined to be the maximal marker $\mathcal{M}_{1_{j}}$ such that \mathcal{M}_{i} is f-free of a_{1} along W_{i} for all $i<1_{j}$. If a_{1} is free of \mathcal{J}, then define $\mathcal{A}_{1}(i)=\infty$.

If $\mathcal{M}_{1_{j}}$ exists, then define τ_{1} to be the marker tag associated to a_{1} and $\mathcal{M}_{1_{j}}$ and define $m_{1}(\mathcal{C})=\left\{t \in S\left(f, a_{1}, \mathcal{M}_{1_{j}}, W_{1_{j}}\right)\left|g\left(f, \tau_{1}, S\left(f, a_{1}, \mathcal{M}_{1_{j}}, W_{1_{j}}\right)\right)=\right|(\phi(f(t)) \backslash\right.$ $\left.\left.a_{1}\right) \cap \tau_{1} \mid\right\}$.
$\mathcal{A}_{1}(i i)=g\left(f, \tau_{1}, m_{1}(\mathcal{C})\right)$ if $m_{1}(\mathcal{C}) \neq \emptyset$ or $\mathcal{A}_{1}(i i)=\infty$ otherwise.
$\mathcal{A}_{1}($ iii $)$ is defined to be Stryker ${ }_{1}$ the set of $m_{1}(\mathcal{C})$)-stryker curves for τ_{1}, unless $\mathcal{A}_{1}(i i)=\infty$ in which case $\mathcal{A}_{1}(i i i)=\infty$.

Having defined $\mathcal{A}_{i}, i<u$, then \mathcal{A}_{u} is defined as follows. (The reader is encouraged to first read Remark 8.2). To start with define $B_{u}^{1}, \cdots, B_{u}^{m}$ where $B_{u}^{r}=$ $\left\{b_{1}^{r}, \cdots, b_{u}^{r}\right\}$, where $b_{u}^{r}=a_{u}$ and for $q<u, b_{q}^{r}=a_{q}$ if $r<q_{j}$ and $b_{q}^{r}=\emptyset$ otherwise.
$\mathcal{A}_{u}(i)$ is defined to be either the maximal marker $\mathcal{M}_{u_{j}}$, such that $r<u_{j}$ implies that \mathcal{M}_{r} is free of B_{u}^{r} along $m_{u-1}(\mathcal{C}) \cap W_{r}$ or $\mathcal{A}_{u}(i)=\infty$ if for all $r \leq m, \mathcal{M}_{r}$ is free of B_{u}^{r} along $m_{u-1}(\mathcal{C}) \cap W_{r}$.

Remark 8.2. In words $\mathcal{A}_{u}(i)=\mathcal{M}_{u_{j}}$ is the maximal marker such that all lower markers are free of $\left\{a_{1}, \cdots, a_{u}\right\}$, where applicable. Where applicable means two things. First, the only relevant points are those of $m_{u-1}(\mathcal{C})$. Second if say $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$ are free of a_{1} but \mathcal{M}_{4} is not and along $m_{1}(\mathcal{C}), \mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$ are free of $\left\{a_{1}, a_{2}\right\}$ and $\mathcal{M}_{4}, \mathcal{M}_{5}$ are free of a_{2} but \mathcal{M}_{6} is not free of a_{2}, then $\mathcal{M}_{2_{j}}=\mathcal{M}_{6}$. In particular, a_{1} is irrelevant when considering \mathcal{M}_{p}, for $p \geq 4$. In this case $B_{2}^{1}=B_{2}^{2}=B_{2}^{3}=\left\{a_{1}, a_{2}\right\}$ and for $r>3, B_{2}^{r}=\left\{a_{2}\right\}$. Note that if \mathcal{M}_{1} is free of $\left\{a_{1}, a_{2}\right\}$ along $m_{1}(\mathcal{C})$ but \mathcal{M}_{2} is not, then $\mathcal{M}_{2_{j}}=\mathcal{M}_{2}$.
Definition 8.1 continued If $\mathcal{M}_{u_{j}}$ exists, then define τ_{u} to be the marker tag arising from a_{u} and $\mathcal{M}_{u_{j}}$. Let $S_{u}=S\left(f, B_{u}^{u_{j}}, \mathcal{M}_{u_{j}}, W_{u_{j}}\right) \cap m_{u-1}(\mathcal{C})$. Define $m_{u}(\mathcal{C})=\{t \in$ $\left.\left.S_{u}\left|g\left(f, \tau_{u}, S_{u}\right)=\right| \phi\left(f_{t}\right) \backslash a_{u}\right) \cap \tau_{u} \mid\right\}$.
$\mathcal{A}_{u}(i i)$ is defined to be either $g\left(f, \tau_{u}, m_{u}(\mathcal{C})\right)$ or ∞ if $m_{u}(\mathcal{C})=\emptyset$.
$\mathcal{A}_{u}($ iii $)$ is defined to be the set Stryker $_{u}$ which is either the set of $\left.m_{u}(\mathcal{C})\right)$-stryker curves for τ_{u} if $m_{u}(\mathcal{C}) \neq \emptyset$ or ∞ otherwise.

We say that the cascade \mathcal{C} is finished if $m_{v}(\mathcal{C})=\emptyset$ and active otherwise. We say that the cascade is based on $\left\{a_{1}, \cdots, a_{v}\right\}$ and has length v. For $r \leq v$, then the length-r cascade based on $\left\{a_{1}, \cdots, a_{r}\right\}$ is called the length-r subcascade and denoted \mathcal{C}_{r}. Note that \mathcal{C}_{r} and \mathcal{C} have the same values of $\mathcal{A}_{1}, \cdots, \mathcal{A}_{r}$.

Notation 8.3. The data corresponding to a cascade depends on f. When the function must to be explicitly stated, we will use notation such as $\mathcal{C}(f), m_{i}(\mathcal{C}, f), \mathcal{A}_{p}(f)$ or $\mathcal{A}_{r}(i i, f)$.

We record for later use the following result.
Lemma 8.4. Let \mathcal{J} be a marker family hit by the generic $P L$ map $f: V \rightarrow$ $\mathcal{P} \mathcal{M L E L}(S)$. If \mathcal{C} is an active cascade based on a_{1}, \cdots, a_{v}, then for every $t \in$ $m_{v}(\mathcal{C})$, each a_{i} is a leaf of $\phi(f(t))$.

Proof. By definition $m_{1}(\mathcal{C}) \subset S\left(f, a_{1}, \mathcal{M}_{1_{j}}, W_{1_{j}}\right)$, hence a_{1} is a leaf of $\phi(f(t))$ at all $t \in m_{1}(\mathcal{C})$.

Now assume the lemma is true for all subcascades of length $<u$. Let $t \in m_{u}(\mathcal{C})$. Let $A=B_{u}^{u_{j}}$. By definition, $\mathcal{M}_{u_{j}}$ is not f-free of A along $m_{u-1}(\mathcal{C})$, but $\mathcal{M}_{u_{j}}$ is f-free of $A \backslash a_{u}$ along $m_{u-1}(\mathcal{C})$. Since $m_{u}(\mathcal{C}) \subset S\left(f, A, W_{u_{j}}\right) \cap m_{u-1}(\mathcal{C})$ it follows that a_{u} is a leaf of $\phi(f(t))$.
Definition 8.5. Let \mathcal{C} be an active cascade. To each $t \in m_{v}(\mathcal{C})$ corresponds a v-tuple $\left(p_{1}, \cdots, p_{v}\right)$ where p_{j} is the (possibly empty) stryker multi-geodesic for τ_{j} at t. Such a $\left(p_{1}, \cdots, p_{v}\right)$ is called a packet. There are only finitely many packets, by the finiteness of stryker curves. Thus $m_{v}(\mathcal{C})$ canonically decomposes into a disjoint union of closed sets S_{1}, \cdots, S_{r} such that each point in a given S_{j} has the same packet. Let $\mathcal{P}=\left\{P_{1}, \cdots, P_{r}\right\}$ denote the set of packets, the last entry in the definition of \mathcal{C}. We will use the notation $\mathcal{P}(f)$, when needed to clarify the function on which this information is based.

Definition 8.6. In what follows all cascades use the same set of markers and simple closed geodesics, however the function $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ will vary. We put an equivalence relation on this set of cascades and then partially order the classes. We say that $\mathcal{C}(g)$ is equivalent to $\mathcal{C}(f)$ if $\mathcal{P}(f)=\mathcal{P}(g)$ and for all $r, \mathcal{A}_{r}(f)=\mathcal{A}_{r}(g)$. We
lexicographically partial order the equivalence classes by comparing the v-tuples $\left(\mathcal{A}_{1}(\mathcal{C}(f)), \cdots, \mathcal{A}_{v}(\mathcal{C}(f)), \mathcal{P}(f)\right)$ using the rule that $\mathcal{A}_{r}(i, f) \leq \mathcal{A}_{r}(i, g)$ if $\mathcal{M}_{r_{j}}(f) \leq$ $\mathcal{M}_{r_{j}}(g)$, with ∞ being considered the maximal value and $\mathcal{A}_{r}(i i, f) \leq \mathcal{A}_{r}(i i, g)$ if their values satisfy that inequality and $\mathcal{A}_{r}(i i i, f) \leq \mathcal{A}_{r}(i i i, g)$ if $\operatorname{Stryker}_{r}(g) \subset$ Stryker $_{r}(f)$. Finally, $\mathcal{P}(f) \leq \mathcal{P}(g)$ if $\mathcal{P}(g) \subset \mathcal{P}(f)$.
Remark 8.7. More or less, $\mathcal{C}(f)<\mathcal{C}(g)$ means that the markers's are freer with respect to the function g than with respect to f. In particular, this inequality holds if \mathcal{M}_{1} and \mathcal{M}_{2} are g-free of a_{1}, but only \mathcal{M}_{1} and f-free of a_{1}. If \mathcal{M}_{1} is both g-free and f-free of a_{1} but \mathcal{M}_{2} is neither f-free nor g-free of a_{1}, then $\mathcal{A}_{1}(i i)$ is a measure of how close \mathcal{M}_{2} is from being free of a_{1}. The bigger the number, the closer to freedom as motivated by Lemma 7.2. If this number is the same with respect to both f and g, then $\mathcal{A}(i i i)$ measures how much work is needed to raise the number. More stryker multi-geodesics with respect to f, than g, means more needs to be done to f, so again $\mathcal{C}(f)<\mathcal{C}(g)$. If $\mathcal{A}_{1}(f)=\mathcal{A}_{1}(g)$, then \mathcal{A}_{2} is used to determine the ordering. Finally, if all the \mathcal{A}_{i} 's are equal, then f having more packets means that more sets of V need to be cleaned up to finish the cascade.

Proposition 8.8. Let V be the underlying space of a finite simplical complex. Let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ a generic $P L \operatorname{map}, \operatorname{dim}(V) \leq n$ and $\mathcal{J}=\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ a marker family hit by f. Let \mathcal{C} be an active cascade based on $\left\{a_{1}, \cdots, a_{v}\right\}, C$ a simple closed geodesic disjoint from the a_{i} 's and the τ_{i} 's and $K \subset m_{v}(\mathcal{C}) \cap f^{-1}\left(B_{C}\right)$ compact. For $1 \leq i \leq m$, let $B_{C}^{i}=\left\{a_{u} \mid i<u_{j}\right\} \cup\{C\}$. Assume that for $1 \leq i \leq m$, \mathcal{M}_{i} is f-free of B_{C}^{i} along $K \cap W_{i}$. If δ is sufficiently small and f_{1} is obtained from f by a (C, δ, K) push off homotopy, then $[\mathcal{C}(f)] \leq\left[\mathcal{C}\left(f_{1}\right)\right]$ and the homotopy from f to f_{1} is \mathcal{J}-marker preserving.

Proof. Since \mathcal{J} is f-free of C along K, it follows by Lemma 6.15 that for δ sufficiently small, any (C, δ, K) homotopy is \mathcal{J} marker preserving. It remains to show that if δ is sufficiently small and f_{1} is the resulting map, then $[\mathcal{C}(f)] \leq\left[\mathcal{C}\left(f_{1}\right)\right]$.

From $\mathcal{C}(f)$ we conclude that for all $u \in\{1, \cdots, v\}$ and $q<u_{j}, \mathcal{M}_{q}$ is f-free of B_{u}^{q} along $m_{v}(\mathcal{C}) \cap W_{q}$. By hypothesis each \mathcal{M}_{q} is also f-free of B_{C}^{q} along $W_{q} \cap K$. Note that $B_{u}^{q} \subset B_{C}^{q}$ when $q<u_{j}$. By Lemma 6.15 , if δ is sufficiently small, then there exists a neighborhood V of K such that any (C, δ, K) homotopy is supported in V and each \mathcal{M}_{q} is F-free of B_{C}^{q} along $W_{q} \cap \bar{V}$. It follows that with respect to the lexicographical ordering $\left(\mathcal{A}_{1}(i, f), \cdots, \mathcal{A}_{v}(i, f)\right) \leq\left(\mathcal{A}_{1}\left(i, f_{1}\right), \cdots, \mathcal{A}_{v}\left(i, f_{1}\right)\right)$.

A similar argument using Lemma 6.19 shows that if δ is sufficiently small and $\mathcal{A}_{i}(i, f)=\mathcal{A}_{i}\left(i, f_{1}\right)$ for $1 \leq i \leq u$, then $\mathcal{A}_{i}(i i, f) \leq \mathcal{A}_{i}\left(i i, f_{1}\right)$ for $1 \leq i \leq u$.

By Lemma 7.4 there exists $\eta>0$ such that if $d_{V}\left(t_{1}, t_{2}\right)<2 \eta$ and $t_{1}, t_{2} \in$ $m_{u}(\mathcal{C})$ for some u, then $f\left(t_{1}\right), f\left(t_{2}\right)$ have the same stryker curve to τ_{u}. Let δ be sufficiently small to satisfy Lemma 7.5 with this η in addition to the previously required conditions. That lemma implies that if $\mathcal{A}_{i}(i, f)=\mathcal{A}_{i}\left(i, f_{1}\right)$ and $\mathcal{A}_{i}(i i, f)=$ $\mathcal{A}_{i}\left(i i, f_{1}\right)$ for all $i \leq u$, then $\operatorname{Stryker}_{i}\left(f_{1}\right) \subset \operatorname{Stryker}_{i}(f)$ for all $i \leq u$.

Finally, Lemma 7.5 with this choice of η also implies that if $\left(\mathcal{A}_{1}(f), \cdots, \mathcal{A}_{v}(f)\right)=$ $\left(\mathcal{A}_{1}\left(f_{1}\right), \cdots, \mathcal{A}_{v}\left(f_{1}\right)\right)$, then $\mathcal{P}\left(f_{1}\right) \subset \mathcal{P}(f)$. It follows that $[\mathcal{C}(f)] \leq\left[\mathcal{C}\left(f_{1}\right)\right]$.
Remark 8.9. Note that $[\mathcal{C}(f)] \leq\left[\mathcal{C}\left(f_{1}\right)\right]$ holds with respect to the lexicographical ordering, but may not hold entry-wise, since there may be no direct comparison between later entries once earlier ones differ. For example, say $2=\mathcal{A}_{1}(i, f)<$ $\mathcal{A}_{1}\left(i, f_{1}\right)=3$, then showing $\mathcal{A}_{2}(i, f)=3$ involves verifying that \mathcal{M}_{2} is f-free of $\left\{a_{2}\right\}$ while showing $\mathcal{A}_{2}\left(i, f_{1}\right)=3$ involves verifying that \mathcal{M}_{2} is f_{1}-free of $\left\{a_{1}, a_{2}\right\}$.

9. Finishing Cascades

The main result of this section is the following.
Proposition 9.1. Let V be the underlying space of a finite simplicial complexh : $V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic PL map such that $k=\operatorname{dim}(V) \leq n$ where $\operatorname{dim}(\mathcal{P M} \mathcal{L}(S))=$ $2 n+1$. Let \mathcal{J} be a marker family hit by h and \mathcal{C} be an active cascade. Then there exists a marker preserving homotopy of h to h^{\prime} such that \mathcal{C} is finished with respect to h^{\prime} and $[\mathcal{C}(h)]<\left[\mathcal{C}\left(h^{\prime}\right)\right]$. The homotopy is a concatenation of relative push offs. If $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a finite subcomplex of $\mathcal{C}(S)$, then the homotopy can be chosen to be disjoint from L.

Lemma 9.2. Let $f_{i}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S), i \in \mathbb{N}$ be generic PL maps, \mathcal{J} be a marker family and let $\left\{\mathcal{C}\left(f_{i}\right)\right\}$ be active cascades based on the same set of simple closed geodesics. Any sequence $\left[\mathcal{C}\left(f_{1}\right)\right] \leq\left[\mathcal{C}\left(f_{2}\right)\right] \leq \cdots$ has only finitely many terms that are strict inequalities.

Proof. There are only finitely many possible values for $\mathcal{A}_{u}\left(i, f_{j}\right)$.
It follows from Lemma 7.2 that each $\mathcal{A}_{u}\left(i i, f_{j}\right)$ is uniformly bounded above. Indeed, there are only finitely many a_{i} 's and only finitely many markers in \mathcal{J}, thus only finitely many marker tags arising from them. If τ_{u} is such a tag, then for $i \in \mathbb{N}, g\left(f_{i}, \tau, m_{u}\left(\mathcal{C}\left(f_{i}\right)\right)\right) \leq\left|\left(\cup_{j=1}^{v} a_{j}\right) \cap \tau_{u}\right|+3(3 g-3+2 p)$.

The finiteness of stryker curves (Lemma 4.5) shows that the number of possibilities for both $\mathcal{P}\left(f_{j}\right)$ and each $\mathcal{A}_{u}\left(i i i, f_{j}\right)$ is bounded.

Proof of Proposition 9.1. It suffices to show that given any active cascade $\mathcal{C}\left(h_{1}\right)$, there exists a \mathcal{J} marker preserving homotopy from h_{1} to h_{2}, that is a concatenation of relative push offs, such that $\left[\mathcal{C}\left(h_{1}\right)\right]<\left[\mathcal{C}\left(h_{2}\right)\right]$. For if $\mathcal{C}\left(h_{2}\right)$ is not finished, then we can similarly produce an h_{3} with $\left[\mathcal{C}\left(h_{2}\right)\right]<\left[\mathcal{C}\left(h_{3}\right)\right]$. Eventually we obtain a finished $\mathcal{C}\left(h_{q}\right)$ else we contradict Lemma 9.2.

We retain the convention that $\operatorname{dim}(\mathcal{P} \mathcal{M L}(S))=2 n+1$. We will assume that $k=$ n leaving the easier $k<n$ case to the reader. The proof is by downward induction on $L=\operatorname{length}(\mathcal{C})$. Suppose that $\mathcal{C}(h)$ is an active cascade based on $\left\{a_{1}, \cdots, a_{L}\right\}$. Since the a_{i} 's are pairwise disjoint, it follows that $L \leq n+1$. Let τ_{i} denote the marker tag associated to a_{i} and $\mathcal{M}_{i_{j}}(h)$. Let $R^{\prime}=N\left(a_{1} \cup \cdots \cup a_{L} \cup \tau_{1} \cdots \cup \tau_{L}\right)$. Let R be R^{\prime} together with all its complementary discs, annuli and pants. Let $T=S \backslash(\operatorname{int}(R))$. Note that $T=\emptyset$ if $L \geq n$.

Let $\mathcal{A}(h(t))$ denote the arational sublamination of $\phi(h(t))$, i.e. the sublamination obtained by deleting all the compact leaves. Since h is generic and $k=n$, it follows that $\mathcal{A}(h(t)) \neq \emptyset$ for all $t \in B^{n}$. The key observation is that if $\mathcal{A}(h(t)) \cap R \neq \emptyset$, then $t \notin m_{L}(\mathcal{C}(h))$. To start with, Lemma 8.4 implies that a_{1}, \cdots, a_{L} are leaves of $\phi(h(t))$. This implies that $\mathcal{A}(h(t)) \cap \tau_{i} \neq \emptyset$, where τ_{i} is the marker tag between a_{i} and $\mathcal{M}_{i_{j}}$. By Lemma $7.2 \phi(h(t))$ hits $\mathcal{M}_{i_{j}}$ and hence $t \notin m_{i}(\mathcal{C}(h))$ contradicting the fact that $m_{L}(\mathcal{C}(h)) \subset m_{i}(\mathcal{C}(h))$. It follows that $\mathcal{C}(h)$ is finished if $L \geq n$.

Note that if $k<n$, then this argument shows that \mathcal{C} is finished if $L \geq k$. In particular, if $k=1$, (the path connectivity case) all cascades are finished.

Now assume that the Proposition is true for all cascades of length greater than L, where $L<n$. Let \mathcal{C} be an active cascade of length L.

Let $P=\left(p_{1}, \cdots, p_{L}\right) \in \mathcal{P}(h)$ and S_{P} the closed subset of $m_{L}(\mathcal{C})$ consisting of points whose packet is P. Let σ be the possibly empty multi-geodesic $p_{1} \cup \cdots \cup p_{L}$. By definition, if $t \in S_{P}$, then each p_{i} is a leaf of $\phi(h(t))$ and by Lemma 8.4 each of
a_{1}, \cdots, a_{L} is a leaf of $\phi(h(t))$. Let $Y^{\prime}=N\left(a_{1} \cup \cdots \cup a_{L} \cup \tau_{1} \cdots \cup \tau_{L} \cup \sigma\right)$ and Y be Y^{\prime} together with all complementary discs, annuli and pants. Let $Z=S \backslash \operatorname{int}(Y)$. Note that $Z \neq \emptyset$, else for all $t \in S_{P},\left|\phi(h(t)) \cap \tau_{i(t)}\right|=\infty$ for some $i(t)$ which is a contradiction as before. Let C be a simple closed geodesic isotopic to some component of ∂Z.

Observe that C is neither an a_{i} nor is $C \subset \sigma$. Indeed, since each a_{i} is crossed transversely by a tag at an interior point it follows that no a_{i} is isotopic to a component of ∂Y^{\prime} and hence ∂Y. Similarly, each component of Stryker ${ }_{i}$ is transverse to τ_{i} at an interior point, hence no component of σ is isotopic to a component of ∂Y. Next observe that $S_{P} \subset f^{-1}\left(B_{C}\right)$. Indeed, $t \in S_{P}$ implies that for all $i, \phi(h(t)) \cap \tau_{i} \subset a_{i} \cup \sigma$, hence C is either a leaf of $\phi(h(t))$ or $C \cap \phi(h(t))=\emptyset$.

Extend the cascade $\mathcal{C}(h)$ to the length $L+1$ cascade $\mathcal{C}^{\prime}(h)$ by letting C be our added a_{L+1}. If $\mathcal{C}^{\prime}(h)$ is active, then by induction, there is a marker preserving homotopy of h to h_{1} so that $\mathcal{C}^{\prime}\left(h_{1}\right)$ is finished and $\left[\mathcal{C}^{\prime}(h)\right]<\left[\mathcal{C}^{\prime}\left(h_{1}\right)\right]$. If $\mathcal{C}^{\prime}(h)$ is finished, then let's unify notation by denoting h by h_{1}. In both cases, by restricting to the length L subcascade either $[\mathcal{C}(h)]<\left[\mathcal{C}\left(h_{1}\right)\right]$ or $[\mathcal{C}(h)]=\left[\mathcal{C}\left(h_{1}\right)\right]$ and each \mathcal{M}_{i} is h_{1}-free of B_{C}^{i} for all $t \in m_{L}\left(\mathcal{C}\left(h_{1}\right)\right) \cap W_{i}$, where B_{C}^{i} is as in the statement of Lemma 8.8. Since freedom is an open condition and $S_{P}\left(h_{1}\right)$ is compact as are all the W_{i} 's, there exists $U \subset V$ open such that $m_{L}\left(\mathcal{C}\left(h_{1}\right)\right) \subset U$ and each \mathcal{M}_{i} is h_{1}-free of B_{C}^{i} for all $t \in \bar{U} \cap W_{i}$.

If $[\mathcal{C}(h)]=\left[\mathcal{C}\left(h_{1}\right)\right]$, then invoke Lemma 8.8 by taking $f=h_{1}$, keeping the original \mathcal{J} and \mathcal{C}, using the above constructed C and letting $K=S_{P}\left(h_{1}\right)$. Choose δ sufficiently small to satisfy the conclusion of Lemma 8.8 and so that any (C, δ, K) push off homotopy is supported in U.

To complete the proof it suffices to show that if δ is sufficiently small and h_{2} is the resulting map, then $\left[\mathcal{C}\left(h_{1}\right)\right]<\left[\mathcal{C}\left(h_{2}\right)\right]$. Since Lemma 8.8 implies that $\left[\mathcal{C}\left(h_{1}\right)\right] \leq$ $\left[\mathcal{C}\left(h_{2}\right)\right]$ it suffices to show that $P \notin \mathcal{P}\left(h_{2}\right)$ if for all $i, \mathcal{A}_{i}\left(h_{1}\right)=\mathcal{A}_{i}\left(h_{2}\right)$. If $P \in \mathcal{P}\left(h_{2}\right)$, then let $t \in S_{P}\left(h_{2}\right)$. As above $h_{2}(t) \in B_{C}$. Since h_{2} is the result of a relative push off homotopy it follows from the last sentence of Definition 6.12 iii) that either $\phi\left(h_{2}(t)\right)=\phi\left(h_{1}(t)\right)$ or $\phi\left(h_{2}(t)\right) \neq \phi\left(h_{1}(t)\right)$ but $C \cup \phi\left(h_{2}(t)\right)=\phi\left(h_{1}(t)\right)$. In the former case, $t \in S_{P}\left(h_{1}\right)$ and hence both $h_{1}(t), h_{2}(t) \in B_{C}$, contradicting the fact that h_{2} is the result of a (C, δ, K) push off homotopy. In the latter case $t \in U \backslash S_{P}\left(h_{1}\right)$, hence there exists an \mathcal{M}_{i} that is h_{1}-free of $B_{C}^{i} \backslash C$ at $t \in W_{i}$, but \mathcal{M}_{i} is not h_{2}-free of $B_{C}^{i} \backslash C$ at t. This implies that \mathcal{M}_{i} is not h_{1}-free of B_{C}^{i} at t which contradicts the fact that $t \in U$.

Since $k \leq n$ Lemma 2.4 it follows that $h(V) \cap K=\emptyset$. By Lemma 6.14 , by using sufficiently small δ 's all (C, δ, K) pushoff homotopies in the above proof could have been done to avoid L.

Corollary 9.3. Let V be the underlying space of a finite simplicial complex. Let S be a finite type surface and $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic $P L$ map and $\operatorname{dim}(V) \leq n$, where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$. Let \mathcal{J} be a marker family hit by f and C a simple closed geodesic. Then f is homotopic to f_{1} via a marker preserving homotopy such that $g(f, C)>0$. If $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a finite subcomplex of $\mathcal{C}(S)$, then the homotopy can be chosen to be disjoint from L.

Proof. By Lemma 6.6, if \mathcal{J} is free of C and δ is sufficiently small, then any (C, δ) push off homotopy is \mathcal{J}-marker preserving. If f_{1} is the resulting map, then $g\left(f_{1}, C\right)>0$.

If \mathcal{J} is not free of C, then let \mathcal{C} be the active length- 1 cascade based on C. By Proposition $9.1 f$ is homotopic to f^{\prime} by a marker preserving homotopy such that $\mathcal{C}\left(f^{\prime}\right)$ is finished and the homotopy is a concatenation of relative push off homotopies. Now argue as in the first paragraph.

10. Stryker Cascades

The main result of this section is
Proposition 10.1. Let V be the underlying space of a finite simplicial complex. Let $f: V \rightarrow \mathcal{P} \mathcal{M L E L}(S)$ be a generic PL map such that $\operatorname{dim}(V) \leq n$ where $\operatorname{dim}(\mathcal{P M} \mathcal{L}(S))=2 n+1$. If a_{1} is a simple closed geodesic such that $\infty>g\left(f, a_{1}\right)>$ 0 and \mathcal{J} a marker family hit by f, then there exists then there exists a marker preserving homotopy of f to f_{1} such that $g\left(f_{1}, a_{1}\right)>g\left(f, a_{1}\right)$. The homotopy is a concatenation of relative push offs. If $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a finite subcomplex of $\mathcal{C}(S)$, then the homotopy can be chosen to be disjoint from L.

Remarks 10.2. The proof is very similar to that of Corollary 9.3, except that stryker cascades are used in place of marker cascades. A stryker cascade is essentially a marker cascade except that the first term is a curve a_{1} with $g\left(f, a_{1}\right)>0$.

Closely following the previous two sections, we give the definition of stryker cascade and prove various results about them.
Definition 10.3. Associated to $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ a generic PL map, $\mathcal{J}=$ $\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ a marker family hit by $f, \mathcal{M}_{1}<\cdots<\mathcal{M}_{m}$ the ordering induced from this enumeration and a_{1}, \cdots, a_{v} a sequence of pairwise disjoint simple closed geodesics with $g\left(f, a_{1}\right)>0$ we define a stryker cascade \mathcal{C} which is a $v+1$-tuple $\left(\mathcal{A}_{1}, \cdots, \mathcal{A}_{v}, \mathcal{P}\right)$ where \mathcal{A}_{1} is a 2 -tuple $\left(\mathcal{A}_{1}(i), \mathcal{A}_{1}(i i)\right)$ and for $i \geq 2$, each \mathcal{A}_{i} is a 3-tuple $\left(\mathcal{A}_{i}(i), \mathcal{A}_{i}(i i), \mathcal{A}_{i}(i i i)\right)$ and \mathcal{P} is a finite set of v-tuples defined in Definition 10.6.

Define $\mathcal{A}_{1}=\left(g\left(f, a_{1}\right)\right.$, Stryker $\left._{1}\right)$ where Stryker $_{1}$ is the set of stryker curves to f and a_{1}.

Define $m_{1}(\mathcal{C})=\left\{t \in V\left|g\left(f, a_{1}\right)=\left|\phi(f(t)) \cap a_{1}\right|\right\}\right.$.
Having defined $\mathcal{A}_{i}, 1 \leq i<u$, then \mathcal{A}_{u} is defined as follows. To start with define $B_{u}^{1}, \cdots, B_{u}^{m}$ where $B_{u}^{r}=\left\{b_{2}^{r}, \cdots, b_{u}^{r}\right\}$, where $b_{u}^{r}=a_{u}$ and for $2 \geq q<u, b_{q}^{r}=a_{q}$ if $r<q_{j}$ and $b_{q}^{r}=\emptyset$ otherwise.
$\mathcal{A}_{u}(i)$ is defined to be either the maximal marker $\mathcal{M}_{u_{j}}$, such that $r<u_{j}$ implies that \mathcal{M}_{r} is free of B_{u}^{r} along $m_{u-1}(\mathcal{C}) \cap W_{r}$ or $\mathcal{A}_{u}(i)=\infty$ if for all $r \leq m, \mathcal{M}_{r}$ is free of B_{u}^{r} along $m_{u-1}(\mathcal{C}) \cap W_{r}$.

If $\mathcal{M}_{u_{j}}$ exists, then define τ_{u} to be the marker tag arising from a_{u} and $\mathcal{M}_{u_{j}}$. Let $S_{u}=S\left(f, B_{u}^{u_{j}}, \mathcal{M}_{u_{j}}, W_{u_{j}}\right) \cap m_{u-1}(\mathcal{C})$. Define $m_{u}(\mathcal{C})=\left\{t \in S_{u} \mid g\left(f, \tau_{u}, S_{u}\right)=\right.$ $\left.\left.\mid \phi\left(f_{t}\right) \backslash a_{u}\right) \cap \tau_{u} \mid\right\}$.
$\mathcal{A}_{u}(i i)$ is defined to be either $g\left(f, \tau_{u}, m_{u}(\mathcal{C})\right)$ or ∞ if $m_{u}(\mathcal{C})=\emptyset$.
$\mathcal{A}_{u}(i i i)$ is defined to be the set $\operatorname{Stryker}_{u}$ which is either the set of $\left.m_{u}(\mathcal{C})\right)$-stryker curves for τ_{u} if $m_{u}(\mathcal{C}) \neq \emptyset$ or ∞ otherwise.

We say that the cascade \mathcal{C} is finished if $m_{v}(\mathcal{C})=\emptyset$ and active otherwise. We say that the cascade is based on $\left\{a_{1}, \cdots, a_{v}\right\}$ and has length v. For $r \leq v$, then lengthq cascade based on $\left\{a_{1}, \cdots, a_{r}\right\}$ is called the length- r subcascade and denoted \mathcal{C}_{r}. Note that \mathcal{C}_{r} and \mathcal{C} have the same values of $\mathcal{A}_{1}, \cdots, \mathcal{A}_{r}$.

Notation 10.4. The data corresponding to a cascade depends on f. When the function must to be explicitly stated, we will use notation such as $\mathcal{C}(f), m_{i}(\mathcal{C}, f), \mathcal{A}_{p}(f)$ or $\mathcal{A}_{r}(i i, f)$.

We record for later use the following result whose proof is essentially identical to that of Lemma 8.4.

Lemma 10.5. Let \mathcal{J} be a marker family hit by the generic PL map $f: V \rightarrow$ $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$. If \mathcal{C} is an active stryker cascade based on a_{1}, \cdots, a_{v}, then for every $t \in m_{v}(\mathcal{C})$ and $i \geq 2$, each a_{i} is a leaf of $\phi(f(t))$.

Definition 10.6. Let \mathcal{C} be an active stryker cascade. To each $t \in m_{v}(\mathcal{C})$ corresponds an v-tuple $\left(p_{1}, \cdots, p_{v}\right)$ where p_{1} is the stryker multi-geodesic for a_{1} at t and for $i \geq 2, p_{i}$ is the (possibly empty) stryker multi-geodesic for τ_{i} at t. Such a $\left(p_{1}, \cdots, p_{v}\right)$ is called a packet. There are only finitely many packets, by the finiteness of stryker curves. Thus $m_{v}(\mathcal{C})$ canonically decomposes into a disjoint union of closed sets S_{1}, \cdots, S_{r} such that each point in a given S_{j} has the same packet. Let $\mathcal{P}=\left\{P_{1}, \cdots, P_{r}\right\}$ denote the set of packets, the last entry in the definition of \mathcal{C}.
Definition 10.7. Use the direct analogy of Definition 8.6 to put an equivalence relation on the set of stryker cascades based on the same ordered set of simple closed curves and to partially order the classes.

Proposition 10.8. Let $f: V \rightarrow \mathcal{P} \mathcal{M L E L}(S)$ a generic $P L$ map, $\operatorname{dim}(V) \leq n$ and $\mathcal{J}=\left(\mathcal{M}_{1}, W_{1}\right), \cdots,\left(\mathcal{M}_{m}, W_{m}\right)$ a marker family \mathcal{J} hit by f. Let \mathcal{C} be an active stryker cascade based on $\left\{a_{1}, \cdots, a_{q}\right\}, C$ a simple closed geodesic disjoint from the a_{i} 's and τ_{j} 's and let $K \subset m_{v} \cap f^{-1}\left(B_{C}\right)$. For $1 \leq i \leq m$, let $B_{C}^{i}=\left\{a_{p}, p \geq 2 \mid i<\right.$ $\left.p_{j}\right\} \cup\{C\}$. Assume that for $1 \leq i \leq m, \mathcal{M}_{i}$ is f-free of B_{C}^{i} along $K \cap W_{i}$. If f_{1} is obtained from f by a (C, δ, K) push off homotopy and δ is sufficiently small, then $[\mathcal{C}(f)] \leq\left[\mathcal{C}\left(f_{1}\right)\right]$ and the homotopy from f to f_{1} is \mathcal{J}-marker preserving.

Proof. The fact $\mathcal{A}_{1}(f) \leq \mathcal{A}_{1}\left(f_{1}\right)$ follows from Lemma 6.19. The rest of the argument follows as in the proof of Proposition 8.8.

We have the following analogue of Lemma 9.2.
Lemma 10.9. Let $f_{i}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E L}(S), i \in \mathbb{N}$ be generic PL maps, \mathcal{J} a marker family and let $\left\{\mathcal{C}\left(f_{i}\right)\right\}$ be active stryker cascades based on the same set of simple closed geodesics. Any sequence $\left[\mathcal{C}\left(f_{1}\right)\right] \leq\left[\mathcal{C}\left(f_{2}\right)\right] \leq \cdots$ with $g\left(f_{1}, a_{1}\right)=g\left(f_{2}, a_{1}\right)=$... has only finitely many terms that are strict inequalities.
Proposition 10.10. Let $h: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic PL map such that $k=\operatorname{dim}(V) \leq n$ where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$. Let \mathcal{J} be a marker family hit by h and let \mathcal{C} be an active stryker cascade with $\infty>g\left(h, a_{1}\right)>0$. Then there exists a marker preserving homotopy of h to h^{\prime} such that $[\mathcal{C}(h)]<\left[\mathcal{C}\left(h^{\prime}\right)\right]$ and either $g\left(h^{\prime}, a_{1}\right)>g\left(h, a_{1}\right)$ or $\mathcal{C}\left(h^{\prime}\right)$ is finished. The homotopy is a concatenation of relative push offs. If $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a finite subcomplex of $\mathcal{C}(S)$, then the homotopy can be chosen to be disjoint from L.

Proof. As in the proof of Proposition 9.1 it suffices to show that given any active stryker cascade $\mathcal{C}\left(h_{1}\right)$ there exists a marker preserving homotopy of h_{1} to h_{2}, that is a concatenation of relative push offs, such that $\left[\mathcal{C}\left(h_{1}\right)\right]<\left[\mathcal{C}\left(h_{2}\right)\right]$. Here we invoke Lemma 10.9 instead of Lemma 9.2.

Again we discuss the $\mathrm{k}=\mathrm{n}$ case, the easier $k<n$ cases being left to the reader. The proof by downward induction on the length of the cascade follows essentially exactly that of Proposition 9.1 until the step of proving it for length-1 cascades. So now assume that the Proposition has been proved for cascades of length ≥ 2.

Let $\mathcal{C}(h)$ be a length- 1 cascade based on a_{1}. Here \mathcal{P}, the set of packets, consists of the set of stryker multi-curves to h and a_{1}. Let P be one such multi-curve. Let $Y^{\prime}=N\left(a_{1} \cup P\right)$ and Y be the union of Y^{\prime} and all components of $S \backslash Y^{\prime}$ that are discs, annuli and pants. Again, genericity and the condition $k=n$ implies that $Y \neq S$. Let C be a simple closed geodesic isotopic to a component of ∂Y. The condition $g\left(h, a_{1}\right)>0$ implies that C is not isotopic to a_{1}. Since each component of P non trivially intersects a_{1}, C is not isotopic to any component of P. Let \mathcal{C}^{\prime} denote the length-2 stryker cascade based on $\left\{a_{2}, C\right\}$. By induction there exists a marker preserving homotopy of h to h_{1} that is a concatenation of relative push offs such that $\left[\mathcal{C}^{\prime}(h)\right]<\left[\mathcal{C}^{\prime}\left(h_{1}\right)\right]$ and either $g\left(h_{1}, a_{1}\right)>g\left(h, a_{1}\right)$ or $\mathcal{C}^{\prime}\left(h_{1}\right)$ is finished. In the latter case we have either $[\mathcal{C}(h)]<\left[\mathcal{C}\left(h_{1}\right)\right]$ or $[\mathcal{C}(h)]=\left[\mathcal{C}\left(h_{1}\right)\right]$ and for each $1 \leq i \leq m, \mathcal{M}_{i}$ is free of C along $m_{1}\left(\mathcal{C}, h_{1}\right)$. Now argue as in the proof of Proposition 9.1 that if h_{2} is the result of a (C, δ, K) homotopy, where δ is sufficiently small and $K=S_{P}$, then either $g\left(h_{2}, a_{1}\right)>g\left(h_{1}, a_{1}\right)$ or $g\left(h_{2}, a_{1}\right)=g\left(h_{1}, a_{1}\right)$ and $\left[\mathcal{C}\left(h_{1}\right)\right]<\left[\mathcal{C}\left(h_{2}\right)\right]$.

Proof of Proposition 10.1. Let $\mathcal{C}(f)$ be the length-1 stryker cascade based on a_{1}. By Proposition 10.10 there exists a marker preserving homotopy from f to f_{1} that is the concatenation of relative push off homotopies such that $\mathcal{C}(f)<\mathcal{C}\left(f_{1}\right)$. Therefore, either $g\left(f_{1}, a_{1}\right)>g(f, a)$ or equality holds and $\left|\mathcal{P}\left(\mathcal{C}\left(f_{1}\right)\right)\right|<|\mathcal{P}(\mathcal{C}(f))|$. After finitely many such homotopies we obtain f^{\prime} such that $g\left(f^{\prime}, a_{1}\right)>g\left(f_{1}, a\right)$.

11. $\mathcal{E} \mathcal{L}(S)$ IS (N-1)-CONNECTED

Theorem 11.1. Let V be the underlying space of a finite simplicial complex and W that of a subcomplex. Let S be a finite type hyperbolic surface with $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$. If $f: V \rightarrow \mathcal{P M} \mathcal{L E} \mathcal{L}(S)$ is a generic PL map, $f^{-1}(\mathcal{E} \mathcal{L}(S))=W, \operatorname{dim}(V) \leq$ n and \mathcal{J} is a marker family hit by f, then there exists a map $g: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that $g \mid W=f$ and g hits \mathcal{J}. The map g is the concatenation of (possibly infinitely many) relative push offs. If $L \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is a finite subcomplex of $\mathcal{C}(S)$, then the homotopy can be chosen to be disjoint from L.

Proof. Let C_{1}, C_{2}, \cdots be an enumeration of the simple closed geodesics on S. It suffices to find a sequence, $f_{0}, f_{1}, f_{2}, \cdots$ of extensions of $f \mid W$ and sequences $\left\{\mathcal{E}_{i}\right\}$, $\left\{\mathcal{S}_{i}\right\}$ of marker covers, such that \mathcal{E}_{i} is a marker covering of V by $1 / i$ markers, \mathcal{S}_{i} is a marker covering of V by C_{i} markers and for $i \leq j, f_{j}$ hits each \mathcal{E}_{i} and \mathcal{S}_{i} family of markers. Furthermore, f_{i+1} is obtained from f_{i} by a finite sequence of relative push offs. Then Proposition 5.2 produces g as the limit of the f_{j} 's. Since f_{i+1} is obtained from f_{i} by concatenating finitely many push offs, concatenating all these push off homotopies produces a map $F: V \times[0, \infty] \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ with $F \mid V \times \infty=g$. The proof of Proposition 5.2 shows that F is continuous. It follows from Lemma 6.14 that the homotopy can be chosen disjoint from L.

Suppose that $f_{0}, f_{1}, \cdots, f_{j-1}, \mathcal{E}_{1}, \cdots, \mathcal{E}_{j-1}$, and $\mathcal{S}_{1}, \cdots, \mathcal{S}_{j-1}$ have been constructed so that f_{q} hits each \mathcal{E}_{p} and \mathcal{S}_{p} family of markers whenever $p \leq q \leq j-1$. We will extend the sequence by constructing f_{j}, \mathcal{E}_{j} and \mathcal{S}_{j} to satisfy the corresponding properties. The theorem then follows by induction. In what follows, \mathcal{J}_{i} denotes the marker family that is the union of all the markers in the \mathcal{E}_{r} and \mathcal{S}_{s} marker families, where $r, s \leq i$.

Step 1. Construction of f_{j} and \mathcal{S}_{j} :
Proof. Let $N\left(C_{j}\right)$ be as in Lemma 3.11 ii). Given f_{j-1}, obtain f_{j}^{1} by applying Corollary 9.3 to f_{j} and the marker cover \mathcal{J}_{j-1}. Now repeatedly apply Proposition 10.1 to obtain $f_{j}^{2}, f_{j}^{3}, \cdots, f_{j}^{N\left(C_{j}\right)}$ with the property that f_{j}^{q} is a generic PL map obtained from f_{j-1}^{q-1} via a \mathcal{J}_{j-1} marker preserving homotopy such that $g\left(f_{j}^{q}, C\right) \geq q$. Let $f_{j}=f_{j}^{N\left(C_{j}\right)}$ and apply Lemma 3.11 ii) to obtain \mathcal{S}_{j}.

Step 2. Construction of \mathcal{E}_{j} :
Proof. Apply Lemma 3.11 i) to the generic PL map f_{j} to obtain \mathcal{E}_{j} a marker cover by $1 / j$ markers.

Theorem 11.2. If S is a finite type hyperbolic surface such that $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$, then $\mathcal{E} \mathcal{L}(S)$ is $(n-1)$-connected.
Proof. Let $k \leq n$ and $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ be continuous and $f: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ be a generic PL extension of g, provided by Proposition 2.7. Now apply Theorem 11.1 to extend g to a map of B^{k} into $\mathcal{E} \mathcal{L}(S)$.

12. $\mathcal{E} \mathcal{L}(S)$ IS $(n-1)$-LOCALLY CONNECTED

Theorem 12.1. If S is a finite type hyperbolic surface, then $\mathcal{E} \mathcal{L}(S)$ is $(n-1)$-locally connected, where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$.

Proof. We need to show that if $\mathcal{L} \in \mathcal{E} \mathcal{L}(S)$, and $U^{\prime} \subset \mathcal{E} \mathcal{L}(S)$ is an open set containing \mathcal{L}, then there exists an open set $U \subset U^{\prime}$ containing \mathcal{L} so that if $k \leq n$, $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ and $g\left(S^{k-1}\right) \subset U$, then g extends to a map $F: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ such that $F\left(B^{k}\right) \subset U^{\prime}$.

Choose a pair of pants decomposition and parametrizations of the the cuffs and pants so that some complete maximal train track τ fully carries \mathcal{L}. Thus $V(\tau)$ is a convex subset of $\mathcal{M} \mathcal{L}(S)$ that contains $\hat{\phi}^{-1}(\mathcal{L})$ in its interior.

Let $\mathcal{M}_{1}, \mathcal{M}_{2}, \cdots$ be a sequence of markers such that each \mathcal{M}_{i} is a $1 / i$-marker that is that is hit by \mathcal{L}. Let $U_{i}=\left\{x \in \mathcal{E} \mathcal{L}(S) \mid \phi(x)\right.$ hits $\left.\mathcal{M}_{i}\right\}$. Then each U_{i} is an open set containing \mathcal{L} and by Lemma 4.5 there exists $N \in \mathbb{N}$ such that if $i \geq N$, then $\hat{\phi}^{-1}\left(U_{i}\right) \subset \operatorname{int}(V(\tau)) \cap \hat{\phi}^{-1}\left(U^{\prime}\right)$. Reduce the ends of each post of \mathcal{M}_{N} slightly to obtain \mathcal{M}_{N}^{*} so that if $U_{N}^{*}=\left\{x \in \mathcal{E} \mathcal{L}(S) \mid \phi(x)\right.$ hits $\left.\mathcal{M}_{N}^{*}\right\}$ and $\bar{U}_{N}^{*}=\{x \in \mathcal{E} \mathcal{L}(S) \mid \phi(x)$ hits $\left.\overline{\mathcal{M}}_{N}^{*}\right\}$, then $\mathcal{L} \in U_{N}^{*} \subset \bar{U}_{N}^{*} \subset U_{N}$. Let $\hat{W} \subset \hat{\phi}^{-1}\left(U_{N}^{*}\right)$ be an open convex subset of $\mathcal{M} \mathcal{L}(S)$ that contains $\hat{\phi}^{-1}(\mathcal{L})$ and is saturated by rays through the origin. By reducing \hat{W} we can assume that $\hat{W}=\operatorname{int}(V(\tau))$ for some train track τ carrying \mathcal{L}. Next choose j such that $\hat{\phi}^{-1}\left(U_{j}\right) \subset \hat{W}$. Let $U=U_{j}$ and $\mathcal{M}=\mathcal{M}_{j}$.

Let $k \leq n$ and $g: S^{k-1} \rightarrow \mathcal{E} \mathcal{L}(S)$ with $g\left(S^{k-1}\right) \subset U$. Since \hat{W} is convex and contains $\hat{\phi}^{-1}(U)$, we can apply Proposition 2.7 and Remark 2.19 to find a generic PL map $f_{0}: B^{k} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E L}(S)$ extending g such that $f_{0}\left(\operatorname{int}\left(B^{k}\right)\right) \subset W$. Thus for
all $t \in B^{k}, f_{0}(t)$ hits \mathcal{M}. Theorem 11.1 produces $f: B^{k} \rightarrow \mathcal{E} \mathcal{L}(S)$ extending g such that for $t \in B^{k}$ and $i \in \mathbb{N}, f_{i}(t)$ hits \mathcal{M}. Therefore, for each $t \in B^{k}, f(t)$ hits the closed marker \bar{M}_{N}^{*} and hence $f\left(B^{k}\right) \subset \bar{U}_{N} \subset U^{\prime}$.

13. $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mathcal{E} \mathcal{L}(S)$ Approximation Lemmas

The main technical results of this paper are that under appropriate circumstances any map into $\mathcal{E} \mathcal{L}(S)$ can be closely approximated by a map into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and vice versa. In this section we isolate out these results.

We first give a mild extension of Lemma 2.18, which is about approximating a map into $\mathcal{E} \mathcal{L}(S)$ by a map into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. The subsequent two results are about approximating maps into $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ by maps into $\mathcal{E} \mathcal{L}(S)$.

Lemma 13.1. Let K be a finite simplicial complex, $g: K \rightarrow \mathcal{E} \mathcal{L}(S)$ and $\epsilon>0$. Then there exists a generic PL map $h: K \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that for each $t \in K$, $d_{P T(S)}(\phi(h(t)), g(t))<\epsilon$ and $d_{\mathcal{P} \mathcal{M L}(S)}\left(h(t), \phi^{-1}\left(g\left(t^{\prime}\right)\right)\right)<\epsilon$ some $t^{\prime} \in K$ with $d_{K}\left(t, t^{\prime}\right)<\epsilon$.
Proof. Given g, Lemma 2.18 produces mappings $h_{i}: K \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $d_{P T(S)}\left(\phi\left(h_{i}(t)\right), g(t)\right)<\epsilon / i$. By super convergence we can assume that each h_{i} is a generic PL map satisfying the same conclusion.

We show that if i is sufficiently large, then the second conclusion holds for $h=h_{i}$. Otherwise, there exists a sequence t_{1}, t_{2}, \cdots of points in K for which it fails respectively for h_{1}, h_{2}, \cdots. Since for each $i, h_{i}^{-1}(\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S))$ is dense in K, it follows from Lemma 1.12 that we can replace the t_{i} 's by another such sequence satisfying $d_{\mathcal{P} \mathcal{M L}(S)}\left(h_{i}\left(t_{i}\right), \phi^{-1}\left(g\left(t_{i}\right)\right)\right)>\epsilon / 2, t_{i} \rightarrow t_{\infty}, h_{i}\left(t_{i}\right) \rightarrow x_{\infty}$ and $\phi\left(h_{i}\left(t_{i}\right)\right) \in \mathcal{E} \mathcal{L}(S)$ all $i \in \mathbb{N}$. By Lemmas 4.6 and 4.1, $\phi\left(h_{i}\left(t_{i}\right)\right) \rightarrow g\left(t_{\infty}\right)$ and hence by Lemma 1.12, $\phi\left(x_{\infty}\right)=g\left(t_{\infty}\right)$. Therefore, $\lim _{i \rightarrow \infty} d_{\mathcal{P M L}(S)}\left(h_{i}\left(t_{i}\right), \phi^{-1}\left(g\left(t_{\infty}\right)\right)\right) \leq$ $\lim _{i \rightarrow \infty} d_{\mathcal{P M \mathcal { L } (S)}}\left(h_{i}\left(t_{i}\right), x_{\infty}\right)=0$, a contradiction.
Lemma 13.2. Let V be the underlying space of a finite simplicial complex. Let W be that of a finite subcomplex. S be a finite type hyperbolic surface with $\operatorname{dim}(\mathcal{P M} \mathcal{L}(S))=$ $2 n+1$ and let $\epsilon>0$. If $h: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ is a generic PL map, $h^{-1}(\mathcal{E} \mathcal{L}(S))=W$ and $\operatorname{dim}(V) \leq n$, then there exists $g: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that $g \mid W=h$ and for each $t \in V, d_{P T(S)}(g(t), \phi(h(t)))<\epsilon$.

Proof. Since $k \leq n, \mathcal{A}(\phi(h(t))) \neq \emptyset$ for every $t \in V$, where $\mathcal{A}(\phi(h(t)))$ denotes the arational sublamination of $\phi(h(t))$. Therefore, by Lemma 3.5 for each $t \in V$, there exists an ϵ-marker \mathcal{M}_{t} that is hit by $\phi(h(t))$. By Lemma 3.7, \mathcal{M}_{t} is hit by all $\phi(h(s))$ for all s sufficiently close to t. By compactness of V, there exists an ϵ-marker family \mathcal{J} hit by h. By Theorem 11.1 there exists $g: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that g hits \mathcal{J}. Since both h and g hit \mathcal{J}, the conclusion follows.

Lemma 13.3. S be a finite type hyperbolic surface with $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$. Let V be the underlying space of a finite simplicial complex with $\operatorname{dim}(V) \leq n$. For $i \in \mathbb{N}$, let $\epsilon_{i}>0$ and $h_{i}: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ be generic PL maps. If for each $z \in \mathcal{E} \mathcal{L}(S)$ there exists $\delta_{z}>0$ so that for i sufficiently large $d_{\mathcal{P M L}(S)}\left(h_{i}(V), \phi^{-1}(z)\right)>\delta_{z}$, then there exists $g_{1}, g_{2}, \cdots: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that
i) For each $i \in \mathbb{N}$ and $t \in V, d_{P T(S)}\left(g_{i}(t), \phi\left(h_{i}(t)\right)\right)<\epsilon_{i}$.
ii) For each $z \in \mathcal{E} \mathcal{L}(S)$, there exists a neighborhood $U_{z} \subset \mathcal{E} \mathcal{L}(S)$ of z such that for i sufficiently large $g_{i}(V) \cap U_{z}=\emptyset$.

Proof. Given $z \in \mathcal{E} \mathcal{L}(S)$ and $\delta_{z}>0$, it follows from Lemma 4.2 that there exists $\epsilon(z)>0$ such that if $x \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $d_{P T(S)}\left(\phi(x), z^{\prime}\right) \leq \epsilon(z)$, then $d_{\mathcal{P M L}(S)}\left(x, \phi^{-1}(z)\right)<$ δ_{z} and if $y \in \mathcal{E} \mathcal{L}(S)$ and $d_{P T(S)}\left(y, z^{\prime}\right) \leq \epsilon(z)$, then $\phi^{-1}(y) \subset N_{\mathcal{P M L}(S)}\left(\phi^{-1}(z), \delta_{z}\right)$. Here z^{\prime} is a diagonal extension of z. Let U_{z} be a neighborhood of z such that $y \in U_{z}$ implies $y \subset N_{P T(S)}\left(z^{\prime}, \epsilon(z) / 2\right)$ for some diagonal extension z^{\prime} of z.

Now let $f: V \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ be a generic PL map with $k \leq n$. If $0<\epsilon \leq \epsilon(z)$ and $d_{\mathcal{P} \mathcal{M} \mathcal{L}(S)}\left(f(V), \phi^{-1}(z)\right)>\delta_{z}$, then we now show that there exists $g: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that for every $t \in V, d_{P T(S)}(g(t), \phi(f(t)))<\epsilon$ and $g(V) \cap U_{z}=\emptyset$. By definition of $\epsilon(z)$, for every $t \in V$ and diagonal extension z^{\prime} of $z, d_{P T(S)}\left(\phi(f(t)), z^{\prime}\right)>\epsilon(z)$ and in particular $d_{P T(S)}\left(A(t), z^{\prime}\right)>\epsilon$, where $A(t)$ is the arational sublamination of $\phi(f(t))$. By Lemma 3.4 for each $t \in V$, there exists an $\epsilon / 2$ marker hit by $\phi(f(t))$. Since hitting markers is an open condition and V is compact there exists an $\epsilon / 2$ marker family \mathcal{J} hit by f. Now apply Theorem 11.1 to obtain $g: V \rightarrow \mathcal{E} \mathcal{L}(S)$ such that g hits \mathcal{J}. Therefore for each $t \in V, d_{P T(S)}(g(t), \phi(f(t))) \leq \epsilon / 2$ and hence $g(t) \subsetneq N_{P T(S)}\left(z^{\prime}, \epsilon(z) / 2\right)$ for all diagonal extensions z^{\prime} of z. Therefore $g(t) \notin U_{z}$. It follows that $g(V) \cap U_{z}=\emptyset$.

Since $\mathcal{E} \mathcal{L}(S)$ is separable and metrizable it is Lindelof, hence there exists a countable cover of $\mathcal{E} \mathcal{L}(S)$ of the form $\left\{U_{z_{j}}\right\}$. By hypothesis for every $j \in \mathbb{N}$, there exists $n_{j} \in \mathbb{N}$ such that $i \geq n_{j}$ implies $d_{\mathcal{P} \mathcal{M} \mathcal{L}(S)}\left(h_{i}(V), \phi^{-1}\left(z_{j}\right)\right)>\delta_{z_{j}}$. We can assume that $n_{1}<n_{2}<\cdots$. Let $m_{i}=\max \left\{j \mid n_{j} \leq i\right\}$.

For $i \in \mathbb{N}$ apply the argument of the second paragraph with $f=h_{i}$ and $\epsilon=$ $\min \left\{\epsilon\left(z_{1}\right), \cdots, \epsilon\left(z_{m_{i}}\right), \epsilon_{i}\right\}$ to produce $g_{i}: V \rightarrow \mathcal{E} \mathcal{L}(S)$ satisfying for all $t \in V$, $d_{P T(S)}\left(g_{i}(t), \phi\left(h_{i}(t)\right)\right)<\epsilon$ and such that $g_{i}(V) \cap U_{z_{j}}=\emptyset$ for $j \leq m_{i}$, assuming that $m_{i} \neq \emptyset$. It follows that g_{1}, g_{2}, \cdots satisfy the conclusion of the Lemma.

14. Good cellulations of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$

The main result of this section, Proposition 14.6 produces a sequence of cellulations of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that each cell is the polytope of a train trace and face relations among cells correspond to carrying among train tracks. Each cellulation is a subdivision of the previous one, subdivision of cells corresponds to splitting of train tracks and every train track eventually gets split arbitrarily much.

Definition 14.1. If τ is a train track, then let $V(\tau)$ denote the set of measured laminations carried by τ and $P(\tau)$ denote the polyhedron that is the quotient of $V(\tau) \backslash 0$, by rescaling. A train track is generic if exactly three edges locally emanate from each switch. All train tracks in this section are generic. We say that τ_{2} is obtained from τ_{1} by a single splitting if τ_{2} is obtained by splitting without collision along a single large branch of τ_{1}. Also τ^{\prime} is a full splitting of τ if it is the result of a sequence of single splittings along each large branch of τ.

Remark 14.2. By elementary linear algebra if τ_{R} and τ_{L} are the train tracks obtained from τ by a single splitting, then $V\left(\tau_{R}\right)=V(\tau)$ or $V\left(\tau_{L}\right)=V(\tau)$ or $V\left(\tau_{R}\right), V\left(\tau_{L}\right)$ are obtained by slicing $V(\tau)$ along a codimension-1 plane through the origin.

Definition 14.3. We say that a finite set $R(\tau)$ of train tracks is descended from τ, if there exists a sequence of sets of train tracks $R_{1}=\{\tau\}, R_{2}, \cdots, R_{k}=R(\tau)$ such that R_{i+1} is obtained from R_{i} by deleting one train track $\tau \in R_{i}$ and replacing it either by the two train tracks resulting from a single splitting of τ if $P(\tau)$ is split, or one of the resulting tracks with polyhedron equal to $P(\tau)$ otherwise. Finally,
if a replacement track is not recurrent, then replace it by its maximal recurrent subtrack.

Remark 14.4. If $R(\tau)$ is descended from τ, then $P(\tau)=\cup_{\kappa \in R(\tau)} P(\kappa)$, each $P(\kappa)$ is codimension- 0 in $P(\tau)$ and any two distinct $P(\kappa)$'s have pairwise disjoint interiors. Thus, any set of tracks descended from τ gives rise to a subdivision of τ 's polyhedron. A consequence of Proposition 14.6 is that after subdivision, the lower dimensional faces of the subdivided $P(\tau)$ are also polyhedra of train tracks.

Definition 14.5. Let Δ be a cellulation of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ and T a finite set of birecurrent generic train tracks. We say that T is associated to Δ if there exists a bijection between elements of T and cells of Δ such that if $\sigma \in \Delta$ corresponds to $\tau_{\sigma} \in T$, then $P\left(\tau_{\sigma}\right)=\sigma$.

Proposition 14.6. Let S be a finite type hyperbolic surface. There exists a sequence of cellulations $\Delta_{0}, \Delta_{1}, \cdots$ of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that
i) Each Δ_{i+1} is a subdivision of Δ_{i}.
ii) Each Δ_{i} is associated to a set T_{i} of train tracks.
iii) If σ_{j} is a face of σ_{k}, then $\tau_{\sigma_{j}}$ is carried by $\tau_{\sigma_{k}}$. If $\sigma_{p} \in \Delta_{i}, \sigma_{q} \in \Delta_{j}, \sigma_{p} \subset$ $\sigma_{q}, \operatorname{dim}\left(\sigma_{p}\right)=\operatorname{dim}\left(\sigma_{q}\right)$ and $i>j$, then $\tau_{\sigma_{p}}$ is obtained from $\tau_{\sigma_{q}}$ by finitely many single splittings and possibly deleting some branches.
iv) There exists a subsequence $\Delta_{i_{0}}=\Delta_{0}, \Delta_{i_{1}}, \Delta_{i_{2}}, \cdots$ such that each complete $\tau \in T_{i_{N}}$ is obtained from a complete $\tau^{\prime} \in T_{0}$ by N full splittings.

Definition 14.7. A sequence of cellulations $\left\{\Delta_{i}\right\}$ satisfying the conclusions of Proposition 14.6 is called a good cellulation sequence.

Proof. Let T_{0} be the set of standard train tracks associated to a parametrized pants decomposition of S. As detailed in [PH], T_{0} gives rise to a cellulation Δ_{0} of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that each $\sigma \in \Delta_{0}$ is the polyhedron of a track in T_{0}.

The idea of the proof is this. Suppose we have constructed $\Delta_{0}, \Delta_{1}, \cdots, \Delta_{i}$, and $T_{0}, T_{1}, \cdots T_{i}$ satisfying conditions i)-iii). Since any full splitting of a train track is the result of finitely many single splittings it suffices to construct Δ_{i+1} and T_{i+1} satisfying i)-iii) such that the complete tracks of T_{i+1} consist of the complete tracks of T_{i}, except that a single complete track τ of T_{i} is replaced by τ_{R} and/or τ_{L}. Let T_{i}^{\prime} denote this new set of complete tracks. The key technical Lemma 14.8 implies that if σ is a codimension- 1 cell of Δ_{i} with associated train track τ_{σ}, then every element of some set of train tracks descended from τ_{σ} is carried by an element of T_{i}^{\prime}. This implies that σ has been subdivided in a manner compatible with the subdivision of the top dimensional cell $P(\tau)$. Actually, we must be concerned with lower dimensional cells too and new cells that result from any subdivision. Careful bookkeeping together with repeated applications of Lemma 14.8 deals with this issue.

Lemma 14.8. Suppose that κ is carried by τ. Let τ_{R} and τ_{L} be the train tracks obtained from a single splitting of τ along the large branch b. Then there exists a set $R(\kappa)$ of train tracks descended from κ such that for each $\kappa^{\prime} \in R(\kappa), \kappa^{\prime}$ is carried by one of τ_{R} or τ_{L}.

If $P(\tau)=P\left(\tau_{R}\right)$ (resp. $P\left(\tau_{L}\right)$), then each κ^{\prime} is carried by the maximal recurrent subtrack of $\tau_{R}\left(\right.$ resp. $\left.\tau_{L}\right)$.

Proof. Let $N(\tau)$ be a fibered neighborhood of τ. Being carried by τ, we can assume that $\kappa \subset \operatorname{int}(N(\tau))$ and is transverse to the ties. Let $J \times[0,1]$ denote $\pi^{-1}(b)$ where $\pi: N(\tau) \rightarrow \tau$ is the projection contracting each tie to a point. Here $J=[0,1]$ and each $J \times t$ is a tie. Let $\partial_{s}(J \times i), i \in\{0,1\}$ denote the singular point of $N(\tau)$ in $J \times i$. The canonical projection $h: J \times[0,1]$ to $[0,1]$ gives a height function on $J \times I$.

We can assume that distinct switches of κ inside of $J \times I$ occur at distinct heights and no switch occurs at heights 0 or 1. Call a switch s a down (resp. up) switch if two branches emanate from s that lie below (resp. above) s. A down (resp. up) switch is a bottom (resp. top) switch if the branches emanating below (resp. above) s extend to smooth arcs in $\kappa \cap J \times I$ that intersect $J \times 0 \backslash \partial_{s}(J \times 0)$ (resp. $J \times 1 \backslash \partial_{s}(J \times 1)$) in distinct components. Furthermore $h(s)$ is minimal (resp. maximal) with that property. There is at most one top switch and one bottom switch. Let s_{T} (resp. s_{B}) denote the top (resp. bottom) switch if it exists.

We define the, possibly empty, b-core as the unique embedded arc in $\kappa \cap J \times I$ transverse to the ties with endpoints in the top and bottom switches. We also require that $h\left(s_{B}\right)<h\left(s_{T}\right)$. Uniqueness follows since κ has no bigons.

We now show that if the b-core is empty, then κ is carried by one of τ_{R} or τ_{L}. To do this it suffices to show that after normal isotopy, κ has no switches in $J \times I$. By normal isotopy we mean isotopy of κ within $N(\tau)$ through train tracks that are transverse to the ties. It is routine to remove, via normal isotopy, the switches in $J \times I$ lying above s_{T} and those lying below s_{B}. Thus all the switches can be normally isotoped out of $J \times I$ if either s_{T} or s_{B} do not exist or $h\left(s_{B}\right)>h\left(s_{T}\right)$. If s_{T} exists, then since the b-core $=\emptyset$ all smooth arcs descending from s_{T} hit only one component of $J \times 0 \backslash \partial_{s}(J \times 0)$. Use this fact to first normally isotope κ to remove from $J \times I$ all the switches lying on smooth arcs from s_{T} to $J \times 0$ and then to isotope s_{T} out of $J \times I$.

Now assume that the b-core exists. Let $u_{1}, \cdots, u_{r}, d_{1}, \cdots, d_{s}$ be respectively the up and down switches of κ that lie on the core. For $i \in\{1, \cdots, s\}$, let $u(i)$ be the number of up switches in the b-core that lie above the down switch d_{i}. Define $C(\kappa)=\sum_{j=1}^{s} u(i)$. Define $C(\kappa)=0$ if the b-core is empty. Note that if $C(\kappa)=1$, then $r=s=1$ and $u_{1}=s_{T}$ and $d_{1}=s_{B}$. Furthermore splitting κ along the large branch between s_{T} and s_{B} gives rise to tracks whose b-cores are empty and hence are carried by one of τ_{R} or τ_{S}.

Assume by induction that the first part of the lemma holds for all train tracks κ with $C(\kappa)<k$. Let κ be a track with $C(\kappa)=k$. Let e be a large branch of κ lying in κ 's b-core. The two train tracks obtained by splitting along e have reduced C-values. Therefore, the first part of the lemma follows by induction.

Now suppose that $P(\tau)=P\left(\tau_{R}\right)$. It follows that $P\left(\tau_{L}\right) \subset P\left(\tau_{R}\right)$ and hence $P\left(\tau_{L}\right)=P\left(\tau_{C}\right)$, where τ_{C} is the train track obtained by splitting τ along b with collision. Therefore if κ^{\prime} is the result of finitely many simple splittings, and is carried by τ_{L}, then the maximal recurrent subtrack of κ^{\prime} is carried by τ_{C} and hence by the maximal recurrent subtrack of τ_{R}.

Remarks 14.9. i) If each u_{i} is to the left of the b-core and each d_{j} is to the right of the b-core, then if κ_{R} and κ_{L} are the tracks resulting from a single splitting along a large branch in the b-core, then $C\left(\kappa_{R}\right)=C(\kappa)-1$, while $C\left(\kappa_{L}\right)=0$.
ii) Any large branch of κ that intersects the b-core is contained in the b-core. It follows that if κ^{\prime} is the result of finitely many single splittings of κ, then $C\left(\kappa^{\prime}\right) \leq$ $C(\kappa)$.

Now assume we have a sequence $\left(\Delta_{0}, T_{0}\right), \cdots,\left(\Delta_{i}, T_{i}\right)$ of cellulations and associated train tracks that satisfy i)-iii) of the proposition. Let σ be a cell of Δ_{i} with associated train track τ. Since any full splitting of a track is the concatenation of splittings along large branches, to complete the proof of the proposition, it suffices to prove the following claim.
Claim. If τ_{R} and τ_{L} are the result of a single splitting of τ, then there exists a cellulation Δ_{i+1} with associated train tracks T_{i+1} extending the sequence and satisfying i)-iii), so that τ is replaced with the maximal recurrent subtracks of τ_{R} and/or τ_{L} and if $\tau^{\prime} \in T_{i}$ is such that $\operatorname{dim}\left(P\left(\tau^{\prime}\right)\right) \geq \operatorname{dim}(P(\tau))$ and $\tau^{\prime} \neq \tau$, then $\tau^{\prime} \in T_{i+1}$.
Proof. Proof by induction on $\operatorname{dim}(\sigma)$. We will assume that each of $P\left(\tau_{R}\right)$ and $P\left(\tau_{L}\right)$ are proper subcells of $P(\tau)$, for proof in the general case is similar. The claim is trivial if $\operatorname{dim}(\sigma)=0$. Now assume that the claim is true if $\operatorname{dim}(\sigma)<k$. Assuming that $\operatorname{dim}(\sigma)=k$ let $\sigma_{1}, \cdots, \sigma_{p}$, be the $(k-1)$-dimensional faces of σ with corresponding train tracks $\kappa_{1}, \cdots, \kappa_{p}$. By Lemma 14.8 there exists sets $R\left(\kappa_{1}\right), \cdots, R\left(\kappa_{p}\right)$ descended from the κ_{i} 's such that any train track in any of these sets is carried by one of τ_{R} and τ_{L}.

If $R\left(\kappa_{1}\right) \neq\left\{\kappa_{1}\right\}$, then there exists a single splitting of κ_{1} into κ_{1}^{1} and κ_{1}^{2} such that $R\left(\kappa_{1}\right)=R\left(\kappa_{1}^{1}\right) \cup R\left(\kappa_{1}^{2}\right)$, where $R\left(\kappa_{1}^{i}\right)$ is descended from κ_{1}^{i}. (As usual, only one may be relevant and it might have stuff deleted.) By induction there exists a cellulation Δ_{i}^{1} with associated T_{i}^{1} such that the sequence $\left(\Delta_{0}, T_{0}\right), \cdots,\left(\Delta_{i}, T_{i}\right)$, $\left(\Delta_{i}^{1}, T_{i}^{1}\right)$ satisfies i)-iii) and in the passage from T_{i} to $T_{i}^{1}, P\left(\kappa_{1}\right)$ is the only polyhedron of dimension $\geq k-1$ that gets subdivided and it is replaced by $P\left(\kappa_{1}^{1}\right)$ and $P\left(\kappa_{1}^{2}\right)$. By repeatedly applying the induction hypothesis we obtain the sequence $\left(\Delta_{0}, T_{0}\right), \cdots,\left(\Delta_{i}, T_{i}\right),\left(\Delta_{i}^{1}, T_{i}^{1}\right), \cdots,\left(\Delta_{i}^{p}, T_{i}^{p}\right)$ satisfying i)-iii) such that in the passage from Δ_{i} to Δ_{i}^{p}, each σ_{j} is subdivided into the polyhedra of $R\left(\kappa_{j}\right)$ and no cells of dimension $\geq k$ are subdivided and their associated train tracks are unchanged. It follows that if Δ_{i+1} is obtained by subdividing Δ_{i}^{p} by replacing σ by $P\left(\tau_{R}\right), P\left(\tau_{L}\right)$ and $P\left(\tau_{C}\right)$ and T_{i+1} is the set of associated train tracks, then $\left(\Delta_{1}, T_{1}\right), \cdots,\left(\Delta_{i}, T_{i}\right),\left(\Delta_{i+1}, T_{i+1}\right)$ satisfies i)-iii) and hence the induction step is completed.

Lemma 14.10. Let $\Delta_{1}, \Delta_{2}, \cdots$ be a good cellulation sequence.
i) If σ is a cell of Δ_{i}, then $\phi(\sigma) \cap \mathcal{E} \mathcal{L}(S)$ is closed in $\mathcal{E} \mathcal{L}(S)$.
ii) If $\mathcal{L}=\phi(x)$ some $x \in \mathcal{P} \mathcal{M} \mathcal{L}(S)$, then for each $i \in \mathbb{N}$ there exists a unique cell $\sigma \in \Delta_{i}$ such that $\phi^{-1}(\mathcal{L}) \subset \operatorname{int}(\sigma)$.
iii) If U is an open set of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ that is the union of open cells of Δ_{i}, then $\phi(U) \cap \mathcal{E} \mathcal{L}(S)$ is open in $\mathcal{E} \mathcal{L}(S)$.
iv) If σ is a cell of Δ_{i}, then $\operatorname{int}(\sigma)$ is open in $\phi(\sigma) \cap \mathcal{E} \mathcal{L}(S)$.
v) If $\mu \in \mathcal{E} \mathcal{L}(S)$ and $\phi^{-1}(\mu) \in \operatorname{int}(\sigma)$, σ a cell of Δ_{i}, then there exists $\epsilon(\mu)>0$ such that $B(\mu, \epsilon(\mu))=\left\{x \in \mathcal{P} \mathcal{M} \mathcal{L}(S) \mid d_{P T(S)}(\phi(x), \mu)<\epsilon(\mu)\right\} \subset \hat{\sigma}$.
Proof. Conclusion i) follows from Lemma 1.14.
Conclusion ii) follows from the fact that if τ carries \mathcal{L}, then $\phi^{-1}(\mathcal{L}) \subset P(\tau)$.
Conclusion iii) follows from Conclusion i) and the fact that $\phi(U) \cap \phi(\mathcal{P M} \mathcal{L}(S) \backslash$ $U) \cap \mathcal{E} \mathcal{L}(S)=\emptyset$.

Conclusion iv) follows from Conclusion i) and the fact that $\phi(\operatorname{int}(\sigma)) \cap \phi(\partial \sigma) \cap$ $\mathcal{E} \mathcal{L}(S)=\emptyset$.

Let κ be a cell of Δ_{i} with associated train track τ. If τ carries μ, then $\kappa \cap \sigma \neq \emptyset$ and hence by ii) σ is a face of κ and hence $\operatorname{int}(\kappa) \subset \hat{\sigma}$. If τ does not carry μ, then by Lemma $1.16 B(\mu, \epsilon) \cap P(\tau)=\emptyset$ for ϵ sufficiently small. Since Δ_{i} has finitely many cells, the result follows.

We have the following PML-approximation result for good cellulation sequences.
Proposition 14.11. Let $\Delta_{1}, \Delta_{2}, \cdots$ be a good cellulation sequence, K a finite simplicial complex, $i \in \mathbb{N}$ fixed and $g: K \rightarrow \mathcal{E} \mathcal{L}(S)$. Then there exists $h: K \rightarrow$ $\mathcal{P} \mathcal{M L}(S)$ a generic $P L$ map such that for each $t \in K$, there exists $\sigma(t)$ a cell of Δ_{i} such that $h(t) \cup \phi^{-1}(g(t)) \subset \hat{\sigma}(t)$.

Proof. Given $\mu \in \mathcal{E} \mathcal{L}(S)$, let σ be the cell of Δ_{i} such that $\phi^{-1}(\mu) \subset \operatorname{int}(\sigma)$. Let $\epsilon(\mu)$ be as in Lemma 14.10 v$)$. By Lemmas 4.6 and 4.1 there exists a neighborhood $U_{\mu} \subset \mathcal{E} \mathcal{L}(S)$ of μ and $\delta_{\mu}>0$ such that $d_{P T(S)}(\mathcal{L}, z)<\delta_{\mu}, z \in U_{\mu}, \mathcal{L} \in \mathcal{L}(S)$ implies that $d_{P T(S)}(\mathcal{L}, \mu)<\epsilon(\mu)$.

The compactness of $g(K)$ implies that there exists a finite open cover $U_{\mu_{1}}, \cdots, U_{\mu_{k}}$ of $g(K)$. Let $\delta=\min \left\{\delta_{\mu_{1}}, \cdots, \delta_{\mu_{k}}\right\}$. Then any δ PML-approximation as in Proposition 13.1 satisfies the conclusion of the proposition.

Lemma 14.12. If $\sigma=P(\tau)$ is a cell of $\Delta_{i}, \sigma^{\prime}$ is a face of σ and $\mu \in \phi\left(\sigma^{\prime}\right) \cap \mathcal{E} \mathcal{L}(S)$, then τ fully carries a diagonal extension of μ.

Proof. Apply Lemma 4.8 and Proposition 14.6 iii).
Lemma 14.13. Let $\Delta_{1}, \Delta_{2}, \cdots$ be a good cellulation sequence. Given $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $i \geq N, \mathcal{L}_{1} \in \mathcal{E} \mathcal{L}(S), \mathcal{L}_{2} \in \mathcal{L}(S)$ and $\mathcal{L}_{1}, \mathcal{L}_{2}$ are carried by τ some $\tau \in T_{i}, i \geq N$, then $d_{P T(S)}\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)<\epsilon$.

Proof. Apply Propositions 14.6 and 4.10.
Definition 14.14. If σ is a cell of Δ_{i}, then define the open star $\hat{\sigma}=\cup_{\eta \in \Delta_{i} \mid \sigma \subset \eta} \operatorname{int}(\eta)$.
Lemma 14.15. If σ is a cell of Δ_{i}, then $\hat{\sigma}$ is open in $\mathcal{P M} \mathcal{L}(S)$ and contractible. Indeed, it deformation retracts to int (σ).

Lemma 14.16. If σ is a face of κ, then $\hat{\kappa} \subset \hat{\sigma}$.
Definition 14.17. Define $U(\sigma)=\phi(\hat{\sigma}) \cap \mathcal{E} \mathcal{L}(S)$.
Lemma 14.18. $\mathcal{B}=\left\{U(\sigma) \mid \phi(\operatorname{int}(\sigma)) \cap \mathcal{E} \mathcal{L}(S) \neq \emptyset\right.$ and $\sigma \in \Delta_{i}$ for some $\left.i \in \mathbb{N}\right\}$ is a neighborhood basis of $\mathcal{E} \mathcal{L}(S)$.

Proof. By Lemma 4.1 it suffices to show that for each $\mu \in \mathcal{E} \mathcal{L}(S)$ and $\epsilon>0$, there exists a neighborhood $U(\sigma)$ of μ such that $z \in U(\sigma)$ implies $d_{P T(S)}(z, \mu)<\epsilon$. Choose N such that the conclusion of Lemma 14.13 holds. Let σ be the simplex of Δ_{N} such that $\phi^{-1}(\mu) \subset \operatorname{int}(\sigma)$. If $z \in U(\sigma)$, then $\phi^{-1}(z) \in P(\tau)$ where σ is a face of τ. Therefore, z and μ are carried by τ and hence $d_{P T(S)}(\mu, z)<\epsilon$.

Lemma 14.19. Let \mathcal{U} be an open cover of $\mathcal{E L}(S)$. Then there exists a refinement \mathcal{U}_{2} of \mathcal{U} by elements of \mathcal{B}, maximal with respect to inclusion, such that for each $U\left(\sigma_{2}\right) \in \mathcal{U}_{2}$ there exists $U \in \mathcal{U}$ and $\delta\left(U\left(\sigma_{2}\right)\right)>0$ with the following property. If $x \in \hat{\sigma}_{2}$ and $z \in \mathcal{E} \mathcal{L}(S)$ are such that $d_{P T(S)}(\phi(x), z)<\delta\left(U\left(\sigma_{2}\right)\right)$, then $z \in U$.

Proof. It suffices to show that if $\mu \in \mathcal{E} \mathcal{L}(S)$ and $U \in \mathcal{U}$, then there exists σ_{2} and $\delta\left(\sigma_{2}\right)$ such that the last sentence of the lemma holds. By Lemma 4.1 there exists $\delta_{1}>0$ such that if $z \in \mathcal{E} \mathcal{L}(S)$ and $d_{P T(S)}(z, \mu)<\delta_{1}$, then $z \in U$. By Proposition 4.10 there exists $N_{1}>0$ and $\delta>0$ such that if τ is obtained by fully splitting any one of the train tracks associated to the top dimensional cells of Δ_{1} at least N_{1} times, μ is carried by $\tau, \mathcal{L} \in \mathcal{L}(S)$ is carried by $\tau, z \in \mathcal{E} \mathcal{L}(S)$ with $d_{P T(S)}(z, \mathcal{L})<\delta$, then $d_{P T(S)}(z, \mu)<\delta_{1}$ and hence $z \in U$. Therefore, if σ is the cell of $\Delta_{N_{1}}$ such that $\operatorname{int}(\sigma)$ contains $\phi^{-1}(\mu)$, then let $\sigma_{2}=\sigma$ and $\delta\left(U\left(\sigma_{2}\right)\right)=\delta$.

15. Bounds on the dimension of $\mathcal{E} \mathcal{L}(S)$

In this section we give an upper bound for $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$ for any finite type hyperbolic surface S. When S is either a punctured sphere or torus we give lower bounds for $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$. For punctured spheres these bounds coincide. We conclude that if S is the $n+4$ punctured sphere, then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))=n$.

To compute the lower bounds we will show that $\pi_{n}(\mathcal{E} \mathcal{L}(S)) \neq 0$ for $S=S_{0,4+n}$ or $S_{1,1+n}$. Since $\mathcal{E} \mathcal{L}(S)$ is $(n-1)$-connected and $(n-1)$-locally connected Lemma 15.4 applies.

To start with, $\mathcal{E} \mathcal{L}(S)$ is a separable metric space and hence covering dimension, inductive dimension and cohomological dimension of $\mathcal{E} \mathcal{L}(S)$ all coincide [HW]. By dimension we mean any of these equal values.

The next lemma is key to establishing the upper bound for $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$.
Lemma 15.1. Let $S=S_{g, p}$, where $p>0$ and let $\left\{\Delta_{i}\right\}$ be a good cellulation sequence. If σ is a cell of Δ_{i} and $\phi(\sigma) \cap \mathcal{E} \mathcal{L}(S) \neq \emptyset$, then $\operatorname{dim}(\sigma) \geq n+1-g$, where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$.

If $S=S_{g, 0}$ and σ is as above, then $\operatorname{dim}(\sigma) \geq n+2-g$.
Proof. We first consider the case $p \neq 0$. By Proposition 14.6, $\sigma=P(\tau)$ for some train track τ. It suffices to consider the case that τ is generic. A generic track with e edges has $2 e / 3$ switches, hence $\operatorname{dim}(V(\tau)) \geq e-2 e / 3=e / 3$, e.g. see page $116[\mathrm{PH}]$. Since τ carries an element of $\mathcal{E} \mathcal{L}(S)$, all complementary regions are discs with at most one puncture. After filling in the punctures, τ has say f complementary regions all of which are discs, thus $2-2 g=\chi\left(S_{g}\right)=2 e / 3-e+f$ and hence $\operatorname{dim}(V(\tau)) \geq e / 3=f-2+2 g$. Therefore, $\operatorname{dim}(P(\tau))=\operatorname{dim}(V(\tau))-1 \geq$ $f-3+2 g \geq p-3+2 g=n+1-g$, since $2 n+1=6 g+2 p-7$.

If $p=0$, then $f \geq 1$ and hence the above argument shows $\operatorname{dim}(P(\tau))=$ $\operatorname{dim}(V(\tau))-1 \geq f-3+2 g \geq 1-3+2 g=n+2-g$.

Corollary 15.2. If $S=S_{g, p}$ with $p>0$ (resp. $p=0$), then for each $m \in \mathbb{Z}$, $\mathcal{E} \mathcal{L}(S)=U\left(\sigma_{1}\right) \cup \cdots \cup U\left(\sigma_{k}\right)$, where $\left\{\sigma_{1}, \cdots, \sigma_{k}\right\}$ are the cells of Δ_{m} of dimension $\geq n+1-g$ (resp. $\geq n+2-g)$.

Proposition 15.3. Let $S=S_{g, p}$. If $p>0$ (resp. $p=0$), then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \leq 4 g+$ $p-4=n+g($ resp $. \operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \leq 4 g-5=n+g-1)$, where $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$.

Proof. To minimize notation we give the proof for the $g=0$ case. The general case follows similarly, after appropriately shifting dimensions and indices.

Let \mathcal{E}_{r} denote those elements of $\mu \in \mathcal{E} \mathcal{L}(S)$ such that $\mu=\phi(x)$ for some x in the r-skeleton Δ_{i}^{r} of some Δ_{i}. We will show that for each $i, \operatorname{dim}\left(\mathcal{E}_{i}\right) \leq \max \{i-(n+$ $1),-1\}$. We use the convention that $\operatorname{dim}(X)=-1$ if $X=\emptyset$.

By Lemma $15.1 \Delta_{i}^{r} \cap \mathcal{E} \mathcal{L}(S)=\emptyset$ for all $i \in \mathbb{N}$ and $r \leq n$ and hence $\mathcal{E}_{n}=$ \emptyset. Now suppose by induction that for all $k<m$, $\operatorname{dim}\left(\mathcal{E}_{n+1+k}\right) \leq k$. We will show that $\operatorname{dim}\left(\mathcal{E}_{n+1+m}\right) \leq m$. Now $\mathcal{E}_{n+1+m}=\cup_{i \in \mathbb{N}} \phi\left(\Delta_{i}^{n+1+m}\right) \cap \mathcal{E} \mathcal{L}(S)$, each $\phi\left(\Delta_{i}^{n+1+m}\right) \cap \mathcal{E} \mathcal{L}(S)$ is closed in $\mathcal{E} \mathcal{L}(S)$ by Lemma 1.14 and $\mathcal{E} \mathcal{L}(S)$ is separable metric, hence to prove that $\operatorname{dim}\left(\mathcal{E}_{n+1+m}\right) \leq m$ it suffices to show by the sum theorem (Theorem III $2[\mathrm{HW}]$) that $\operatorname{dim}\left(\phi\left(\Delta_{i}^{n+1+m}\right) \cap \mathcal{E} \mathcal{L}(S)\right) \leq m$ for all $i \in \mathbb{N}$.

Let $X=\phi\left(\Delta_{i}^{n+1+m}\right) \cap \mathcal{E} \mathcal{L}(S)$. To show that the inductive dimension of X is $\leq m$ it suffices to show that if U is open in $X, \mu \in U$, then there exists V open in \bar{X} with $\mu \in V$ and $\partial V \subset \mathcal{E}_{n+m}$.

Let $\sigma \in \Delta_{j}$, some $j \geq i$, such that $\mu \in U(\sigma) \cap X \subset U$. Such a σ exists by Lemma 14.18. Now $\hat{\sigma}=\cup_{u \in J} \operatorname{int}\left(\sigma_{u}\right)$ where the union is over all cells in Δ_{j} having σ as a face. Since $\Delta_{i}^{n+1+m} \subset \Delta_{j}^{n+1+m}$ it follows that after reindexing, $U(\sigma) \cap X \subset \phi\left(\operatorname{int}\left(\sigma_{1}\right) \cup \cdots \cup \operatorname{int}\left(\sigma_{q}\right)\right) \cap \mathcal{E} \mathcal{L}(S)$, where $\sigma_{1}, \cdots, \sigma_{q}$ are those σ_{u} 's such that $\operatorname{dim}\left(\sigma_{i}\right) \leq n+m+1$.

By Lemma $1.14\left(\cup_{i=1}^{q} \phi\left(\sigma_{i}\right)\right) \cap \mathcal{E} \mathcal{L}(S)$ is closed in $\mathcal{E} \mathcal{L}(S)$ and hence restricts to a closed set in X. It follows that $\partial(U(\sigma) \cap X) \subset\left(\cup_{i=1}^{q} \phi\left(\partial \sigma_{i}\right)\right) \cap \mathcal{E} \mathcal{L}(S) \subset \mathcal{E}_{n+m}$.

To establish our lower bounds on $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$ we will use the following basic result.
Lemma 15.4. Let X be a separable metric space such that X is $(n-1)$-connected and $(n-1)$-locally connected. If $\pi_{n}(X) \neq 0$, then $\operatorname{dim}(X) \geq n$.

Proof. (Dranishnikov [Dr]) Let $f: S^{n} \rightarrow X$ be an essential map. If $\operatorname{dim}(X) \leq n-1$, then by $[\mathrm{HW}] \operatorname{dim}\left(f\left(S^{n}\right)\right) \leq \operatorname{dim}(X)$ and hence $\operatorname{dim}(f(X))$ is at most $n-1$. By Bothe [Bo] there exists a compact, metric, absolute retract Y such $\operatorname{dim}(Y) \leq n$ and $f\left(S^{n}\right)$ embeds in Y. By Theorem $10.1[\mathrm{Hu}]$, since Y is metric and X is $(n-1)$ connected and $(n-1)$-locally connected, the inclusion of $f\left(S^{n}\right)$ into X extends to a map $g: Y \rightarrow X$. Now Y is contractible since it is an absolute retract. (The cone of Y retracts to Y.) It follows that f is homotopically trivial, which is a contradiction.

We need the following controlled homotopy lemma for $\mathcal{P M} \mathcal{L}(S)$ approximations that are very close to a given map into $\mathcal{E} \mathcal{L}(S)$.
Lemma 15.5. Let K be a finite simplicial complex. Let $g: K \rightarrow \mathcal{E} \mathcal{L}(S)$. Let $U \subset \mathcal{P} \mathcal{M L}(S)$ be a neighborhood of $\phi^{-1}(g(K))$. There exists $\delta>0$ such that if $f_{0}, f_{1}: K \rightarrow \mathcal{P} \mathcal{M L}(S)$ and for every $t \in K$ and $i \in\{0,1\}$, $d_{P T(S)}\left(\phi\left(f_{i}(t)\right)\right.$, $g(t))<\delta$, then there exists a homotopy from f_{0} to f_{1} supported in U.
Proof. Let $\Delta_{1}, \Delta_{2}, \cdots$ be a good cellulation sequence of $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. Given $x \in$ $\mathcal{E} \mathcal{L}(S)$ and $i \in \mathbb{N}$ let σ_{x}^{i} denote the cell of Δ_{i} such that $\phi^{-1}(x) \subset \operatorname{int}\left(\sigma_{x}^{i}\right)$. Such a σ_{x}^{i} exists since each cell of Δ_{i} is associated to a train track. By Lemma 4.4, given $x \in \mathcal{E} \mathcal{L}(S)$ there exists a neighborhood W_{x} of x such that $\phi^{-1}\left(W_{x}\right) \subset U$ and lies in a small neighborhood of the cell $\phi^{-1}(x)$, i.e. that only intersects σ_{x}^{i} and higher dimensional cells that have σ_{x}^{i} as a face. Therefore, $y \in W_{x}$ implies that σ_{x}^{i} is a face of σ_{y}^{i} and hence $\hat{\sigma}_{y}^{i} \subset \hat{\sigma}_{x}^{i}$.

Let U^{\prime} be a neighborhood of $\phi^{-1}(g(K))$ such that $\bar{U}^{\prime} \subset U$. By Lemmas 14.18 and 4.4, for i sufficiently large, $\phi^{-1}\left(U\left(\sigma_{x}^{i}\right)\right) \subset U^{\prime}$. This implies that $\hat{\sigma}_{x}^{i} \subset U$, since $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is dense in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$. Let $U_{i}=\cup_{x \in g(K)} \hat{\sigma}_{x}^{i}$. By compactness of $g(K)$ and the previous paragraph it follows that for i sufficiently large $U_{i} \subset U$. Fix such an i. Let $\Sigma=\left\{\sigma \in \Delta_{i} \mid\right.$ some σ_{x}^{i} is a face of $\left.\sigma.\right\}$.

There exists $\delta>0$ and a function $W: g(K) \rightarrow \Sigma$ such that if $y \in \mathcal{P} \mathcal{M} \mathcal{L}(S), x \in$ $g(K)$ and $d_{P T(S)}(x, \phi(y))<\delta$, then $y \in \hat{W}(x)$. Furthermore, if $d_{P T(S)}\left(x_{1}, \phi(y)\right)<$ $\delta, \cdots, d_{P T(S)}\left(x_{u}, \phi(y)\right)<\delta$, then after reindexing the x_{i} 's, $W\left(x_{1}\right) \subset \cdots W\left(x_{u}\right)$. Modulo the epsilonics (to find δ) which follow from Lemmas 4.3 and 4.2 (i.e. super convergence), W is defined as follows. Define $d: g(K) \rightarrow \mathbb{N}$ by $d(x)=\operatorname{dim}\left(\sigma_{x}^{i}\right)$. Let p be the minimal value of $d(g(K))$. Define $W(x)=\sigma_{x}^{i}$ if $d(x)=p$. Next define $W\left(x^{\prime}\right)=\sigma_{x}^{i}$ if $d_{P T(S)}\left(x, x^{\prime}\right)$ is very small, where $d(x)=p$. To guarantee that the second sentence holds, we require that if both $d_{P T(S)}\left(x_{1}, x^{\prime}\right)$ and $d_{P T(S)}\left(x_{2}, x^{\prime}\right)$ are very small, then $W\left(x_{1}\right)=W\left(x_{2}\right)$. If $W(x)$ has not yet been defined and $d(x)=p+1$, then define $W(x)=\sigma_{x}^{i}$. Next define $W\left(x^{\prime}\right)=\sigma_{x}^{i}$ if $W\left(x^{\prime}\right)$ hasn't already been defined and $d_{P T(S)}\left(x, x^{\prime}\right)$ is very very small, where $d(x)=p+1$. Again we require that if $d_{P T(S)}\left(x_{1}, x^{\prime}\right)$ and $d_{P T(S)}\left(x_{2}, x^{\prime}\right)$ are very very small, then after reindexing $W\left(x_{1}\right) \subset W\left(x_{2}\right)$. Inductively, continue to define W on all of $g(K)$. Since $\operatorname{dim}\left(\Delta_{i}\right)$ is finite this process eventually terminates. Take δ to be the minimal value used to define smallness.

Next subdivide K such that the following holds. For every simplex κ of K, there exists $t \in \kappa$ such that for all $s \in \kappa, d_{P T(S)}\left(\phi\left(f_{0}(s)\right), g(t)\right)<\delta$ and $d_{P T(S)}\left(\phi\left(f_{1}(s)\right)\right.$, $g(t))<\delta$. Thus by the previous paragraph, for each simplex κ of $K, f_{0}(\kappa) \cup f_{1}(\kappa) \subset$ $\hat{W}(g(t))$ for some $t \in \kappa$ where t satisfies the above property. Let $\sigma(\kappa)$ denote the maximal dimensional simplex of Σ with these properties. Note that by the second sentence of the previous paragraph, $\sigma(\kappa)$ is well defined and if κ^{\prime} is a face of κ, then $\sigma(\kappa)$ is a face of $\sigma\left(\kappa^{\prime}\right)$.

We now construct the homotopy $F: K \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ from f_{0} to f_{1}. Assume that K has been subdivided as in the previous paragraph. If v is a vertex of K, then both $f_{0}(v), f_{1}(v) \in \hat{\sigma}(v)$ which is contractible by Lemma 14.15. Thus F extends over $v \times I$ such that $F(v \times I) \subset \hat{\sigma}(v)$. Assume by induction that if η is a simplex of K and $\operatorname{dim}(\eta)<m$, then F has been extended over $\eta \times I$ with $F(\eta) \subset \hat{\sigma}(\eta)$. If κ is an m-simplex, then the contractibility of $\hat{\sigma}(\kappa)$ enables us to extend F over $\kappa \times I$, with $F(\kappa \times I) \subset \hat{\sigma}(\kappa)$.

Theorem 15.6. If $S=S_{0,4+n}$ or $S_{1,1+n}$, then $\pi_{n}(\mathcal{E} \mathcal{L}(S)) \neq 0$.
Proof. Let S denote either $S_{0,4+n}$ or $S_{1,1+n}$. In either case $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$. By Harer [Hr] (see also Ivanov [Iv], [IJ]) the curve complex $\mathcal{C}(S)$ is homotopy equivalent to a non trivial wedge of n-spheres. Thus, there exists an essential map $h: S^{n} \rightarrow \mathcal{C}(S)$. We can assume that $h\left(S^{n}\right)$ is a simplicial map with image a finite subcomplex L of the n-skeleton of $\mathcal{C}(S)$ and hence $0 \neq\left[h_{*}\left(\left[S^{n}\right]\right)\right] \in H_{n}(L)$. We abuse notation by letting L denote the image of L under the natural embedding, given in Definition 1.20. Let Z be a simplicial n-cycle that represents $\left[h_{*}\left(\left[S^{n}\right]\right)\right]$. Let σ be a n-simplex of L in the support of Z. Let $f_{0}: S^{n} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$ be a PL embedding which links σ, i.e. there exists an extension $F_{0}: B^{n+1} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ of f_{0} such that F_{0} is transverse to L and intersects L at a single point in int (σ). It follows that $f_{0}\left[S^{n}\right]$ has non trivial linking number with Z and hence f_{0} is homotopically non trivial as a map into $\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$. The theorem is now a consequence of the following lemma.

Lemma 15.7. Let S be a finite type hyperbolic surface with $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=$ $2 n+1$. Let L be an n-dimensional subcomplex of $\mathcal{C}(S)$ that is naturally embedded in $\mathcal{P} \mathcal{M L}(S)$. If $\pi_{n}(\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L) \neq 0$, then $\pi_{n}(\mathcal{E L}(S)) \neq 0$. Indeed, if $f: S^{n} \rightarrow$
$\mathcal{P} \mathcal{M L}(S) \backslash L$ is essential, then there exists a map $F: S^{n} \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S) \backslash L$ such that $F \mid S^{n} \times 0=f, F\left(S^{n} \times[0,1)\right) \subset \mathcal{P} \mathcal{M L}(S) \backslash L$ and $0 \neq\left[F \mid S^{n} \times 1\right] \in \pi_{n}(\mathcal{E} \mathcal{L}(S))$.
Proof. View f as a map into $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ with image in $\mathcal{P} \mathcal{M}(S)$.
Step 1. f extends to a map $f: S^{n} \times I \rightarrow \mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ such that $f\left(S^{n} \times[0,1) \subset\right.$ $\mathcal{P} \mathcal{M L}(S) \backslash L$ and $f\left(S^{n} \times 1\right) \subset \mathcal{E} \mathcal{L}(S)$.

Proof of Step 1. Let Σ be a triangulation of S^{n}. It suffices to consider the case that f is a generic PL map. Thus $f\left(\Sigma^{0}\right) \subset \mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$. Extend $f \mid \Sigma^{0} \times 0$ to $\Sigma^{0} \times I$ by $f(t, s)=f(t, 0)$ where $f(t, 1)$ is viewed as an element of $\mathcal{E} \mathcal{L}(S)$. Now for some $u \leq n$, assume that f extends as desired to $\Sigma^{u} \times I \cup S^{n} \times 0$. If σ is a $(u+1)$-simplex of Σ, then $f \mid \sigma \times 0 \cup \partial \sigma \times I$ maps into $\mathcal{P} \mathcal{M} \mathcal{L E} \mathcal{L}(S)$ with $f(\partial \sigma \times 1) \subset \mathcal{E} \mathcal{L}(S)$ and the rest mapping into $\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$. By Lemma $11.1 f$ extends to $\sigma \times I$ such that $f(\sigma \times 1) \subset \mathcal{E} \mathcal{L}(S)$ and $f(\sigma \times[0,1)) \subset \mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$. Step 1 now follows by induction.

Step 2 If $g=f \mid S^{n} \times 1$, then g is an essential map into $\mathcal{E} \mathcal{L}(S)$.
Proof of Step 2. Otherwise there exists $G: B^{n+1} \rightarrow \mathcal{E} \mathcal{L}(S)$ extending g. Since $L \subset \mathcal{C}(S), L \cap \phi^{-1}\left(G\left(B^{n+1}\right)\right)=\emptyset$. Let $F: B^{n+1} \rightarrow \mathcal{P} \mathcal{M L}(S)$ be a $\delta-\mathcal{P} \mathcal{M} \mathcal{L}(S)$ approximation of G. By Lemma $13.1 F\left(B^{n+1}\right) \cap L=\emptyset$ for δ sufficiently small. Now $F \mid S^{n}$ and $f \mid S^{n} \times s$ are respectively $\delta, \delta^{\prime}-\mathcal{P} \mathcal{M} \mathcal{L}(S)$ approximations of g, where $\delta^{\prime} \rightarrow 0$ as $s \rightarrow 1$. Since δ can be chosen arbitrarily small it follows from Lemma 15.5 that F can be chosen such that for s sufficiently large, $f \mid S^{n} \times s$ and $F \mid S^{n}$ are homotopic via a homotopy supported in $\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$. By concatenating this homotopy with F, we conclude that f is homotopically trivial via a homotopy supported in $\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash L$; which is a contradiction.

Proposition 15.8. If $S=S_{0, p}$, then $\operatorname{dim}(\mathcal{E L}(S)) \geq p-4$. If $S=S_{1, p}$, then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \geq p-1$. In either case if $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$, then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \geq$ n.
Proof. By Theorems 11.2 and $12.1, \mathcal{E} \mathcal{L}(S)$ is $(n-1)$-connected and $(n-1)$-locally connected. By Theorem 15.6, $\pi_{n}(\mathcal{E} \mathcal{L}(S)) \neq 0$. Therefore by Lemma $15.4, \operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \geq$ n.

By Proposition 15.8 and Proposition 15.3 we obtain;
Theorem 15.9. If S is the $(4+n)$-punctured sphere, then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))=n$.
Theorem 15.10. If S is the $(n+1)$-punctured torus, then $n+1 \geq \operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \geq$ n.

Remark 15.11. In a future paper we will show that if $S=S_{g, p}$ with $p>0$, then $\operatorname{dim}(\mathcal{E} \mathcal{L}(S)) \leq n+g-1$.

16. Nobeling spaces

The n-dimensional Nobeling space $\mathbb{R}_{n}^{2 n+1}$ is the space of points in $\mathbb{R}^{2 n+1}$ with at most n rational coordinates. The goal of the next two sections is to complete the proof of the following theorem.
Theorem 16.1. If S is the $n+p$ punctured sphere, then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to the n-dimensional Nobeling space.

By Luo [Luo], $\mathcal{C}\left(S_{2,0}\right)$ is homeomorphic to $\mathcal{C}\left(S_{0,6}\right)$ and thus by Klarreich [K] $\mathcal{E} \mathcal{L}\left(S_{2,0}\right)$ is homeomorphic to $\mathcal{E} \mathcal{L}\left(S_{0,6}\right)$.

Corollary 16.2. If S is the closed surface of genus-2, then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to the Nobeling surface, i.e. the 2-dimensional Nobeling space.

Remarks 16.3. Using [G1], Sabastian Hensel and Piotr Przytycki earlier proved that the ending lamination space of the 5 -times punctured sphere is homeomorphic to the Nobeling curve. They used Luo [Luo] and Klarreich [K] to show that $\mathcal{E} \mathcal{L}\left(S_{1,2}\right)$ is also homeomorphic to the Nobeling curve.

Hensel and Przytycki boldly conjectured that if $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$, then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to $\mathbb{R}_{n}^{2 n+1}$. Theorem 16.1 gives a positive proof of their conjecture for punctured spheres.

Independently, in 2005, Ken Bromberg and Mladen Bestvina asked [BB] if ending lamination spaces are Nobeling spaces.

Remarks 16.4. Historically, the m-dimensional Nobeling space was called the universal Nobeling space of dimension m and a Nobeling space was one that is locally homeomorphic to the universal Nobeling space. In 2006, S. Ageev [Ag], Michael Levin [Le] and Andrzej Nagorko [Na] independently showed that any two connected Nobeling spaces of the same dimension are homeomorpic. The 0 and 1 dimensional versions of that result were respectively given in [AU] 1928 and [KLT] 1997.

These spaces were named after Georg Nobeling who showed [N] in 1930 that any m-dimensional separable metric space embeds in an m-dimensional Nobeling space. This generalized a result by Nobeling's mentor, Karl Menger, who defined [Me] in 1926 the Menger compacta and showed that any 1-dimensional compact metric space embeds in the Menger curve. A topological characterization of mdimensional Menger compacta was given in [Be] by Mladen Bestvina in 1984.

The following equivalent form of the topological characterization of m-dimensional Nobeling spaces is due to Andrzej Nagorko.

Theorem 16.5. (Nagorko [HP]) A topological space X is homeomorphic to the m-dimensional Nobeling space if and only if the following conditions hold.
i) X is separable
ii) X supports a complete metric
iii) X is m-dimensional
iv) X is $(m-1)$-connected
v) X is $(m-1)$-locally connected
vi) X satisfies the locally finite m-discs property

Definition 16.6. [HP] The space X satisfies the locally finite m-discs property if for each open cover $\{\mathcal{U}\}$ of X and each sequence $f_{i}: B^{m} \rightarrow X$, there exists a sequence $g_{i}: B^{m}$ to X such that
i) for each $x \in X$ there exists a neighborhood U of x such that $g_{i}\left(B^{m}\right) \cap U=\emptyset$ for i sufficiently large.
ii) for each $t \in B^{m}$, there is a $U \in \mathcal{U}$ such that $f_{i}(t), g_{i}(t) \in U$.

Proof of Theorem 16.1. By Remark $1.6 \mathcal{E} \mathcal{L}(S)$ is separable and supports a complete metric. If $S=S_{0, n+4}$, then conditions iii)-v) of Theorem 16.5 respectively follow from Theorems 11.2, 12.1 and 15.9.

To complete the proof of Theorem 16.1 it suffices to show that $\mathcal{E} \mathcal{L}\left(S_{0, n+4}\right)$ satisfies the locally finite n-discs property.

17. The locally finite n-discs property

Proposition 17.1. If S is the $(n+4)$-punctured sphere, then $\mathcal{E} \mathcal{L}(S)$ satisfies the locally finite n-discs property.

Our proof is modeled on the proof, due to Andrzej Nagorko [HP], that $\mathbb{R}_{n}^{2 n+1}$ satisfies the locally finite n-discs property. In particular, we modify his notions of participates and attracting grid.

From now on S will denote the (n+4)-punctured sphere. Let \mathcal{U} be an open cover of $\mathcal{E} \mathcal{L}(S)$. Let \mathcal{U}_{2} denote the refinement of \mathcal{U} produced by Lemma 14.19 and let $\Delta_{1}, \Delta_{2}, \cdots$ denote a good cellulation sequence.

Definition 17.2. We say that $\sigma \in \Delta_{i}$ participates in \mathcal{U}_{2} if $U\left(\sigma^{\prime}\right) \in \mathcal{U}_{2}$ for some face σ^{\prime} of σ.

Define $A_{i}=\left\{\sigma \in \Delta_{k}, k \leq i \mid \sigma\right.$ participates in $\left.\mathcal{U}_{2}\right\}$ and define $\Gamma_{i}=\mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash$ $\cup_{\sigma \in A_{i}} \hat{\sigma}$.
Remarks 17.3. i) By Lemma 15.1 and Definition 14.18 each cell of A_{i} has dimension $\geq n+1$.
ii) Note that Γ_{i} is obtained from Γ_{i+1} by attaching the cells of $A_{i+1} \backslash A_{i}$.

Definition 17.4. Call Γ_{i} the i 'th approximate attracting grid and $\cap_{i=1}^{\infty} \Gamma_{i}$ the attracting grid.
Definition 17.5. Let $Y_{i} \subset \mathcal{P} \mathcal{M L}(S) \backslash \Gamma_{i}$ denote the dual cell complex to A_{i}. Abstractly it is a simplicial complex with vertices the elements of A_{i} and $\left\{v_{0}, v_{1}, \cdots, v_{k}\right\}$ span a simplex if for all $i, v_{i} \subset \partial v_{i+1}$.

Remark 17.6. Since $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$ and each cell of A_{i} has dimension at least $n+1$ it follows that $\operatorname{dim}\left(Y_{i}\right) \leq n$. This is the crucial fact underpinning the proof of Proposition 17.1.

The next result follows by standard PL topology.
Lemma 17.7. For every $a>0$ there exists $N\left(\Gamma_{i}\right)$ a regular neighborhood of Γ_{i} in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $N\left(\Gamma_{i}\right) \subset N_{\mathcal{P} \mathcal{M}(S)}\left(\Gamma_{i}, a\right)$. Furthermore, there exists a homeomorphism

$$
q: \partial\left(N\left(\Gamma_{i}\right)\right) \times[0,1) \rightarrow \mathcal{P} \mathcal{M L}(S) \backslash\left(\operatorname{int}\left(N\left(\Gamma_{i}\right)\right) \cup Y_{i}\right)
$$

such that $q \mid \partial N\left(\Gamma_{i}\right) \times 0$ is the canonical embedding and a retraction

$$
p: \mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash Y_{i} \rightarrow N\left(\Gamma_{i}\right)
$$

that is the identity on $N\left(\Gamma_{i}\right)$, quotients $[0,1)$ fibers to points and has the following additional property. If $\sigma \in A_{i}$ and $x \in \operatorname{int}(\sigma) \backslash Y_{i}$, then $p(x) \in \operatorname{int}(\sigma)$.

Proof of Proposition 17.1. Let $f_{i}: B^{n} \rightarrow \mathcal{E} \mathcal{L}(S), i \in \mathbb{N}$ be a sequence of continuous maps. Being compact $f_{i}\left(B^{n}\right)$ is covered by finitely many elements $U\left(\sigma_{1}^{i}\right), \cdots, U\left(\sigma_{i_{k}}^{i}\right)$ of \mathcal{U}_{2} and hence $\phi^{-1}\left(f_{i}\left(B^{n}\right)\right) \subset \mathcal{P} \mathcal{M L}(S) \backslash \Gamma_{n_{i}}$ for some $n_{i} \in \mathbb{N}$.

Let $\epsilon_{i}=\min \left\{\delta\left(U\left(\sigma_{j}\right)\right) \mid \sigma_{j} \in A_{n_{i}}\right\}$ where $\delta\left(U\left(\sigma_{j}\right)\right)$ is as in Lemma 14.19.
Since both $\Gamma_{n_{i}}$ and $\phi^{-1}\left(f_{i}\left(B^{n}\right)\right)$ are compact and disjoint it follows that $d_{\mathcal{P M} \mathcal{L}(S)}\left(\Gamma_{n_{i}}, \phi^{-1}\left(f_{i}\left(B^{n}\right)\right)\right)=a_{i}>0$.

Claim. It suffices to show that for each $i \in \mathbb{N}$ there exists $h_{i}: B^{n} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$, a generic PL map, such that for every $t \in B^{n}$
i) $d_{\mathcal{P M L}(S)}\left(\Gamma_{n_{i}}, h_{i}(t)\right)<1 / i$ and
ii) $h_{i}(t) \cup \phi^{-1}\left(f_{i}(t)\right) \subset \hat{\sigma}_{j}$ for some $\sigma_{j} \in A_{n_{i}}$.

Proof. To start with Condition i) implies that for every $z \in \mathcal{E} \mathcal{L}(S)$, there exists $\delta_{z}>0$ such that $d_{\mathcal{P} \mathcal{M}(S)}\left(h_{i}\left(B^{n}\right), \phi^{-1}(z)\right)>\delta_{z}$ for i sufficiently large. This uses the fact that for each $z \in \mathcal{E} \mathcal{L}(S), \phi^{-1}(z)$ is compact and disjoint from Γ_{i} for i sufficiently large.

Now apply the $\mathcal{E} \mathcal{L}$-approximation Lemma 13.3 to the $\left\{\epsilon_{i}\right\}$ and $\left\{h_{i}\right\}$ sequences to obtain maps $g_{i}: B^{n} \rightarrow \mathcal{E} \mathcal{L}(S), i \in \mathbb{N}$ such that
a) For every $z \in \mathcal{E} \mathcal{L}(S)$ there exists U_{z} open in $\mathcal{E} \mathcal{L}(S)$ such that $g_{i}\left(B^{n}\right) \cap U_{z}=\emptyset$ for i sufficiently large, and
b) if $t \in B^{n}$, then $d_{P T(S)}\left(g_{i}(t), \phi\left(h_{i}(t)\right)\right)<\epsilon_{i}$.

Conclusion a) gives the local finiteness condition. By ii) of the Claim, if $t \in B^{n}$, then $h_{i}(t), \phi^{-1}\left(f_{i}(t)\right)$ lie in the same $\hat{\sigma}_{j}$. Since $\epsilon_{i}<\delta\left(U\left(\sigma_{j}\right)\right)$, Lemma 14.19 implies that $g_{i}(t)$ lies in $U \in \mathcal{U}$ for some $U\left(\sigma_{j}\right) \subset U$. To apply that lemma, let $x=h_{i}(t)$ and $z=g_{i}(t)$. Since $f_{i}(t) \in U\left(\sigma_{j}\right)$ the approximation condition holds too.

Fix $i>0$. Let $a_{i}>0$ and ϵ_{i} be as above. Let $a=\min \left\{1 / 2 i, a_{i} / 2\right\}$. Using this a, let $p: \mathcal{P} \mathcal{M} \mathcal{L}(S) \backslash Y_{n_{i}} \rightarrow N\left(\Gamma_{n_{i}}\right)$ be the retraction given by Lemma 17.7.

By the PML-approximation Lemma 14.11, there exists $h_{i}^{\prime}: B^{n} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that for each $t \in B^{n}, d_{\mathcal{P} \mathcal{M L}(S)}\left(h_{i}^{\prime}(t), \phi^{-1}\left(f_{i}(t)\right)\right) \subset \hat{\sigma}$ for some cell σ of $\Delta_{n_{i}}$. Since $\operatorname{dim}\left(B^{n}\right)+\operatorname{dim}\left(Y_{n_{i}}\right) \leq 2 n<2 n+1$ we can assume that $h_{i}^{\prime}\left(B^{n}\right) \cap Y_{n_{i}}=\emptyset$ and this property still holds. Let $h_{i}=p \circ h_{i}^{\prime}$ perturbed slightly to be a generic PL map.

By construction $p\left(h_{i}^{\prime}\left(B^{n}\right)\right) \subset p\left(\mathcal{P} \mathcal{M L}(S) \backslash Y_{n_{i}}\right) \subset N\left(\Gamma_{n_{i}}\right) \subset N_{\mathcal{P} \mathcal{M L}(S)}\left(\Gamma_{n_{i}}, a\right) \subset$ $N_{\mathcal{P M L}(S)}\left(\Gamma_{n_{i}}, 1 / 2 i\right)$. Thus Condition i) of the Claim holds for h_{i}, if it is obtained by a sufficiently small perturbation of $p \circ h_{i}^{\prime}$.

By Lemma 17.7 and Lemma 14.10 ii$), p \circ h_{i}^{\prime}(t)$ and $\phi^{-1}(z)$ lie in the same $\hat{\sigma}_{j}$. Thus Condition ii) holds for $p \circ h_{i}^{\prime}$. Since each $\hat{\sigma}_{j}$ is open, this condition holds for any sufficiently small perturbation of $p \circ h_{i}^{\prime}$ and so it holds for h_{i}. This completes the proof of Proposition 17.1 and hence Theorem 16.1.

After appropriately modifying dimensions, the proof of Proposition 17.1 generalizes to a proof of the following.

Proposition 17.8. Let $S=S_{g, p}$. Then $\mathcal{E} \mathcal{L}(S)$ satisfies the locally finite k-discs property for all $k \leq m$, where $m=n-g$, if $p \neq 0$ and $m=n-(g-1)$, if $p=0$.

18. Applications

By Klarreich [K] (see also [H1]), the Gromov boundary $\partial C(S)$ of the curve complex $C(S)$ is homeomorphic to $\mathcal{E} \mathcal{L}(S)$. We therefore obtain the following results.

Theorem 18.1. Let $C(S)$ be the curve complex of the surface S of genus g and p punctures. Then $\partial C(S)$ is $(n-1)$-connected and $(n-1)$-locally connected. If $g=0$, then $\partial C(S)$ is homeomorphic to the n-dimensional Nobeling space. Here $n=3 g+p-4$. Also $\partial \mathcal{C}\left(S_{2,0}\right)=\mathbb{R}_{2}^{5}$ and $\partial \mathcal{C}\left(S_{1,2}\right)=\mathbb{R}_{1}^{3}$.

Remark 18.2. The cases of $S_{0,5}$ and $S_{1,2}$ were first proved in [HP].

Let S be a finite type hyperbolic surface. Let $D D(S)$ denote the space of doubly degenerate marked hyperbolic structures on $S \times \mathbb{R}$. These are the complete hyperbolic structures with limit set all of S_{∞}^{2} whose parabolic locus corresponds to the cusps of S . It is topologized with the algebraic topology. See $\S 6$ [LS] for more details. As a consequence of many major results in hyperbolic 3-manifold geometry, Leininger and Schleimer proved the following.
Theorem 18.3. [LS] $D D(S)$ is homeomorphic to $\mathcal{E} \mathcal{L}(S) \times \mathcal{E} \mathcal{L}(S) \backslash \Delta$, where Δ is the diagonal.
Corollary 18.4. If S is the $(n+p)$-punctured sphere, then $D D(S)$ is homeomorphic to $\mathbb{R}_{n}^{2 n+1} \times \mathbb{R}_{n}^{2 n+1} \backslash \Delta$. In particular $D D(S)$ is $(n-1)$-connected and $(n-1)$-locally connected.

The subspace of marked hyperbolic structures on $S \times \mathbb{R}$ which have the geometrically finite structure Y on the $-\infty$ relative end is known as the Bers slice B_{Y}. As in [LS], let $\partial_{0} B_{Y}(S)$ denote the subspace of the Bers slice whose hyperbolic structures on the ∞ relative end are degenerate.
Theorem 18.5. [LS] $\partial_{0} B_{Y}(S)$ is homeomorphic to $\mathcal{E} \mathcal{L}(S)$.
Corollary 18.6. If S is a hyperbolic surface of genus-g and p-punctures, then $\partial_{0} B_{Y}(S)$ is $(n-1)$-connected and $(n-1)$-locally connected. If $g=0$, then $\partial_{0} B_{Y}(S)$ is homeomorphic to the n-dimensional Nobeling space. Here $n=3 g+p-4$.
Theorem 18.7. If S is a p-punctured sphere, $p \geq 5, S_{2,0}$ or $S_{1,2}$, then there exists a simple closed curve α in $\mathcal{E} \mathcal{L}(S)$ such that $\phi^{-1}(\alpha)$ contains no simple closed curve that projects to α under ϕ.

Proof. By the proof of Theorem 9.1 [G1] there exists a 1-simplex $\sigma \subset \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\phi(\sigma)=z \in \mathcal{E} \mathcal{L}(S)$ and $\sigma=\lim \eta_{i}$ where η_{i} is a 1 -simplex in $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ consisting of those projective measured laminations supported on two disjoint simple closed geodesics. By Theorem 9.1 [G1] each η_{i} is a limit of 1 -simplices κ_{i} with $\phi\left(\kappa_{i}\right) \in$ $\mathcal{E} \mathcal{L}(S)$. Thus $\sigma=\lim \sigma_{i}$ where $\phi\left(\sigma_{i}\right)=z_{i} \in \mathcal{E} \mathcal{L}(S)$ and z, z_{1}, z_{2}, \cdots are distinct. Let $\partial \sigma=x \cup y$ and $\partial \sigma_{i}=x_{i} \cup y_{i}$. We can assume that $x_{i} \rightarrow x$ and $y_{i} \rightarrow y$. Let β_{i} (resp. γ_{i}) be a generic PL path from x_{i} to x_{i+1} (resp. y_{i} to y_{i+1}). We can assume that $\lim \left(\beta_{i}\right)=x, \lim \left(\gamma_{i}\right)=y$ and using [Ma], [Ve] or [Ke] that for each $i \in \mathbb{N}$ there exist $p_{i} \in \beta_{i}$ and $q_{i} \in \gamma_{i}$ such that $\phi\left(p_{i}\right)$ and $\phi\left(q_{i}\right)$ are uniquely ergodic. Furthermore, the various $\phi\left(p_{i}\right)$'s and $\phi\left(q_{j}\right)$'s are distinct. The σ_{i} 's can be oriented so that the concatenation $\alpha_{1} * \sigma_{2} * \beta_{2} * \sigma_{3} * \alpha_{3} * \cdots$ is a well defined (topologist sine curve like) path defined on $[-2,0)$ that limits on σ. Appropriately applying Lemma 13.3 we obtain a path $g:[-2,0] \rightarrow \mathcal{E} \mathcal{L}(S)$ such that $g(-2)=z_{1}$ and for $i \in \mathbb{N}, g(-1 /(2 i-1))=\phi\left(p_{2 i-1}\right)$ and $g(-1 /(2 i))=\phi\left(q_{2 i}\right)$ and $g(0)=z$. Since $\mathcal{E} \mathcal{L}(S)$ is a Nobeling space, we readily find an embedded path $f:[-2,0] \rightarrow \mathcal{E} \mathcal{L}(S)$ with the same properties that additionally is the concatenation of countably many subpaths limiting to z such that on each subpath all but one coordinate of $\mathbb{R}^{2 n+1}$ is constant. Observe that f extends to an embedding $F: S^{1} \rightarrow \mathcal{E} \mathcal{L}(S)$, where S^{1} is the natural quotient of $[-2,2]$. By construction, there exists no continuous map $h: S^{1} \rightarrow \mathcal{P} \mathcal{M} \mathcal{L}(S)$ such that $\phi(h(t))=F(t)$, thus $\phi^{-1}\left(F\left(S^{1}\right)\right)$ contains no simple closed curve that projects to $F\left(S^{1}\right)$.

19. Problems and Conjectures

To start with we restate the following long-standing classical question.

Problem 19.1. Find a topological characterization of the Nobeling type space \mathbb{R}_{q}^{p}, the space of points in \mathbb{R}^{p} with at most q rational coordinates.
Remarks 19.2. i) The fundamental work of Ageev [Av], Levin [Le] and Nagorko [Na] solve this problem for $p=2 m+1$ and $q=m$.
ii) Of particular interest are the spaces of the form $\mathbb{R}_{m}^{2 n+1}$, where $m \geq n$.
iii) In analogy to Theorem 16.5, does it suffice that X be separable, complete metric, q-dimensional, $(q-1)$-connected, $(q-1)$-locally connected, and satisfy the locally finite ($p-q-1$)-discs property?

We offer the following very speculative;
Conjecture 19.3. Let S be a p-punctured surface of genus-g. Then $\mathcal{E} \mathcal{L}(S)$ is homeomorphic to $\mathbb{R}_{n+k}^{2 n+1}$, where $n=3 g+p-4$ and $k=0$ if $g=0, k=g-1$ if both $p \neq 0$ and $g \neq 0$, and $k=g-2$ if $p=0$.

The value of k in this conjecture is motivated by the following duality conjecture.
Conjecture 19.4. (Duality Conjecture) If S is the p-punctured surface of genus- g, then

1) $\operatorname{dim}(E L)+h \operatorname{dim}(\mathcal{C}(S))+1=\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))$, where $h(\operatorname{dim}(\mathcal{C}(S)))$ is the homological dimension of the curve complex.

If $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$, then
2) for every m, there is a natural injection $H_{m}^{s t}(\mathcal{E} \mathcal{L}(S)) \rightarrow H^{2 n-m}(\mathcal{C}(S))$ and
3) for every m, there is a natural injection of $H_{m}(\mathcal{C}(S)) \rightarrow \check{H}^{2 n-m}(\mathcal{E} \mathcal{L}(S))$.

Remark 19.5. Harer [Hr] computed the homological dimension of $\mathcal{C}(S)$, hence duality conjecture 1) is equivalent to the conjecture that $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))=n$ if $g=0$; $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))=n+(g-1)$ if $p \neq 0$ and $g \neq 0$; and $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))=n+(g-2)$ if $p=0$.

Remarks 19.6. In the above conjectures, homology is Steenrod and cohomology is Cech. Both coincide with the corresponding singular theory for CW-complexes. When $m=0$ or $2 n-m=0$, the above is reduced homology or cohomology.

Except for a single dimension all the maps and groups should be trivial.
The conjecture is motivated by the observation that $\mathcal{E} \mathcal{L}(S)$ and $\mathcal{C}(S)$ almost live in $\mathcal{P} \mathcal{M} \mathcal{L}(S)=S^{2 n+1}$ as complementary objects and hence Alexander - Sitnikov duality [Sit] applies. Indeed, since $\mathcal{P} \mathcal{M} \mathcal{L}(S)$ is the disjoint union of $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ and $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ the following holds by Alexander - Sitnikov duality.
Theorem 19.7. If S is a finite type surface and $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$, then

1) $H_{m}^{s t}(\mathcal{F P} \mathcal{M} \mathcal{L}(S))$ is isomorphic to $\check{H}^{2 n-m}(\mathcal{U} \mathcal{P} \mathcal{M}(S))$ and
2) $H_{m}^{s t}(\mathcal{U P} \mathcal{M} \mathcal{L}(S))$ is isomorphic to $\check{H}^{2 n-m}(\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S))$.

Remarks 19.8. Again we use reduced homology and cohomology for $m=0$ or $2 n-m=0$.

Now $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ has a CW-structure $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)_{c w}$ and there is an inclusion $\mathcal{C}(S) \rightarrow \mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)_{\mathrm{cw}}$ which induces a homotopy equivalence [G2]. However, the topology on $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)_{\mathrm{cw}}$ is finer than that of $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ for essentially the same
reason that the topology on $\mathcal{C}(S)$ is finer than that of $\mathcal{C}(S)_{\text {sub }}$. See Remark 1.21. There is the analogy that $\mathcal{C}(S)$ is to $\mathcal{C}(S)_{\text {sub }}$ as the infinite wedge of circles is to the Hawaiian earings. Note that the inclusion of the former into the latter induces proper injections of H_{1} and H^{1}. For that reason the maps in Conjecture 19.4 are injections rather than isomorphisms.

The $\operatorname{map} \phi: \mathcal{F P} \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{E} \mathcal{L}(S)$ is a closed map (Corollary 1.14) and point inverses are cells (Lemma 1.17); hence by $[\mathrm{Sp}]$ or $[\mathrm{Sk}]$ we obtain the following result.

Theorem 19.9. Let S be a finite type surface. Then for all m

1) $\phi_{*}: H_{m}^{s t}(\mathcal{F P} \mathcal{M} \mathcal{L}(S)) \rightarrow H_{m}^{s t}(\mathcal{E} \mathcal{L}(S))$ is an isomorphism and
2) $\phi^{*}: \check{H}^{m}(\mathcal{E} \mathcal{L}(S)) \rightarrow \check{H}^{m}(\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S))$ is an isomorphism.

Corollary 19.10. Let S be a finite type surface and $\operatorname{dim}(\mathcal{P} \mathcal{M} \mathcal{L}(S))=2 n+1$, then for all m there are natural isomorphisms

1) $\check{H}^{m}(\mathcal{E} \mathcal{L}(S)) \cong H_{2 n-m}^{s t}(\mathcal{U} \mathcal{P} \mathcal{M}(S))$ and
2) $H_{m}^{s t}(\mathcal{E} \mathcal{L}(S)) \cong \check{H}^{2 n-m}(\mathcal{U} \mathcal{P} \mathcal{L}(S))$.

Remark 19.11. It follows from Corollary 19.10 and Remarks 19.8 that to prove parts 2) and 3) of the duality conjecture it suffices to show that the bijective map $I: \mathcal{U P} \mathcal{M} \mathcal{L}(S)_{\mathrm{cw}} \rightarrow \mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ induces inclusions in Steenrod homology and Cech cohomology. That will also be a big step towards proving 1), since it implies that $\operatorname{dim}(\mathcal{E} \mathcal{L}(S))$ is at least as large as the conjectured value.
Conjecture 19.12. Let S be a finite type surface. The bijective maps $I: \mathcal{C}(S) \rightarrow$ $\mathcal{C}(S)_{\text {sub }}$ and $I: \mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)_{\mathrm{cw}} \rightarrow \mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ induce inclusions in Steenrod homology and Cech cohomology.

Question 19.13. Let S be a finite type surface. Is $\mathcal{E} \mathcal{L}(S)$ m-connected (resp. m-locally connected) if and only if $\mathcal{F P} \mathcal{M} \mathcal{L}(S)$ is m-connected (resp. m-locally connected).

Remark 19.14. It follows from Theorem 1.18 that $\mathcal{E} \mathcal{L}(S)$ is connected if and only if $\mathcal{F} \mathcal{P} \mathcal{M} \mathcal{L}(S)$ is connected.
Definition 19.15. Let X be a regular cell complex. We say that X is super symmetric if $X / \operatorname{Isom}(X)$ is a finite complex.

Example 19.16. Examples of such spaces are the curve complex and arc complex of a finite type surface and the disc complex of a handlebody.
Question 19.17. What spaces arise as the boundaries of super symmetric Gromovhyperbolic regular cell complexes? Under what conditions does the m-dimensional Nobeling space arise? More generally, under what conditions does a Nobeling type space arise.

Remark 19.18. This is a well known question, when the cell complex is a Caley graph of a finitely generated group. Indeed, Kapovich and Kleiner give an essentially complete answer when ∂G is 1-dimensional [KK]. The Gromov boundaries of locally compact Gromov hyperbolic spaces are locally compact, thus the point of this question is to bring attention to non locally finite complexes. Note that Gromov and Champetier [Ch] assert that the generic finitely presented Gromov-hyperbolic group has the Menger curve as its boundary.

Question 19.19. Let $x \in \mathcal{E} \mathcal{L}(S)$ be non uniquely ergodic. Does $\phi^{-1}(x)$ arise as in the construction of Theorem 9.1 [G2] or as limits of cells of the form $B_{a_{1}} \cap \cdots \cap B_{a_{k}}$ where a_{1}, \cdots, a_{k} are pairwise disjoint simple closed curves?

References

[Av] S. Ageev, Axiomatic methods of partitions in the theory of Nobeling spaces. III. Consistency of the axiom system, Sbornik: Math. 198 (2007), 909-934.
[Ag] I. Agol, Tamenss of hyperbolic 3-manifolds, ArXiv:math.GT/0405568, preprint.
[AU] P. Alexandrov \& P. Urysohn, Uber nulldimensionale Punktmengen, Math. Ann. 98 (1928), 89-106.
[Ber] L. Bers, Simultaneous uniformization, B. AMS, 66 (1960), 94-97.
[Be] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. AMS, 71 (1988).
[BB] M. Bestvina \& K. Bromberg, personal communication.
[Bi] R. H. Bing, A surface is tame if its complement is 1-ULC, TAMS, 101 (1961), 294-305.
[Bon] F. Bonahon, Bouts des varietes hyperboliques de dimension 3, Ann. of Math., (2)124 (1986), 71-158.
[BS] M. Bonk \& O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), 266-306.
[Bo] H. Bothe, Eine Einbettung m-dimensionaler Menger in einen ($m+1$)-dimensionale absoluten Retrakt, Fund. Math. 52 1963, 209-224.
[B] B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math., 598 (2006), 105-129.
[BCM] J. Brock, D. Canary \& Y. Minsky, The classification of Kleinian surface groups II: The ending lamination conjecture, arXiv:math/0412006v1, preprint.
[CG] D. Calegari \& D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. AMS 19 (2006), 385-446.
[CEG] R. Canary, D. Epstein \& P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space, D. Epstein, editor, London Math. Soc. Lecture Notes, 111 (1987).
[CB] A. Casson \& S. Bleiler, Automorphisms of surfaces after Nielson and Thurston, London Math. Soc. Student Texts, Cambridge U. Press, 9 (1988).
[Ch] C. Champetier, Proprietes statistiques des groups de presentation finie, Adv. Math. 116 (1995), 197-262.
[D] M. Dehn, On curve systems on 2-sided surfaces, unpublished Feb. 11, 1922 lecture in Breslau, translated by J. Stillwell in Max Dehn: Papers on group theory and topology, Springer Verlag 1987.
[Dr] A. Dranishnikov, personal communication.
[FLP] A. Fathi, F. Laudenbach \& V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque, 66-67(1991).
[G1] D. Gabai, Almost filling laminations and the connectivity of ending lamination space, Geometry and Topology, 13 (2009), 1017-1041.
[G2] D. Gabai, On the topology of $\mathcal{U} \mathcal{P} \mathcal{M} \mathcal{L}(S)$, in preparation.
[H1] U. Hamenstadt, Train tracks and the Gromov boundary of the complex of curves, Spaces of Kleinian groups, London Mathematical Society Lecture Notes, 329 (2006), 187-207.
[H2] U. Hamenstadt, Train tracks and mapping class groups I, Invent. Math., to appear.
[Hr] J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157-176.
[Ha] W. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics, Annals of Math. Studies, 97(1981), 245-252.
[HT] A. Hatcher \& W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology, 19 (1980), 23-41.
[HP] S. Hensel \& P. Przytycki, The ending lamination space of the five punctured sphere is the Nobeling curve, J. London. Math. Soc., to appear.
[Hu] S. Hu, Theory of retracts, Wayne State U. Press, 1965.
[HW] W. Hurewicz \& H. Wallman, Dimension theory, Princeton Math. Series 4, Princeton Univ. Press, 1941.
[Iv] N. V. Ivanov, Complexes of curves and the Teichmuller modular group, Uspekhi Mat. Nauk, 42 (1987), 49-91. English translation, Russian Math. Surveys 42 (1987), 55-107.
[IJ] N. Ivanov and L. Ji, Infinite topology of curve complexes and non-Poincare duality of the Teichmuller modular groups, Enseign. Math., (2) 54 (2008), 381-395.
[KK] M. Kapovich \& B. Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Scient. Ecol Norm. Sup. (4)33 (2000), 647-669.
[KLT] K. Kawamura, M. Levin \& E. Tymchatyn, A characterization of 1-dimensional Nobeling spaces, Proc. of 12 'th summer conf. on general topology and its applications, Topology Proceedings, 22 (1997), 155-174.
[KL] R. Kent IV \& C. Leininger, Shadows of mapping class groups: capturing convex cocompactness, to appear in Geom. Funct. Anal.
[Ke] S. Kerckhoff, "Simplicial systems for interval exchange maps and measured foliations", Ergodic Theory Dynam. Systems 5 (1985), 257-271.
[K] E. Klarreich, The boundary at infinity of the curve complex and the relative mapping class group, http://www.msri.org/people/members/klarreic/curvecomplex.ps, preprint.
[LMS] C. Leininger, M. Mj \& S. Schleimer, The universal Cannon Thurston maps and the boundary of the curve complex, arXiv:0808.3521.
[LS] C. Leininger \& S. Schleimer, Connectivity of the space of ending laminations, Duke Math. J., 150 (2009), 533-575.
[Le] M. Levin, Characterizing Nobeling spaces, arXiv:math.GT/0602361, preprint.
[Luo] F. Luo, Automorphisms of the complex of curves, Topology 39 (2009), 283-298.
[Ma] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), 169-200.
[MM] H. Masur \& Y. Minsky, Geometry of the complex of curves I, Hyperbolicity, Invent. Math., 138(1) (1999), 103-149.
[MS] H. Masur \& S. Schleimer, The geometry of the disc complex, arXiv:1010.3174.
[Me] K. Menger, Uber umfassendste n-dimensionale Mengen, Proc. Akad. Wetensch. Amst., 29 (1926), 1125-1128.
[Mi] Y. Minsky, The classification of Kleinian surface groups I: Models and bounds, Annals of Math., to appear.
[M] L. Mosher, Train track expansions of measured foliations, http://andromeda.rutgers.edu/ mosher/, preprint.
[N$] \quad$ G. Nobeling, Uber eine n-dimensionale Universalmenge im $\mathbb{R}_{2 n+1}$, Math. Ann., 104 (1930), 71-80.
[Na] A. Nagorko, Characterization and topological rigidity of Nobeling manifolds, Warsaw University Ph. D. thesis 2006, arXiv:math.GT/0602574.
[PH] R. Penner with J. Harer, Combinatorics of train tracks, Ann. Math. Studies, 125(1992).
[RS] K. Rafi \& S. Schleimer, Curve complexes with connected boundary are rigid, arXiv:0710.3794v1, preprint.
[Sit] K. Sitnikov, Combinatorial topology of nonclosed sets. I. The first duality law; spectral duality, Amer. Math. Soc. Transl. (2) 15 (1960), 245-295.
[Sk] E. Skljarenko, On a theorem of Vietoris and Begle, Dokl. Akad. Nauk. SSSR, 149 (1963), 264-267.
[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[St] J. Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics, Prentice Hall, 1962, 95-100.
[Th1] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfacecs, 1976 preprint published in B. AMS, 19 (1988), 417-431.
[Th2] W. Thurston, Minimal stretch maps between hyperbolic surfaces, unpublished preprint (1986) arXiv:math.GT/9801039.
[Th3] W. Thurston, Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle, arXiv:math.GT/9801045, preprint.
[Th4] W. Thurston, The geometry and topology of 3-manifolds, 1980 Princeton University lecture notes, http://library.msri.org/books/gt3m/.
[Ve] W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242.
[ZB] X. Zhu \& F. Bonahon, The metric space of geodesic laminations on a surface: I, Topology and Geometry, 8 (2004), 539-564.

Department of Mathematics, Princeton University, Princeton, NJ 08544

[^0]: ${ }^{1}$ Partially supported by NSF grants DMS-0504110 and DMS-1006553.
 Version 0.921, December 5, 2011.

