Covering a nontaming knot by the unlink

Michael H Freedman
David Gabai

Abstract

There exists an open 3-manifold M and a simple closed curve $\gamma \subset M$ such that $\pi_{1}(M \backslash \gamma)$ is infinitely generated, $\pi_{1}(M)$ is finitely generated and the preimage of γ in the universal covering of M is equivalent to the standard locally finite set of vertical lines in \mathbb{R}^{3}, that is, the trivial link of infinitely many components in \mathbb{R}^{3}.

57N10; 57M10, 57N45

0 Introduction

Definition 0.1 We say that the locally finite collection of proper lines $\Gamma \subset \mathbb{R}^{3}$ is a trivial \mathbb{R}^{3}-link if there exists a homeomorphism of \mathbb{R}^{3} taking Γ to a subset of $(\mathbb{Z}, 0) \times \mathbb{R} \subset \mathbb{R}^{2} \times \mathbb{R}$.

For example, if L is a locally finite union of geodesics in \mathbb{H}^{3}, then L is a \mathbb{R}^{3}-trivial link, as seen by applying Morse theory to the distance function from any point in \mathbb{M}^{3}. The main result in this paper is the following:

Theorem 0.2 There exists a simple closed curve γ in an open 3-manifold M such that
(1) $\pi_{1}(M-\gamma)$ is infinitely generated,
(2) $\pi_{1}(M)$ is finitely generated,
(3) the universal covering \widetilde{M} of M is \mathbb{R}^{3} and
(4) the preimage Γ of γ in \widetilde{M} is \mathbb{R}^{3}-trivial.

Addendum 0.3 A simple closed curve ω can be chosen in the above manifold M satisfying the above properties as well as the following additional ones:
(1) ω is algebraically disc busting in $\pi_{1}(M)$ and
(2) $0=[\omega] \in H_{1}\left(M, \mathbb{Z}_{2}\right)$.

Definition 0.4 A nontaming knot is a smooth simple closed curve k in a 3-manifold M such that $\pi_{1}(M)$ is finitely generated and $\pi_{1}(M-k)$ is infinitely generated.

Remarks 0.5 By Tucker [8], the condition $\pi_{1}(M-\gamma)$ is infinitely generated implies that the manifold M is not tame, that is, not the interior of a compact manifold. There are lots of examples of nontame manifolds with finitely generated fundamental group whose universal covers are \mathbb{R}^{3}, for example, see Theorem 2.1. This paper provides the first example of a knot in such a manifold, which is sufficiently complicated to be nontaming, yet sufficiently straight to lift to an \mathbb{R}^{3}-unlink.

Our manifold M is obtained as a nested union of handlebodies of genus $2, V_{1} \subset V_{2} \subset$ $V_{3} \subset \cdots$ where the inclusion $V_{i} \subset V_{i+1}$ is as in Figure 1. Let $\gamma \subset V_{1}$ be the knot also shown in Figure 1.

Figure 1: Glue the top disc to the bottom one and the left disc to the right one to obtain the embedding of V_{1} into V_{2}.

The paper is organized as follows. In Section 1 we show that M is homotopy equivalent, but not homeomorphic to the standard open genus-2 handlebody and that $\pi_{1}(M-\gamma)$ is infinitely generated. In Section 2 we show that Γ is the trivial \mathbb{R}^{3}-link of infinitely many components. In Section 3 we prove Addendum 0.3.

Historical Remarks In the early 1990s the first author showed that the nonexistence of a knot having the properties stated in our main result implies the Tame Ends conjecture (also known as the Marden conjecture [4]) for hyperbolic 3-manifolds. See Myers [5].

In the fall of 1996 the authors found the knot $\gamma \subset M$. We are finally presenting its proof. Very recently, we found the example of Addendum 0.3.

Ian Agol [1] and independently Danny Calegari and the second author [2] have obtained proofs of the Tame Ends conjecture.

Notation 0.6 If $X \subset Y$, then $N(X)$ denotes a regular neighborhood of X in Y. If X is a topological space, then $|X|$ denotes the number of components of X.

Acknowledgements The second author was partially supported by NSF grant DMS0071852.

$1 \pi_{1}(M-k)$ is infinitely generated

Since the inclusion of each V_{i} into V_{i+1} is a homotopy equivalence, it follows that the inclusion of V_{1} into M is a homotopy equivalence and hence M is an open genus-2 homotopy handlebody.

To show that $\pi_{1}(M-k)$ is infinitely generated it suffices to show that ∂V_{3} is incompressible in $V_{3}-\gamma$ and for each $i, \partial\left(V_{i+1}-\stackrel{\circ}{V}_{i}\right)$ is incompressible in $V_{i+1}-\stackrel{\circ}{V}_{i}$ and $V_{i+1}-\stackrel{\circ}{V}_{i}$ is not a product. See Figure 2. These facts, together with the work of Stallings [7] show that the induced map $\pi_{1}\left(\partial V_{i}\right) \rightarrow \pi_{1}\left(V_{i+1}-\stackrel{\circ}{V}_{i}\right)$ is injective but not surjective. The standard Seifert-Van Kampen argument completes the proof.

Lemma $1.1 \partial V_{3}$ is incompressible in $V_{3}-\gamma$.
Proof It suffices to show that if $W_{0}=V_{3}-\stackrel{\circ}{N}(\gamma)$, then $R_{0}:=\partial V_{3}$ is incompressible in W_{0}. Let $D_{3} \subset V_{3}$ (resp. $E \subset V_{3}$) be the disc obtained by gluing D_{3}^{\prime} to $D_{3}^{\prime \prime}$ (resp. E_{1} to E_{2}). By considering boundary compressions it suffices to show that if W_{1} is W_{0} split along D_{3} and R_{1} is R_{0} split along D_{3}, then R_{1} is incompressible in W_{1}. Let W_{2} (resp. R_{2}) denote W_{1} (resp. R_{1}) split along E. We abuse notation by now viewing $D_{3}^{\prime}, D_{3}^{\prime \prime}$ (resp. E_{1}, E_{2}) as compact annuli (resp. pants). Note that R_{2} is incompressible in W_{2}, for any essential compressing disc H would nontrivially separate the set $\left\{D_{3}^{\prime}, D_{3}^{\prime \prime}, E_{1}, E_{2}\right\}$. On the other hand by considering $\partial N(\gamma) \cap W_{2}$ we see that all of these components must lie in the same component of $W_{2}-H$.

Therefore to show that R_{1} is incompressible in W_{1} it suffices to show that there exists no essential, properly embedded disc $(F, \partial F) \subset\left(W_{2}, E_{1} \cup E_{2} \cup R_{2}\right)$ such that $\partial F \cap\left(E_{1} \cup E_{2}\right)$ is connected. We now show that $F \cap E_{1}=\varnothing$. A similar argument will show that $F \cap E_{2}=\varnothing$. In the natural way write W_{2} as $P \times[1,2]$ where P is a

Figure 2: The knot γ viewed inside V_{3}
disc with 3 open discs removed and $D_{3}^{\prime \prime} \cup E_{1} \subset \stackrel{\circ}{P} \times 1$ and $D_{3}^{\prime} \cup E_{2} \subset \stackrel{\circ}{P} \times 2$. Here P_{i} denotes $P \times i$. Assume that F was chosen so that $\left|F \cap P_{2}\right|$ is minimal and that $F \cap\left(R_{2} \cap \partial P \times[1,2]\right)$ are arcs from P_{1} to P_{2}. Isotope F to be Morse with respect to projection onto the [1,2] factor. Arguing as in Roussarie [6] we can assume that the only critical points are of index -1. Since F is disjoint from $E_{2} \cup D_{3}^{\prime}$ and F is a disc it follows that $F \cap P_{2}$ is a finite union of parallel arcs and the closest saddle point to P_{2} must involve distinct such arcs. Therefore, if F contained a saddle tangency, then by considering a boundary compression we could have found another essential F as above, with $|F \cap P \times 2|$ reduced. It follows that F has no saddle tangencies and hence $\left|F \cap E_{1}\right| \geq 3$, which is a contradiction. See Figure 3.

Remark 1.2 Another way to prove Lemma 1.1 is to show that the manifold obtained by doubling $V_{3}-\stackrel{\circ}{N}(\gamma)$ along ∂V_{3} is irreducible. One can prove irreducibility of the double by constructing a taut sutured manifold hierarchy.

Note that ∂V_{2} is compressible in $V_{2}-\gamma$.
Since the inclusion of V_{i} into V_{i+1} is a homotopy equivalence we obtain the following:
Lemma 1.3 For each $i \geq 1, V_{i+i}-\stackrel{\circ}{V}_{i}$ has incompressible boundary.

Figure 3

Lemma 1.4 For $i \geq 1, V_{i+1}-\stackrel{\circ}{V}_{i}$ is not a product.

Proof It suffices to consider the case $i=2$. If $V_{3}-\stackrel{\circ}{V}_{2}$ is a product, then the pair $\left(V_{3}, \gamma\right)$ is homeomorphic to $\left(V_{2}, \gamma\right)$. On the other hand, the note after Remark 1.2 implies that ∂V_{2} is compressible in $V_{2}-\gamma$, while Lemma 1.1 implies that ∂V_{3} is incompressible in $V_{3}-\gamma$.

Here is a second proof. Let $W=V_{3}-\stackrel{\circ}{V}_{2}$. Let (W, σ) be the sutured manifold with $R_{-}(\sigma)=\partial V_{2}$ and $R_{+}(\sigma)=\partial V_{3}$. It suffices to construct a taut sutured manifold hierarchy $(W, \sigma)=\left(N_{0}, \sigma_{0}\right) \rightarrow\left(N_{1}, \sigma_{1}\right) \rightarrow \cdots \rightarrow\left(D^{2} \times I, \partial D^{2} \times I\right)$ such that for some $j, R_{+}\left(\sigma_{j}\right)$ is not homeomorphic to $R_{-}\left(\sigma_{j}\right)$, since by [3] a taut sutured manifold decomposition of a product always yields a product. (Products are exactly those taut sutured manifolds of minimal complexity, and taut splittings do not increase complexity.) Figure 4 shows a step in such a hierarchy. The top sutured manifold $\left(N_{2}, \sigma_{2}\right)$ is (W, σ) split along the product annulus $D_{3}-\stackrel{\circ}{V}_{2}$ followed by splitting along a product disc (that is, a disc crossing the sutures twice) meeting $E_{2}-V_{2}$ in a single arc. The thick brown lines denote the sutures. Note that each of $R_{+}\left(\sigma_{2}\right), R_{-}\left(\sigma_{2}\right)$ is a pant. To obtain $\left(N_{3}, \sigma_{3}\right)$ split along the annulus corresponding to A_{2} and A_{1}, so that A_{2} is given the +- orientation. Note that $R_{+}\left(\sigma_{3}\right)$ is not homeomorphic to $R_{-}\left(\sigma_{3}\right)$. Splitting $\left(N_{3}, \sigma_{3}\right)$ along a product disc yields $\left(N_{4}, \sigma_{4}\right)$ where $N_{4}=D^{2} \times S^{1}$ and the sutures of σ_{4} are 4 parallel longitudes. One more splitting yields, $\left(D^{2} \times I, \partial D^{2} \times I\right)$.

Glue annuli A_{1} to A_{2} to obtain $\left(N_{2}, \sigma_{2}\right)$.

Figure 4

2Γ is \mathbb{R}^{3}-trivial

The following is well known.
Theorem 2.1 If the open 3-manifold N is exhausted by compact irreducible manifolds $W_{1} \subset W_{2} \subset \cdots$ such that for each $i, \mathrm{in}_{*}: \pi_{1}\left(W_{i}\right) \rightarrow \pi_{1}\left(W_{i+1}\right)$ is injective, then $\tilde{N}=\mathbb{R}^{3}$.

Proof The universal covering space \tilde{N} of N is exhausted by the universal covering spaces of the various W_{i} 's. By Waldhausen [9], the universal covering space of W_{i} is $B^{3}-K_{i}$, where $K_{i} \subset \partial B^{3}$ is compact. Since a space is \mathbb{R}^{3} if every compact set lies in a 3 -cell, the result follows.

Lemma 2.2 If L is a smooth locally finite link in the open unit 3-ball $B \subset \mathbb{R}^{3}$, such that away from exactly one point, each component is transverse to the concentric 2 -spheres, then L is \mathbb{R}^{3}-trivial.

Corollary 2.3 A locally finite collection of geodesics in \mathbb{H}^{3} is \mathbb{R}^{3}-trivial.

Definition 2.4 Let T denote the standard infinite \mathbb{R}^{3}-link $(\mathbb{Z}, 0) \times \mathbb{R} \subset \mathbb{R}^{2} \times \mathbb{R}$. Let X be the 3 -manifold with boundary obtained by removing small open regular neighborhoods of the rays $\mathcal{R}_{X}:=(\mathbb{Z}, 0) \times[1, \infty) \cup(\infty,-1]$. Let T_{X} be the restriction of T to X.

Remark 2.5 If X_{1} is the 3-manifold with boundary obtained from the standard infinite \mathbb{R}^{3}-link by removing small open regular neighborhoods of the rays $\mathcal{R}_{X_{1}}$ defined by $\{(n, 0) \times[n, \infty) \cup(-\infty, n-1] \mid n \in \mathbb{Z}\}$ and $T_{X_{1}}$ is the restriction of T to X_{1}, then $\left(X_{1}, T_{X_{1}}\right)$ is diffeomorphic to $\left(X, T_{X}\right)$.

The pair (X, T_{X}) can be viewed geometrically via the following lemma.

Lemma 2.6 Let G be the 2 -dimensional Schottky group generated by length 10 translations g_{1}, g_{2} along orthogonal geodesics $A, B \subset \mathbb{H}^{2}$. Extend G to act on \mathbb{H}^{3}. Let $Q \subset \Vdash^{3}$ be the totally geodesic plane orthogonal to B at distance 5 from $A \cap B$ and \mathcal{Q} be the orbit $G Q$. Let Y be the closure of a component of $\Vdash^{3}-\mathcal{Q}$ and $G B_{Y}$ the restriction of the orbit $G B$ to Y. Then there is a diffeomorphism $\left(X, T_{X}\right) \rightarrow\left(Y, G B_{Y}\right)$.

Let $\pi: \widetilde{M} \rightarrow M$ denote the universal covering projection and let Γ denote the link $\pi^{-1}(\gamma)$. By Theorem $2.1 \widetilde{M}$ is homeomorphic to \mathbb{R}^{3}.

The construction of M gives rise to a properly embedded plane $P \subset M$ which intersects each V_{i} in a single disc D_{i} and intersects V_{3} in the disc D_{3}. Furthermore $P \cap \gamma=D_{3} \cap \gamma$. Let $\mathcal{P}=\pi^{-1}(P)$.

Proposition 2.7 There exists a diffeomorphism $(\widetilde{M}, \Gamma) \rightarrow\left(\mathbb{W}^{3}, G B\right)$.

Assuming for the moment Proposition 2.7 we obtain the following proof:
Proof that Γ is \mathbb{R}^{3}-trivial It follows from the Proposition 2.7 that the pair (\widetilde{M}, Γ) is diffeomorphic to $\left(\mathbb{H}^{3}, \Delta\right)$ where Δ is a locally finite union of pairwise disjoint geodesics. By Lemma 2.2, Γ is \mathbb{R}^{3}-trivial.

Proof of Proposition 2.7 It suffices to show that if W is the closure of a component of $\widetilde{M}-\mathcal{P}$ and Γ_{W} is the restriction of Γ to W, then there is a diffeomorphism $\left(W, \Gamma_{W}\right) \rightarrow\left(Y, G B_{Y}\right)$ where Y and $G B_{Y}$ are as in Lemma 2.6. By Lemma 2.6 it suffices to show that $\left(W, \Gamma_{W}\right)$ is diffeomorphic to $\left(X, T_{X}\right)$, where T_{X} is defined as in Definition 2.4. Let W_{i} denote the compact manifold obtained by splitting V_{i} open along D_{i}. Then W is exhausted by the manifolds \tilde{V}_{i}.

Consider the \mathbb{R}^{3}-link Σ shown in Figure 5. It has infinitely many components and is invariant under a rigid \mathbb{R}^{3}-translation g. Each component has an end which is a vertical ray and another that forever spirals down. Let \mathcal{R} be the union of the (thick) blue rays, two for each component of Σ. Let $\stackrel{\circ}{N}(\mathcal{R})$ be a union of small open regular neighborhoods of the components of \mathcal{R} and $Z=\mathbb{R}^{3}-\stackrel{\circ}{N}(\mathcal{R})$. The pair (W, Γ_{W}) is diffeomorphic to $(Z, \Sigma \cap Z$). Indeed, Z can be exhausted by manifolds diffeomorphic to \tilde{V}_{i} in a manner compatible with the inclusion $\widetilde{V}_{i} \subset \widetilde{V}_{i+1}$. Furthermore, the quotient $Z /\langle g\rangle=W / \mathbb{Z}$ where \mathbb{Z} is the group of covering translations of W and $\tilde{V}_{i} / \mathbb{Z}=V_{i}$. Figure 6 shows three fundamental domains V_{1} within Z. Figure 7 shows one fundamental domain of V_{2}. Notice that the curves α and β bound discs in the boundary of this fundamental domain which lie in ∂Z. Again, just translate by g to get the entire embedding of $\tilde{V}_{2} \subset Z$. In a similar manner construct $\tilde{V}_{i}, i \geq 3$.

Consider the collection $\left\{H_{i}\right\}, i \in \mathbb{Z}$ of horizontal planes shown as lines in Figure 8. Coordinates on \mathbb{R}^{3} could have been chosen so that $H_{i}=\mathbb{R}^{2} \times i$ and $g\left(H_{i}\right)=H_{i+1}$. If S_{i} is the slab $\mathbb{R}^{2} \times[i, i+1]$, then $\Sigma \mid S_{i}$ is equivalent to the link $(\mathbb{Z}, 0) \times[i, i+1]$. Putting these slabs together, we conclude that Σ is \mathbb{R}^{3}-trivial.

The diffeomorphism H of \mathbb{R}^{3} which takes Σ to the standard link T could have been chosen to fix H_{0} pointwise and setwise fix the various horizontal planes. Therefore it could have been chosen to take \mathcal{R} to the rays $\mathcal{R}_{X_{1}}$. This shows that $\left(W, \Gamma_{W}\right)$ is diffeomorphic to $\left(X_{1}, T_{X_{1}}\right)$ and hence is diffeomorphic to $\left(X, T_{X}\right)$.

3 Another example

Theorem 0.2 answers in the negative a conjecture of the first author. Myers [5] asked whether a more restrictive version of that conjecture holds. The example of this section

Figure 5: This infinite \mathbb{R}^{3}-link is rigidly \mathbb{Z}-translation invariant. The top part of each strand is straight and the bottom part is infinitely twisted in the helical pattern indicated.

Figure 6: Three fundamental domains of V_{1} lifted to Z
provides a similar answer to that question. Let the manifold M be as in Section 2, with the knot $\omega \subset V_{1}$ presented as in Figure 9.

Proof of Addendum 0.3 With respect to the standard generators of $\pi_{1}\left(V_{1}\right), \omega$ represents the element $a^{2} b^{2}$ which according to Myers [5] is algebraically disc busting in

Figure 7: One fundamental domain of \tilde{V}_{2} lifted to Z
V_{1} and hence in M. that is, $\pi_{1}(M)$ cannot be expressed as a nontrivial free product such that $[\omega]$ can be conjugated to lie in a single factor. Since ω is algebraically disc busting, ∂V_{1} is incompressible in $V_{1}-\omega$. As in Section $1, \pi_{1}(M-\omega)$ being infinitely generated then follows from Lemma 1.3 and Lemma 1.4.

Figure 8

An argument similar to that of Section 2 shows that the restriction of Ω to W is the union of properly embedded arcs Ω_{W} as drawn in Figure 10. Figure 10 can be decoded with the help of Figure 11, for example to unclutter the picture, certain pairs of thin green arcs are drawn as one arc. Note that W is \mathbb{R}^{3} with open regular neighborhoods

Figure 9
of a countable collection of rays deleted. These neighborhoods are denoted by the thick blue lines. Finally the boxes drawn in Figure 10 coordinatize \mathbb{R}^{3} and will be useful for the next paragraph. Imagine that both ∂W and Ω_{W} lie very close to the $x y$-plane. Let $\left\{E_{i}\right\}$ denote the components of ∂W.

To each component E of ∂W we define a foliation \mathcal{F}_{E} of W which is the restriction of a topologically concentric foliation on \mathbb{R}^{3} with center in the component of $\mathbb{R}^{3}-W$ separated off by E. For each $i, \mathcal{F}_{E} \mid E_{i}$ will be a topologically concentric foliation by circles with center point the dot shown in Figure 12. \mathcal{F}_{E} will have exactly one tangency with each component of Ω_{W} except for the two components Ω_{E} which hit E and \mathcal{F}_{E} will be transverse to Ω_{E}. Suppose that E is the component containing the point $(0,0)$ shown in Figure 10 . The leaves S_{t} of \mathcal{F}_{E} will be parametrized by $[0, \infty)$, where S_{0} is a point. Define $S_{i}, i \in \mathbb{N}$ according to the pattern given in Figure 12. Next modify these spheres as in Figure 13. In particular if $S_{i} \cap E_{j} \neq \varnothing$, then $S_{i} \cap E_{j}$ is a circle. The other spheres get modified in a similar way. For example, the modified S_{3} has three tube like extensions. One passes by $(1,1)$ and the others at $(2,2)$ and $(3,3)$. It is an exercise to show that the desired foliation \mathcal{F}_{E} can be constructed to contain these integral spheres. Note that near $(0,0)$, but not including $(0,0)$, all the leaves of \mathcal{F}_{E} are discs.

In a similar way construct a foliation \mathcal{F}_{0} on W to have all the properties of \mathcal{F}_{E} except that the center point of the concentric foliation lies in $\operatorname{int}\left(W-\Omega_{W}\right)$, nearby leaves are spheres and each component of Ω_{W} is tangent to \mathcal{F}_{0} at exactly one point.

Figure 10
To show that Ω is \mathbb{R}^{3}-trivial we describe a foliation \mathcal{F} on $\widetilde{M}=\mathbb{R}^{3}$ which satisfies the hypothesis of Lemma 2.2 with respect to the link $\Omega . \widetilde{M}$ is built by gluing copies of W in a treelike fashion. Let T be the tree dual to $\mathcal{P} \subset \widetilde{M}$ with base vertex v_{0}. Let v_{0} also denote the corresponding copy of W. Define $\mathcal{F} \mid v_{0}=\mathcal{F}_{0}$. If v_{i} and v_{0} have an edge in common and v_{i} is glued to v_{0} along the plane $E_{g(i)} \subset \partial v_{i}$, then give v_{i} the foliation

Figure 11
$\mathcal{F}_{E_{g(i)}}$. In what follows we denote $\mathcal{F}_{E_{g(i)}}$ by $\mathcal{F}_{g(i)}$. Since each foliation restricts to a concentric foliation on $E_{g(i)}$ the identification of \mathcal{F}_{0} and $\mathcal{F}_{g(i)}$ is determined by a homeomorphism $h_{0 i}:[0, \infty) \rightarrow[0, \infty)$. Similarly if v_{j} and v_{k} share an edge with v_{j} closer to v_{0}, then give v_{k} the foliation $\mathcal{F}_{g(k)}$ where the plane $E_{g(k)} \subset \partial v_{k}$ glues to v_{j}. So \mathcal{F} is determined by the various homeomorphisms $h_{i j}:[0, \infty) \rightarrow[0, \infty)$ where v_{i} and v_{j} share an edge. Any choice of functions gives rise to a foliation by spheres and planar surfaces of possibly infinite Euler characteristic. Furthermore, since each leaf of $\mathcal{F}_{E_{i}}$ is compact and hits E_{i} in exactly one component, it follows that each leaf of \mathcal{F} hits v_{0} in exactly one component. If the leaves of \mathcal{F}_{0} are parametrized by $[0, \infty)$ and $T_{0} \subset T_{1} \subset \cdots$ is an exhaustion of T by compact connected sets, then pass to a subsequence of the T_{i} 's and choose the functions $h_{i j}$ so that if $t \leq n-1 \in \mathbb{N}$ and L_{t} is the leaf of \mathcal{F} passing through the leaf of \mathcal{F}_{0} parametrized by $t \in[0, \infty)$, then L_{t} is a sphere contained in \widetilde{M}_{n}, where \widetilde{M}_{n} is the submanifold of \widetilde{M} corresponding to T_{n}. Assume that \mathcal{F} has been inductively constructed on \widetilde{M}_{n-1} and satisfies the above conditions for $t \leq n-2$. Let \mathcal{G} denote those leaves of $\mathcal{F} \mid \widetilde{M}_{n-1}$ which restrict to leaves $L_{t} \subset \mathcal{F}_{0}$ with $t \in[0, n-1]$. There is a finite set $F=\left\{F_{1}, \cdots, F_{k}\right\}$ of components of $\partial \widetilde{M}_{n-1}$ so that $\mathcal{G} \cap \partial \widetilde{M}_{n-1} \subset F$ and lies in a compact subset C of F. By passing to a subsequence we can suppose that each F_{i} glues to a vertex of T_{n}. If v_{j} glues to $v_{i} \in T_{n-1}$ along F_{p}, where $1 \leq p \leq k$, then choose the function $h_{i j}$ so that each circle c of $\mathcal{G} \mid F_{p}$ is capped off by a disc of $\mathcal{F}_{g(j)}$.

Figure 12

Figure 13

References

[1] I Agol, Tameness of hyperbolic 3-manifolds arXiv: GT/0405568
[2] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006) 385-446 MR2188131
[3] D Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503 MR723813
[4] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974) 383-462 MR0349992
[5] R Myers, End reductions, fundamental groups, and covering spaces of irreducible open 3-manifolds, Geom. Topol. 9 (2005) 971-990 MR2140996
[6] R Roussarie, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Inst. Hautes Études Sci. Publ. Math. (1974) 101-141 MR0358809
[7] J Stallings, On fibering certain 3-manifolds, from: "Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", (M Fort, editor), PrenticeHall, Englewood Cliffs, N.J. (1962) 95-100 MR0158375
[8] T W Tucker, Non-compact 3-manifolds and the missing-boundary problem, Topology 13 (1974) 267-273 MR0353317
[9] F Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968) 56-88 MR0224099

Microsoft Corporation
Department of Mathematics, Princeton University
Princeton, NJ 08544
michaelf@microsoft.com, gabai@princeton.edu
Received: 28 May 2005

