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We classify the complete hyperbolic 3-manifolds admitting a maximal cusp of volume at most 2.62.
We use this to show that the figure-8 knot complement is the unique 1-cusped hyperbolic 3-manifold
with nine or more non-hyperbolic fillings; to show that the figure-8 knot complement and its sister
are the unique hyperbolic 3-manifolds with minimal volume maximal cusps; and to extend results on
determining low volume closed and cusped hyperbolic 3-manifolds.
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1 Introduction

A central goal in low dimensional topology is to relate various topological, combinatorial, geometric
and algebraic structures associated to manifolds. For hyperbolic 3-manifolds, there is the long-standing
Thurston, Hodgson-Weeks, Matveev-Fomenko Hyperbolic Complexity Conjecture: The complete low-
volume hyperbolic 3 -manifolds can be obtained by filling cusped hyperbolic 3 -manifolds of small
topological complexity. One of the challenges of this open-ended conjecture is to identify the right notion
of complexity, especially when restricting this conjecture to a particular class of manifolds. This paper
addresses the version of that conjecture for complete hyperbolic 3-manifolds with maximal cusps of low
volume. All manifolds in this paper are orientable.

In the context of closed hyperbolic 3-manifolds, the existence of sufficiently thick tubes about short
geodesics is crucial to many results in the subject. Examples include, the Smale conjecture for hyperbolic
3-manifolds [Gab01] and the important inequality (slightly updated to reflect [GT15]), that if X 6= Vol3 is
a closed hyperbolic 3-manifold, then it is obtained by filling a 1-cusped hyperbolic 3-manifold Y such
that vol(Y) < 3.0177 vol(X) [ACS06]. This inequality is based on earlier works of Agol [Ago02] and
Agol-Dunfield [AST07] and uses Perelman’s work on Ricci flow [Per02], [Per03]. It is needed to show
that the Weeks manifold is the unique closed hyperbolic 3-manifold of least volume, [GMM09]. These
results rely on the log(3)/2-theorem of [GMT03]. The sharp form of that result [GT15] asserts that with
the exception of the manifold known as Vol3, any closed hyperbolic 3-manifold X has a log(3)/2 tube
about some geodesic; furthermore, with five exceptions this geodesic can be taken to be any shortest one.

Recall that in the 1960’s Gregory Margulis proved that each end of a complete finite-volume hyperbolic
3-manifold Y is homeomorphic to T2 × (1,∞). These ends are called cusps. Note, the term cusp in this
paper always refers to a rank-two cusp, even if the manifold in question is not finite-volume. Each cusp
contains a properly embedded horocusp, which is a region isometric to a quotient of int(H∞), where
H∞ = {(x, y, t) : t ≥ 1} ⊂ H3 in the upper half-space model and we quotient by a group of translations of
(x, y) isomorphic to Z⊕ Z, see [Thu97]. Further, after isometrically changing coordinates, the end can be
maximally enlarged to the maximal horocusp κ. Here, int(κ) is embedded in Y and ∂κ has finitely many
self-tangencies. One can in addition assume that a π1(Y)-translate of H∞ is a horoball H0 tangent to H∞
in the upper halfspace model at (0, 0, 1) ∈ H3 . A basic fact is that vol(κ) = area(∂κ)/2, called the cusp
volume.
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The works of Jørgenson and Thurston from the 1970’s demonstrate the close relation between thick tubes
about geodesics and maximal horocusps of complete manifolds [Thu78]. Indeed, Jørgenson showed that
after passing to a subsequence, any infinite sequence Yi of distinct complete hyperbolic 3-manifolds of
uniformly bounded volume limits geometrically to a complete manifold Y∞ , where thicker and thicker
tubes of the Yi ’s limit to cusps of Y∞ . Conversely, Thurston showed that given a cusp of a complete
finite-volume 3-manifold Y and ε > 0, then all but finitely many fillings on that cusp produce hyperbolic
manifolds geometrically ε-close to Y . The papers, [NZ85], [HK05], [HK08],[FPS19] have made this
connection more explicit and quantitative.

The following is the main technical result of this paper.

Theorem 1.1 Let Y be a complete hyperbolic 3-manifold with cusps1. Either each cusp of Y has an
embedded horocusp of volume > 2.62 or Y is obtained by filling one of the 16 manifolds listed in Table 1.

s596 s647 s774 s776 s780 s782 s785 v2124
v2355 v2533 v2644 v2731 v3108 v3127 v3211 v3376

Table 1: An ancestral set for all hyperbolic 3-manifolds with vol(κ) ≤ 2.62.

Remarks 1.1

(i) With the exception of s776, the so called 3-cusped magic manifold, all the other manifolds in Table
1 have two cusps.

(ii) In the language of [GMM11], s596, s647, s774, s780, s776, s785 are Mom-3 manifolds, while s782,
v2124, v2533, v2644, v2731, v3108, v3127, v3211, v3376 are Mom-4 manifolds; see [Har20].
Only v2355 is neither, but it is a Mom-5 manifold.

The proof, outlined below, combines new geometric and combinatorial methods with rigorous computer
assistance. This result and byproducts of its proof have a number of applications to the theory of hyperbolic
3-manifolds, knot theory and 3-manifold topology. To start with we answer the long-standing problem of
identifying the complete hyperbolic 3-manifolds with minimal cusp volume.

Theorem 1.2 The figure-8 knot complement and its sister are the complete hyperbolic 3-manifolds with
a maximal horocusp of minimal volume. This volume is

√
3.

Remarks 1.2

(i) These manifolds minimize cusp volume among all complete hyperbolic 3-manifold with torus cusps,
even among multi-cusped manifolds and complete manifolds of infinite volume.

1Cusps are always rank-two in this paper. Note, additional boundary types are allowed in the hypothesis.
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(ii) Results on this question go back to the 1980’s. A lower bound of
√

3/4 for the volume of a maximal
cusp was obtained in [Mey85]. Adams improved this bound by a factor of 2 in [Ada87]. There were
no further improvements until Cao and Meyerhoff [CM01]. Although they didn’t explicitly state it,
their proof method is easily modified to obtain a bound of 3.35/2 for the volume of a maximal cusp
in a hyperbolic 3-manifold, which is within 0.0571 of the actual value of

√
3.

In the 1970’s, Bill Thurston showed that volume strictly decreases under filling [Thu78, Theorem 6.5.6].
On the other hand we have,

Theorem 1.3 Depending on the filling, cusp volume can increase or decrease when filling one cusp of
m295 (aka L9n14 or 92

50 ). However, the cusp volume always decreases after filling one cusp of m129, the
Whitehead link complement. Further, the cusp shapes for fillings of m129 are never rectangular.

Remark 1.3 Cusp shape might not change under filling, see [NR93], [Cal01]. See [Pur08] for results on
the effect of cone deformations on cusp geometry.

Let κ be a maximal horocusp of the complete hyperbolic 3-manifold Y = H3/Γ and normalize so that
H∞ and H0 both cover κ and are conjugate under Γ. Let B = 〈m, n, g〉 ≤ Γ, where m, n are generators
of {γ ∈ Γ : γ · H∞ = H∞} and g is the conjugating element g(H∞) = H0 . Adopting terminology from
[Ago00], we call B a (geometric) bicuspid group. A remarkable result of Agol states:

Theorem ([Ago10]) If κ is a maximal horocusp of the complete hyperbolic 3-manifold Y and vol(κ) <
π , then any bicuspid group B associated to κ is finite index in π1(Y) and vol(Y) < ∞. In particular,
there exists a relation w(m, n, g) in B.

In contrast, without requiring Theorem , we have the following corollary of Theorem 1.9, the complete
statement of which is given later in the outline of the paper.

Theorem 1.4 If κ is a maximal horocusp of the complete hyperbolic 3-manifold Y and vol(κ) ≤ 2.62,
then any bicuspid group B associated to κ is equal to π1(Y) and vol(Y) <∞. Furthermore, there exists a
relation w(m, n, g) whose g-length is at most 7 and at least 4.

Here, g-length means the sum of the absolute values of the exponents of g in w.

Remark 1.4 Experimentally, the 1-cusped manifolds m135 and m136 have index-2 bicuspid groups. In
both cases, the volume of their maximal cusps is 2

√
2 ≈ 2.828427...2.

By a packing argument (see [Mey86]), if Y has a maximal horocusp of volume V , then vol(Y) ≥
(2v3/

√
3)V ≈ (1.17195...)V , where v3 is the volume of the regular ideal tetrahedron in H3 . It follows that

either vol(Y) ≥ 2.62 · (1.17195...) ≈ 3.0705... or Y is obtained by filling one of the manifolds of Table 1.
Thus, through an analysis of the fillings of the manifolds in Table 1, we obtain:

2Though we are unable to find a reference for this number, it is computable by a straightforward analysis of the
gluing equations of m135 and m136.
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Theorem 1.5 The 14 complete non-compact hyperbolic 3-manifolds with volume ≤ 3.07 are those listed
in Table 2.

m003 m004 m006 m007 m009 m010 m011
m015 m016 m017 m019 m022 m023 m026

Table 2: One-cusped hyperbolic 3-manifolds with volume less than 3.07.

Remarks 1.5

(i) [CM01] first identified the two non-compact manifolds of least volume.

(ii) [GMM11] identified the first 10 manifolds on this list as all those with volume ≤ 2.848.

A further analysis of Table 1 together with the above mentioned theorem of [ACS06] yields,

Theorem 1.6 The closed orientable hyperbolic three-manifolds of volume at most 1.01749 are

(i) the Weeks-Matveev-Fomenko manifold, a.k.a. m003(2,1), with volume 0.94271± ε,

(ii) the Meyerhoff manifold, a.k.a. m004(5,1), named in [CFJR01], with volume 0.98137± ε,

(iii) Vol3, a.k.a. m007(3,1), named in [GMT03], with volume 1.01499± ε,

where ε = 10−5.

Remark 1.6 The Weeks manifold was first shown to be minimal volume in [GMM11]. There, it was
shown that the minimal volume manifold was obtained by filling a Mom-≤ 3 manifold. An analysis of
fillings of such manifolds was carried out in [Mil09].

We also note that this further supports a conjecture of Martelli [Mar06] that the closed orientable hyperbolic
3-manifolds of smallest Matveev complexity are those of smallest volume. There are four such manifolds
and we have identified three of them.

In his revolutionary work in the 1970’s on the geometry of the figure-8 knot complement, Bill Thurston
showed that it has exactly 10 non-hyperbolic Dehn fillings. Thurston’s result spawned a tremendous
amount of work towards understanding hyperbolic and non-hyperbolic fillings of hyperbolic 3-manifolds,
e.g. see the surveys in [Gor98b], [Boy02], [LM13]. In particular, there are infinitely many 1-cusped
hyperbolic manifolds with six non-hyperbolic fillings. By 1998, there were (resp. eight, two, zero, one))
known 1-cusped manifolds with (resp. seven, eight, nine, ten) exceptional surgeries. This led Cameron
Gordon to conjecture in [Gor98b] that if M be a hyperbolic 3-manifold with boundary a torus, then M has
at most 8 non-hyperbolic fillings unless M is the figure eight knot exterior.

The Gromov-Thurston 2π -theorem showed that if a manifold Y ′ is obtained by filling the cusped manifold
Y along a curve γ ⊂ ∂κ of length > 2π then Y ′ has a complete metric of negative sectional curvature
(hence a hyperbolic structure by Perelman). The shortest curve on ∂κ has length ≥ 1 and Thurston used
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this fact to show that the number of non-hyperbolic fillings is bounded by 48. But coupling a length lower
bound with a maximal horocusp area lower bound can lead to an improvement, and this was carried out
by Bleiler and Hodgson ([BH92]) — using Adams’s area lower bound — to get a bound of 24 on the
number of non-hyperbolic fillings. Had the Cao-Meyerhoff area bound been available at that time, the
non-hyperbolic-filling bound would have been reduced to 14.

In 2000, Agol and Lackenby independently improved 2π to 6 with the the weaker conclusion that Y ′ has
word hyperbolic fundamental group (again Perelman implies that Y is hyperbolic). Coupling the 6-theorem
with the Cao-Meyerhoff bound led to a non-hyperbolic filling bound of at most 12 — tantalizingly close
to the figure-eight case bound of 10. As the 6-theorem is sharp, attention was focused on area bound
improvements. However, a new area bound of 3.7 in the “non-Mom” case in [GMM09] did not improve
upon the non-hyperbolic filling bound of 12. The [GMM09] area result seemed quite strong at the time, so
potential for progress on the non-hyperbolic filling bound seemed bleak. But Lackenby and Meyerhoff
were able to prove in [LM13] the 10 bound without using the area bound improvements by generalizing
the 6-theorem and exploiting Mom technology.

In [Ago00], [Ago10] Ian Agol proved that If Y is a 1-cusped hyperbolic 3-manifold with 9 or more
non-hyperbolic fillings, then the maximal cusp of Y has volume > 18/7 = 2.57.... Since 18/7 < 2.62
all the 1-cusped hyperbolic 3-manifolds with a maximal cusp of volume ≤ 18/7 arise from filling the
manifolds in Table 1. The work of [MP06] shows that the figure-8 knot complement is the unique 1-cusped
manifold obtained by filling s776 with 9 or more non-hyperbolic fillings. An analysis of the fillings of the
2-cusped manifolds in Table 1, making use of the Agol-Lackenby 6-theorem and normal surface theory,
also yields the same conclusion, thereby proving Gordon’s conjecture. We note that another version of this
analysis was carried out by Crawford in his thesis [Cra18] based on a preliminary version of our Theorem
1.1.

Theorem 1.7 The figure-8 knot exterior is the unique 1-cusped hyperbolic 3-manifold with nine or more
non-hyperbolic fillings.

Remark 1.7 For manifolds of two or more cusps it was known by Gordon [Gor98a] that the distance
between non-hyperbolic fillings on a fixed cusp, with the other cusp(s) unfilled, is at most 5, hence by
[Ago00], there are at most 8 non-hyperbolic fillings on that cusp with the other cusp(s) unfilled.

We now outline the proof of Theorem 1.1. Let κ be a maximal horocusp of the complete hyperbolic
3-manifold Y with vol(κ) ≤ 2.62. Let B = 〈m, n, g〉 be a bicuspid group corresponding to some
self-tangency of κ. Note, H3/B has a maximal cusp isometric to κ. The proof of our main result breaks
into three steps.

Theorem 1.8 If B is a geometric bicuspid group whose preferred maximal horocusp κ has volume
≤ 2.62, then B has a relation w(m, n, g) with g-length at most 7 and at least 4.
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The proof of Theorem 1.8 uses a rigorous computer assisted validation that analyzes the compact parameter
space of elements m, n, g ∈ PSL(2,C) where m, n correspond to parabolics fixing ∞ ∈ Ĉ, whose
fundamental domain restricted to ∂H∞ has area at most 5.24 and g is a transformation taking H0 to H∞ .

The next step transforms this group theoretic statement into a topological one.

Definition 1.8 A compact 3-manifold W is a necklace-k manifold if it is built from a handle structure on
T2 × [0, 1] with a single 1-handle attached to T2 × 1 and a single 2-handle running over the 1-handle k
times. We say that W is a full necklace-k manifold if, in addition, the attaching curve for the 2-handle cuts
T2 × 1 \ D1 ∪ D2 into disks, where D1 ∪ D2 is the attaching locus of the 1-handle.

Notice that a necklace-k manifold has a preferred boundary torus corresponding to T2 × 0.

Theorem 1.9 If κ is a maximal horocusp for a complete hyperbolic 3-manifold Y and B is an associated
bicuspid group a with a relation of g-length k ≤ 7, then there is an embedded full necklace-k′ manifold
W ⊂ Y with k′ ≤ k and the preferred cusp of W is the boundary torus corresponding to κ. Furthermore,
each other component of ∂W either cuts off a solid torus or a cusp end in Y .

In other words, Y is obtained from W by filling at most two boundary components with solid tori and then
passing to the interior. Note that Y having finite volume is not part of the hypothesis, though follows from
the conclusion. Notice that Theorem 1.4 is a direct corollary of Theorem 1.9.

Theorems 1.8 and 1.9 imply:

Theorem 1.10 (Hyperbolic complexity conjecture for low volume maximal cusps)
If Y is a complete finite volume hyperbolic 3-manifold with a maximal horocusp of volume ≤ 2.62, then
Y is obtained by filling a full necklace-k manifold for k ≤ 7.

Theorem 1.8 implies that in H3 , seen as the universal cover of Y , we see necklaces of distinct horoballs
B0,B1, . . . ,Bk with Bk = B0 and k ≤ 7, where Bi is tangent to Bi+1 and there is an element of B that
transforms {Bi,Bi+1} to {H0,H∞} set-wise, indices taken mod k . Now, if such a necklace of horoballs
bounds a 2-disc D whose π1(Y)-orbit consists of pairwise disjoint discs, then we can construct a handle
decomposition where the tangency between H0 and H∞ corresponds to the 1-handle and D corresponds to
the 2-handle. Technical issues that need to be addressed include showing that the necklaces are unknotted,
unblocked and unlinked. Repeated use is made of the condition k ≤ 7. Indeed, bicuspid subgroups to both
m135 and m136 demonstrate, at least experimentally, the necessity of this hypothesis, for the minimal
necklaces for those manifolds have eight beads and the disc spanning this necklace is blocked by a translate
of the pair (H0,H∞), see Figure 1. The passage from the relation w to the disc D may require finding
a new disc D′ corresponding to a word w′ whose g-length is at most the g-length of w. The theory of
necklaces is quite beautiful in its own right and is of independent interest.

We now indicate why a bicuspid group is index one in π1(Y), when Y has a maximal cusp of volume
≤ 2.62. By construction, the W of Theorem 1.9 has the property that m, n are the generators of π1(T),
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Figure 1: Blocked necklace in m135 corresponding to the 0-edge orbit.

where T is the preferred torus component, and g is an element of π1(W) coming from the 1-handle. Since
Y deformation retracts to a possibly empty filling of W , it follows that 〈m, n, g〉 = B = π1(Y).

The tunnel number of a compact 3-manifold Y with non-empty boundary is one less than the Heegaard
genus of Y as a union of compression bodies. This definition naturally extends to complete finite-volume
hyperbolic 3-manifolds. When ∂Y > 1, (resp. has multiple cusps), this may depend on the partition of the
boundary components (resp. cusps) into two sets. In what follows, the partition consists of a designated
cusp in one set and all the remaining cusps in the other.

Corollary 1.9 If Y is a cusped hyperbolic 3-manifold with a maximal horocusp of volume ≤ 2.62, then
Y is tunnel number one.

Note that m135 and m136, the two examples where the best g-length relator appears to be 8 and the
bicuspid group appears to be index 2, have tunnel number 2 as their homology is rank 3 and Berge’s
program heegaard [Ber] finds a genus 3 splitting.

We now explain how we identify the manifolds in Table 1. The fact that W in Theorem 1.9 carries a full
necklace k-structure implies that it has a natural combinatorial description as a dipyramid gluing, see
Section 5.3. The study of such structures should be of independent interest. Since k ≤ 7, we are able
to enumerate all such manifolds and recognize which admit nonelementary embeddings into hyperbolic
manifolds.

Theorem 1.11 Let W be a full necklace-k manifold that has a nonelementary embedding into a hyperbolic
manifold Y such that the preferred cusp of W maps to a cusp of Y . If k ≤ 7, then Y is a Dehn filling of
one of the manifolds in Table 3.
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m125 m129 m202 m203 m292 m295 m328
m359 m367 s441 s443 s596 s647 s774
s776 s780 s782 s785 v1060 v2124 v2355

v2533 v2644 v2731 v3108 v3127 v3211 v3376

Table 3: Initial ancestral set with Dehn fillings of s776 are in bold.

The proof of Theorem 1.11 uses an observation that any nonelementary embedding of W in Y can be
re-embedded to make Y a Dehn filling of W , see Lemma 5.8 and Appendix C. Then, using normal surface
enumeration in Regina [BBP+ 21], we show that the collection of all hyperbolic Dehn fillings of full
necklace-k manifolds with k ≤ 7 must arise as fillings of the above 28 manifolds.

Finally, Theorem 1.1 follows from Theorem 1.11 and Theorem 1.10 after noting many manifolds in Table
3 are fillings of s776.

1.1 Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#228084 to Robert Meyerhoff)
and by a grant from the National Science Foundation (DMS-1308642 to Robert Meyerhoff). The third
author was partially supported by these same grants. The first author was partially supported by NSF grants
DMS-1006553, DMS-1607374 and DMS-2003892. The fifth author was partially supported as a Visiting
Student Research Collaborator with DMS-1006553 and Postdoctoral Researcher with DMS-1607374. The
authors also acknowledge the support and resources of the Polar Computing Cluster at the Mathematics
Department and the Program in Applied and Computational Mathematics at Princeton University.

2 The parameter space

In this section, we explain the computer-assisted proof of Theorem 1.8. We will leave the computational
details for Appendix D and focus on the mathematical setup. The goal is to analyze low-cusp-volume
hyperbolic 3-manifolds by studying the marked 3-generator bicuspid subgroups associated to their cusps.
The space of all possible such marked groups with vol(κ) ≤ 2.62 will lie in, up to isometry, a compact
parameter space P of three complex dimensions. Rigorous computer assisted analysis of this parameter
space will show that all such groups admit a relators of g-length at most 7.

2.1 The upper half-space model

We will use the upper-half-space model H3 = {(z, t) ∈ C× R : t > 0}. Consider q ∈ H3 in quaternion
notation q = x + iy + jt , where i2 = j2 = k2 = ijk = −1. Identifying Isom+(H3) ∼= PSL(2,C), the action
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on q = x + iy + jt is given by

±

(
a b
c d

)
· q = (aq + b)(cq + d)−1.

Notice that for z ∈ C, we have that z j = j z, so one computes

(2–1) ±

(
a b
c d

)
· t j = (a t j + b)(c t j + d)−1 =

t2 a c + b d
t2|c|2 + |d|2

+
t j

t2|c|2 + |d|2
.

In particular, j is mapped to a point of Euclidean height 1/(|c|2 + |d|2), which we will use later.

2.2 The compact parameter space

Let Y be an oriented cusped hyperbolic 3-manifold. We identify Γ = π1(Y) with a discrete torsion-free
group of orientation-preserving Möbius transformations acting on H3 . Fix a maximal parabolic subgroup
Π ∼= Z2 < Γ and recall that the conjugacy class of Π corresponds to a cusp of Y . Fix a maximal horoball
H in H3 with the property that Π = {γ ∈ Γ : int(γ · H) ∩ int(H) 6= ∅}. We say κ = H/Π is the maximal
horocusp of the chosen cusp in Y . It follows that there is an element G ∈ Γ r Π such that G · H ∩ H = p
is a point. We call the subgroup B = 〈Π,G〉 a bicuspid subgroup of Γ.

Definition 2.1 A bicuspid marking is the tuple (Π,H,G), where Π is a rank-two parabolic subgroup
of PSL(2,C), H is a horoball preserved by Π, and G · H is a horoball tangent to H . The associated
bicuspid group is B = 〈Π,G〉. The area of a bicuspid marking is the area of the (Euclidean) torus ∂κ.
Two bicuspid markings (Π1,H1,G1) and (Π2,H2,G2) are isomorphic if there is a group isomorphism
ψ : B1 → B2 with ψ(Π1) = Π2 , ψ(G1) · H2 tangent to H2 , and ψ−1(G2) · H1 tangent to H1 .

A geometric bicuspid marking is one that arises from an oriented cusped hyperbolic 3-manifold. In
particular, B is discrete, torsion-free, and int(H/Π) embeds and is maximal in H3/B.

Remarks 2.2

(i) While Π is always discrete and isomorphic to Z ⊕ Z, we don’t assume that B is discrete in a
general bicuspid marking.

(ii) An isomorphism between geometric bicuspid markings gives rise to an isometry between H3/B1

and H3/B2 and vice versa.

Suppose we have a bicuspid marking (Π,H,G). For computational reasons, we use a slightly different
normalization than described in the introduction. Working in the upper-half-space model of H3 , there is
some isometry φ taking H to a horoball at infinity. Replacing (Π,H,G) with (φΠφ−1, φ ·H, φGφ−1), we
may assume that every element of Π is of the form z 7→ z + c for some c ∈ C, identifying Π as an additive
subgroup of C. We can thus assign the length |c| to elements z 7→ z + c of Π. Let M(z) = z + λ be a
shortest nontrivial element of Π. Conjugating by z 7→ λ−1z, we may assume the shortest-length nontrivial
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translation M in Π is z 7→ z + 1. We may choose N(z) = z + L to be a shortest element of Π linearly
independent of M (i.e. next-shortest). With g the inverse of G, we have that g · H is also a horoball
tangent to H , centered at some point c ∈ C. Conjugating by z 7→ z− c, we may assume g · H is centered
at 0. The horoball G · H , called the Adams horoball, has center P = G(∞) ∈ C. These normalizations
imply that G(z) = P + 1/(S2z) for some complex number S , which controls the height and rotation of the
Adams horoball.

Definition 2.3 A bicuspid triple is a triple p = (P, S,L) ∈ C3 with S 6= 0. It gives rise to Möbius
transformations Mp(z) = z + 1, Np(z) = z + L , and Gp(z) = P + 1/(S2z). We name these parameters: P
is the parabolic parameter; S is the (loxodromic) square-root parameter; and L is the lattice parameter.

We represent the associated transformations in PSL(2,C) by matrices up to sign as follows:

Gp = ±

(
PS i i/S
S i 0

)
gp = ±

(
0 −i/S
−S i PS i

)

Mp = ±

(
1 1
0 1

)
Np = ±

(
1 L
0 1

)
.

To associate a bicuspid marking to p, we need to choose a horoball Hp centered at ∞. Since we want
Gp · Hp to be tangent to Hp , by equation (2–1), we must have

Hp = {(z, t) ∈ H3 : t > 1/|S|}.

In our parametrization, we have area(∂κp) = 2 vol(κp) = |S2 im(L)|. To p, we associate the bicuspid
marking (Πp,Hp,Gp), where Πp = 〈Mp,Np〉. Note, we often drop the subscript when it is clear from
context.

Given a geometric bicuspid marking (Π,H,G) of area ≤ 5.24, we now show that there is a compact set
P ⊂ C3 such that (Π,H,G) is isometric to (Πp,Hp,Gp) for some p ∈ P.

Definition 2.4 Let P be the compact subset of C3 defined by the following conditions:

(0) |S| ≥ 1

(1) im(S) ≥ 0, im(L) ≥ 0, im(P) ≥ 0, re(P) ≥ 0

(2) −1/2 ≤ re(L) ≤ 1/2

(3) |L| ≥ 1

(4) im(P) ≤ im(L)/2

(5) re(P) ≤ 1/2

(6) |S2 im(L)| ≤ 5.24

Proposition 2.5 Suppose (Π,H,G) is a geometric bicuspid marking of area at most 5.24. Then, there is
p = (P, S,L) ∈ P such that (Π,H,G) is isometric to (Πp,Hp,Gp).
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Proof As above, we may assume H is centered at ∞ and Π = 〈M,N〉, where M(z) = z + 1 is a
shortest-length generator and N(z) = z + L is the next-shortest. Since N is next-shortest, we have |L| ≥ 1
and −1/2 ≤ re(L) ≤ 1/2. If im(L) < 0, then we replace N with z 7→ z− L , which is also next-shortest
and has im(−L) > 0.

Next, let P ∈ C be the center G(∞) of the Adams horoball G·H . By post-composing G with elements of Π,
we may choose G such that − im(L)/2 ≤ im(P) ≤ im(L)/2 and −1/2 ≤ re(P) ≤ 1/2. Reflecting across
the x-axis creates isomorphic groups with isometric quotients. Thus we may assume 0 ≤ im(P) ≤ im(L)/2.
Reflecting across the y-axis allows us to assume likewise that 0 ≤ re(P) ≤ 1/2. Finally, changing S
to −S leaves G invariant, so we may assume im(S) ≥ 0. This determines P, S , and L and a bicuspid
marking isomorphism. Properties (1), (2), (4), and (5) clearly hold and (3) holds since N is next-shortest.
Further, since κp is a maximal horocusp in H3/Bp , we know that Hp has Euclidean height ≤ 1. Thus,
1/|S| ≤ 1 and (0) holds.

Finally, the area of ∂κp is |S2 im(L)|, and this is at most 5.24, so (6) holds. Since all the inequalities are
satisfied, (P, S,L) ∈ P as desired.

Note that the positive lower bounds for |S| and | im(L)| impose upper bounds for |S| and | im(L)| by using
|S2 im(L)| ≤ 5.24. Thus P is compact.

2.3 Discrete points

Naturally, we are interested in points p ∈ C3 , where Bp is discrete, torsion-free, and geometric. To
investigate these points it is convenient to introduce the following notions:

Definition 2.6 The free bicuspid group is F = 〈M,N,G | [M,N]〉 ' (Z ⊕ Z) ∗ Z. For all p =

(P, S,L) ∈ C3 with S 6= 0, the associated bicuspid representation ρp : F → PSL(2,C) is given by
Definition 2.3 and has image Bp . Let

D = {p ∈ P : im(ρp) is discrete and torsion-free}.

Note that Bp is automatically nonelementary for p ∈ D. Let

D = {p ∈ D : p corresponds to a geometric bicuspid marking}

The delicate distinction between D and D is that, in general, even if Bp is discrete and torsion-free, there
could be an element h ∈ Bp such that h · Hp ∩ Hp has non-empty interior. Recall that Hp is explicitly
defined using the S parameter. This means that p does not arise in the image of the map in Proposition
2.5. We say that p ∈ D \D are incorrectly marked (i.e. non-geometric since Hp is larger than the true
maximal horoball of the group Bp ).

Definition 2.7 For a word w ∈ F and p ∈ P, let

w(p) = ρp(w) = ±

(
aw(p) bw(p)
cw(p) dw(p)

)
∈ PSL(2,C).
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Define
Uw = {p = (P, S,L) ∈ P : |cw(p)/S| < 1}

Lemma 2.8 (Large horoball) If p = (P, S, L) ∈ D ∩ Uw for some w ∈ F of nonzero g-length, then Bp

contains a relator of g-length at most the g-length of w.

Proof Let Hw(p) be the image of Hp under w(p). Recall that Hp has Euclidean height 1/|S|, so by 2–1
Hw(p) has Euclidean height |S|/|cw(p)|2 . Thus, Hp and Hw(p) intersect precisely when |S|/|cw(p)|2 >
1/|S|, or equivalently |cw(p)/S| < 1.

Assume p ∈ D ∩ Uw , then Bp is geometric and Hw(p) intersects Hp . But Hp is maximal in the geometric
Bp , so we must have Hp = Hw(p) and w(p) ∈ Πp . In particular, mp

pnq
pw(p) is the identity for some

p, q ∈ Z and has the same g-length as w.

Definition 2.9 Let

Kw = {p ∈ Uw : |c(p)| > 0 or a(p) 6= ±1 or d(p) 6= ±1} ⊂ Uw

Corollary 2.10 (Killer word) D ∩ Kw = ∅ for all w ∈ F.

Proof If p ∈ Kw ⊂ Uw , then w(p) is not a parabolic fixing ∞. In particular, w(p) /∈ Πp , so by the proof
of Lemma 2.8 we know that p /∈ D.

Remark 2.11 It is possible that Kw ∩D is non-empty. However, all such points would be incorrectly
marked and can be ignored because every geometric bicuspid group of interest will appear in D by
Proposition 2.5.

The task of proving Theorem 1.8 boils down to proving that there is a finite cover of D ⊂ ∪n
i=1Uwi , where

each wi is a word of g-length at most 7. We describe the computational proof of this in the next section.

Before we move on, we need to define a few more notions that will be necessary for the proof of Theorem
1.2. Since Theorem 1.2 uniquely identifies two manifolds, we need tools to find exact relators in bicuspid
groups.

Definition 2.12 Define the variety of w by Vw = {p ∈ P : w(p) = ±I} and consider the neighborhood
Nw of Vw by

Nw = {p ∈ P : |cw(p)| < 1 and |bw(p)| < 1}.

Lemma 2.13 (Variety neighborhood) For all nontrivial w ∈ F, if p ∈ D ∩ Nw then p ∈ Vw . In
particular, w is a relator in Bp .
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Proof The Shimizu-Leutbecher Theorem states that if(
1 1
0 1

)
and

(
a b
c d

)
generate a discrete subgroup of PSL(2,C) and |c| < 1, then we must have c = 0. For p ∈ D, Bp is
discrete and torsion-free, in particular, Mp and w(p) generate a discrete subgroup of PSL(2,C). Suppose
p ∈ D ∩Nw . Dy definition |cw(p)| < 1, but discreteness implies cw(p) = 0, so w(p) ∈ Πp . Further, since
|bw(p)| < 1 and Mp is a shortest-length generator of Πp , we must have bw(p) = 0. Thus, p ∈ Vw .

Lastly, we remark that nontrivial w ∈ F of g-length ≤ 3 are never the identity in geometric bicuspid
groups.

Lemma 2.14 (g-length 3) If w ∈ F has nonzero g-length ≤ 3 then D ∩ Uw = ∅.

Proof It is clear that any word of g-length 1 must move Hp off of itself, so Uw = ∅. For w of g-length
2, it is easy to see that D ∩ Uw = ∅ since Bp is torsion-free for all p ∈ D. Finally, if w has g-length 3,
then for any p ∈ D ∩ Uw we get a 3-necklace where each tangency is in the same orthoclass. This was
shown to be impossible in [GMM09].

2.4 Computational setup

To prove Theorem 1.8, we take the same approach as [GMT03]. In fact, all of our arithmetic code, as
described in Appendix D, is the exact same code used in [GMT03]. This arithmetic relies on using
1-jets approximations with error and round-off error for computations, which often outperforms interval
arithmetic. We briefly describe this arithmetic in Appendix D.1.

To start, we place the compact parameters space P into a large box

B = {(x0, x1, x2, x3, x4, x5) ∈ R6 : |xi| ≤ 2(19−i)/6},

where each subsequent side of the box is 1/ 6
√

2 times the size of the previous. The embedding is given by
L = x3 + ix0 , S = x4 + ix1 , and P = x5 + ix2 . Since |x1| ≤ 8 and |x6| ≤ 213/6 ≈ 4.49, we see that B is
large enough to contain all of P.

The constant side ratio of 1/ 6
√

2 for B is chosen specifically such that if we cut along the 1st dimension,
then the two resulting boxes have the same constant side ratio as B. Cutting those along the 2nd dimension
yields 4 boxes that still have the same constant side ratio. This is reminiscent of the 1/

√
2 side ratio of

A-series printer paper, except for 6-dimensional boxes instead of rectangles in the plane.

This behavior yields two advantages. First, the (sub-)boxes of B obtained by cutting in this manner
stay relatively “round,” making computational corrections for rounding error less dramatic. Second, this
subdivision allows us to encode these special (sub-)boxes in binary as boxcodes. For example, a boxcode
0 corresponds to the box B0 obtained by cutting B in half along the 1st dimension and taking the resulting
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box on the “left.” We fix some preferred orientation on R6 to define “right” and “left.” The box B01

corresponds to cutting B0 in half along the 2nd dimension and taking the piece on the “right.” For deeper
boxes, we keep cutting along the next dimension and after cutting along the 6th dimension, we start again
with the 1st . For a boxcode b, we let Bb denote the corresponding box.

To analyze all of B, we build a binary tree T corresponding to the boxcodes. Each terminal node b of this
tree will correspond to a box with an associated killer word or a necklace word (see the next paragraph).
The terminal nodes of the tree give a subdivision of B into boxes of different sizes. The reason for this
approach is that the number of boxes needed is quite large3, if we were to divide B into boxes all of the
same size, our computation and verification time would exponentially increase.

A killer or necklace word at a terminal node b defines a collection of inequalities that must be checked to
hold at every point of Bb . These inequalities are only composed of basic algebraic operations ±,×, /,√ ,
and absolute values. They could in theory be checked by hand given an unreasonably large amount of
time. A word w is called a killer word for a box Bb if the encoded inequalities prove that Bb ⊂ Kw . By
Corollary 2.10, this condition corresponds either to indiscreetness or an incorrect marking of the bicuspid
subgroup.

A necklace word w at a terminal box Bb , corresponds to a word of g-length ≤ 7 and inequalities proving
that Bb ⊂ Uw . In particular, if Bb ⊂ Uw , then any geometric bicuspid triples in Bb must have a relator of
the same g-length by Lemma 2.8. In summary,

Proposition 2.15 An evaluation of the inequalities encoded in the binary tree T proves that there is a
finite collection of terminal boxes Bbi with associated necklace words wi , such that D ⊂

⋃
i Bbi ⊂

⋃
i Uwi .

Further, each wi has g-length at most 7.

Proof The proof is contained in the data and code available at [Gitb] and can be checked using the verify
program. The tree encodes a cover B =

⋃
i Bbi ∪

⋃
j Baj ∪

⋃
k Bck , where to each boxcode bi , we associate

a necklace word wi , to each boxcode aj a killer word w′j , and to each boxcode ck a failed boundary
condition. A failed boundary condition verification shows that one of the inequalities of Proposition 2.5
fails over the entire box Bck , showing that Bck ∩ P = ∅ for each k . The program also verifies killer word
inequalities for w′j over Baj for each j, which proves that D ⊂

⋃
i Bbi . Finally, we also check necklace

word inequalities for wi over Bbi and the g-length of wi for each i, which shows that Bbi ⊂
⋃

i Uwi where
g-length of wi ≤ 7 (and is nonzero) for all i.

The conditions are checked at all terminal nodes by traversing the binary tree from the root node (in
depth-first order). A successful traversal of the tree guarantees that we have obtained a cover of B, which
corresponds to the root node. See the README of [Gitb] on how to use verify.

The results in this section can be restated as

Theorem 1.8 If B is a geometric bicuspid group whose preferred maximal horocusp κ has volume
≤ 2.62, then B has a relation w(m, n, g) with g-length at most 7 and at least 4.

31,394,524,064 terminal boxes to be precise.
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3 Parameter space applications

In this section, we prove and discuss the results

Theorem 1.3 Depending on the filling, cusp volume can increase or decrease when filling one cusp of
m295 (aka L9n14 or 92

50 ). However, the cusp volume always decreases after filling one cusp of m129, the
Whitehead link complement. Further, the cusp shapes for fillings of m129 are never rectangular.

Theorem 1.2 The figure-8 knot complement and its sister are the complete hyperbolic 3-manifolds with
a maximal horocusp of minimal volume. This volume is

√
3.

The first result only relies on the structure of the parameter space itself, while the second result relies
on the ability of the parameter space decomposition to rigorously find relators in Kleinian groups and
being able to use those relators to identify specific hyperbolic 3-manifolds. The latter is done by building
an isomorphism to the canonical SnapPy group presentation of the manifold in question via a character
variety argument.

3.1 Cusp volume change under filling

By studying specific examples of g-length ≤ 7 relators, we can find some interesting patterns. In particular,
if a cusped manifold has a relator w in its fundamental group then so do all of its Dehn filings. In the case
of m129, the Whitehead link complement, such a relator defines a variety where the cusp volume is forced
to be maximized at the discrete point corresponding to m129 and is strictly smaller for all discrete points
on that variety.

First, we look at a special variety in our parameter space, which we will then show contains a geometric
bicuspid group corresponding to a cusp of m129.

Proposition 3.1 If gMGGMgN is a relator in a bicuspid group Bp where p = (P, S, L) ∈ C3 with S 6= 0,
then P = L/2, S2 = −4/L and, if Bp is geometric, the maximal cusp area of Bp is 4| im(L)/L|.

Proof Using the parametrization

G = ±

(
PS i i/S
S i 0

)
g = ±

(
0 −i/S
−S i PS i

)

M = ±

(
1 1
0 1

)
N = ±

(
1 L
0 1

)
.

We get that

gMGGMgN = ±

(
PS2 + 1 PS2(L− P) + L

S2
(
PS2 + 2

)
PS4(L− P) + S2(2L− P) + 1

)
=

(
1 0
0 1

)
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Recall that the cusp area is given by |S2 im(L)| if Bp is geometric. Since S 6= 0, the lower left entry tells
us that PS2 + 2 = 0. The top right entry then gives P = L/2. Since the top left entry is now −1, we must
have

−1 = PS4(L− P) + S2(2L− P) + 1 = 1 + (LS2)/2.

So S2 = −4/L and the area is |S2 im(L)| = 4| im(L)/L| ≤ 4 when Bp is geometric.

Turning to m129, we prove the following:

Lemma 3.2 The triple w = (P, S, L) = (i, 1 + i, 2i) ∈ P corresponds to a geometric bicuspid marking of
m129. Further, gMGGMgN = ±I at w and H3/Bw is isometric to m129. Lastly, the other cusp of m129
corresponds to the conjugacy class of 〈gm, ggmGmg〉.

Proof In [GW19] and [Wie78], the authors describe how the gluing of the regular ideal octahedron with
vertices 0,−1, i,−1 + i, (−1 + i)/2, and ∞ gives m129. The face pairings generate the fundamental
group

Γ = 〈u, t2,w1〉 where u = ±

(
1 i

0 1

)
, t2 = ±

(
1 2
0 1

)
,w1 = ±

(
1 0

−1− i 1

)
.

From the gluing of the regular ideal octahedron, as shown in [GW19], it is easy to see that the maximal
cusp has a self-tangency corresponding w1u−1 or, equivalently, the conjugate u−1w1 . In particular, under
conjugation by ψ(z) = iz + (1− i)/2, we get M ↔ u, n↔ t2 and G↔ u−1w1 :

Mw = ±

(
1 1
0 1

)
= ψ−1uψ Nw = ±

(
1 2i
0 1

)
= ψ−1t−1

2 ψ,

Gw = ±

(
−1− i (1 + i)/2
−1 + i 0

)
= ψ−1u−1w1ψ.

This shows that Bw is a geometric bicuspid marking for m129 and H3/Bw is isometric to m129. It is
easy to check that gMGGMgN becomes the identity at w.

Lastly, we need the peripheral elements of the other cusp of m129. In [GW19], they give the isomorphism
between Γ and the SnapPy presentation π1 = 〈a, b | aaaBBabAAAbbAB〉 where a↔ u−1w1 ↔ G and
b↔ u−2w1 ↔ mG. SnapPy reports the peripheral curves of the other cusp as AAb and AAAbbA. Under
our identifications, these become ggmG and gggmGm. Conjugating by g gives the peripheral subgroup
〈gm, ggmGmg〉.

Combining Proposition 3.1 and Lemma 3.2, we see that every Dehn filling of m129 appears on the variety
of gMGGMgN . We can now exploit the fact that the peripheral subgroup of the other cusp becomes
loxodromic under filling to prove:

Proposition 3.3 Any hyperbolic Dehn filling of one cusp of m129 has cusp area < 4 and the cusp shape
is never rectangular.
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Proof Since m129 has a symmetry interchanging the cusps, we can work with one of the cusps. By
Proposition 3.1, the variety V = VgMGGMgN forces P = L/2, S2 = −4/L and, at a geometric marking,
maximal cusp area 4| im(L)/L|. By Lemma 3.2, any Dehn filling of the other cusp of m129 appears as
Bp for some p ∈ V . Note, even though near the triple w from Lemma 3.2 one can guarantee that Bp is
geometric, it might not be true for arbitrary fillings. However, since Gp ∈ Bp , we always have that Hp

contains the true maximal cusp. Thus, the maximal cusp area for H3/Bp is at most 4| im(L)/L| ≤ 4 for
any discrete p ∈ V .

Since 4| im(L)/L| = 4 if and only if the cusp is rectangular, it remains to show that if 〈gm, ggmGmg〉 is
loxodromic at p ∈ V corresponding to a Dehn filling then we cannot have a cusp where L = it for some
t ∈ R>0 . Assume otherwise and let L = ti. If Bp is a (p, q)-Dehn filling, then xpyq = ±I where x = gm
and y = ggmGmg. One checks that

±tr(y) = tr(x2)− 4 and tr(x) = (
√

t/2 +
√

2/t) + i(
√

t/2−
√

2/t)

for all t ∈ R>0 . As x and y are commuting loxodromics, they are simultaneously diagonalizable with
eigenvalues λ±1

x and λ±1
y . Computing the eigenvalues from the traces one sees that log |λy| = ±2 log |λx|.

It follows that if xpyq = ±I for relatively prime (p, q), then (p, q) = (±2, 1), which are non-hyperbolic
fillings. Thus, for any hyperbolic Dehn filling, we have L 6= it for any t ∈ R>0 and the maximal cusp area
is less than 4.

Using SnapPy, we can now find an example where this behavior does not occur.

Proof of Theorem 1.3. SnapPy is able to rigorously estimate cusp shapes and volumes. The maximal
cusp volume of m295 is around 2.516534, the maximal cusp volume of m295(1,9) is around 2.54523, and
that of m295(2,1) (aka m004) is

√
3 ≈ 1.7321. Along with Proposition 3.3, the proof is complete.

Remark 3.4 Experimentally, it appears that m125, m202, m203 behave similarly to m129 with maximal
cusp volume always decreasing. The behavior of m295 appears to be more common, with m292 (a volume
sibling of m295) and many others having fillings where maximal cusp volume increases for many of the
fillings.

3.2 Smallest cusp volume manifolds

From the parameter space perspective, the key ingredient in the proof of Theorem 1.2 is the variety
neighborhood lemma. Recall that Lemma 2.13 allows one to rigorously prove that if Bb ⊂ Nw and
p ∈ Bb ∩ D, then w is the identity in Bp . In what follows, we will show that the parameter space of
marked bicuspid groups with cusp area ≤ 3.65 decomposes into boxes that are killed and boxes that lie
in two variety neighborhoods simultaneously. In particular, this will give us two relators at each discrete
point, which will allow us to determine the presentation of these manifolds on the nose.
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GNgMgNG and mGnGmGmnGmnG
MnGmGMngg and MgggMgNg
mGGmgMNg and mmnGGmGmGG
mgNgmGG and mGmGGmnGG
mnGGmngMg and NGmGGGmG
mnGNggNG and GGmnGmGmnG
nGNmggNmG and NgMgNggg
ngMgnGG and mNGmGGGmG

Table 4: Possible relator pairs that correspond to m003.

MNgmGMGmg and MgMGmgNgmG
MnGmgMgmG and gmGMgMGmg
MnGmgMgmG and mgmGMgNgMG
mGMnGmgMg and MGMgmGnGmg
mnGMgmgMG and MgmGGmgMG

Table 5: Possible relator pairs that correspond to m004.

Proposition 3.5 Let

D3.65 = {p ∈ D | Bp is a geometric bicuspid group of cusp area ≤ 3.65}

then for every p ∈ D3.65 , the group Bp admits at least one of the pairs of the relators in Tables 4, 5, or 6.

Proof The proof is contained in the data and code available at [Gitb] and can be checked using the
identify program. See the README of [Gitb] on how to use identify. The terminal box of this smaller
tree falls into four categories: killer word boxes, g-length ≤ 3 boxes, out-of-bounds boxes, and variety
intersection boxes. A box Bb falls into one of first two categories if Bb ⊂ Kw or Bb ⊂ Uw and g-length
of w ≤ 3. By Corollary 2.10 and Lemma 2.14 such boxes do not intersect D3.65 . The last category verifies
that Bb ⊂ Nr1 ∩Nr2 for words r1 and r2 , which by Lemma 2.13 proves that they are relators at discrete
points.

Our next goal is to analyze each pair of relators. The idea will be to look at the presentations Γr1,r2 =

〈m, n, g | mnMN, r1, r2〉. We will either prove that the presentation (or any quotient of it) cannot correspond
to a hyperbolic 3-manifold group or give an isomorphism between Γr1,r2 or π1(m003) or π1(m004). For
p ∈ D3.65 , the bicuspid representation with image Bp will have to factor through Γr1,r2 for the associated
r1, r2 . Thus, the isomorphisms will give epimorphisms from π1(m003) or π1(m004) onto Bp . The last
step will be to promote these epimorphisms to isomorphisms using the following Lemma.

Lemma 3.6 Let Γ ≤ PSL(2,C) be such that H3/Γ is a cusped finite-volume hyperbolic 3-manifold.
Let π1 be the fundamental group of m003 or m004. If φ : π1 → Γ is an epimorphism, then it is an
isomorphism.



Hyperbolic 3-manifolds of low cusp volume 21

GmGGmG and nGmnGnGmnG
gMGmnGMg and mGmGmGmG
mGGmGG and mgMGmgMG
mggmGmnG and nGmGnGmG
MgMgMgMg and GmgMNgmG
MGMgMGMg and GnGGnG
mgMGmgMG and mGGmGG
MGnGMgMg and mnGGmnGG
MgNgMGmG and MNgMNgMNgMNg
MGnGMGnG and mnGGmnGG
mnGGmnGG and mGmgNgmG
MnGGMnGG and nGmGnGmG
nGmgMgmG and GGGG

Table 6: Relator pairs that cannot arise in a manifold.

Proof We adapt and closely follow an argument of [Som02]. Since H3/Γ is a cusped finite-volume
hyperbolic 3-manifold, we can lift Γ to SL(2,C) as Γ̃. Let U be the SL(2,C)-character variety of Γ̃.
Note that φ induces an algebraic map φ∗ : U → X, where X = Xm003 or Xm004 is the corresponding
SL(2,C)-character variety for π1 . Since φ is an epimorphism, this map is an injective regular map. It
is known that both Xm003 and Xm004 only have one component that contains irreducible representations,
which must therefore be the canonical (or Dehn surgery) component, see for example [Til04]. Thus, φ∗

must map the canonical component U0 of U to the canonical component X0 of X. Since Γ is cusped, U0

has dimension at least 1. Further, since φ∗ is injective and regular, it follows that the φ∗ is onto X0 . Let
χη ∈ X0 be a character corresponding a lift η of a faithful discrete representation of π1 and let χρ ∈ U0

be such that φ∗(χρ) = χη . Let ρ be a representation realizing χρ . Then, we have η = ρ ◦ φ is a faithful
representation of π1 , which implies that φ is monic and therefore an isomorphism.

Proof of Theorem 1.2. For each pair of relators in Table 6, it is clear that they (or their quotients) cannot
correspond to a hyperbolic 3-manifolds group because at least one of the relators is a power of a word of
g-length at most 3. Since a word of g-length ≤ 3 cannot be the identity by Lemma 2.14, it follows that
these relators must give rise to elliptics, which is impossible.

Notice that any discrete geometric bicuspid group Bp in our parameter space automatically satisfies the
conditions of Lemma 3.6 by either Theorem 1.4 or . Thus, it remains to list isomorphisms from π1(m003)
and π1(m004) onto the corresponding presentations. These are found in Lemma A.1.
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4 Necklaces

Motivated by Theorem 1.8, we now demonstrate that the existence of a necklace with at most 7 beads
in the universal cover of a complete hyperbolic 3-manifold Y implies that Y admits a non-elementary
embedding of a full k-necklace-manifold with k ≤ 7. In particular, we prove

Theorem 1.9 If κ is a maximal horocusp for a complete hyperbolic 3-manifold Y and B is an associated
bicuspid group a with a relation of g-length k ≤ 7, then there is an embedded full necklace-k′ manifold
W ⊂ Y with k′ ≤ k and the preferred cusp of W is the boundary torus corresponding to κ. Furthermore,
each other component of ∂W either cuts off a solid torus or a cusp end in Y .

This section is quite long and deals with a careful analysis of possible topological and geometric aspects
on horoball necklaces. In the next subsection, we try to motivate the relevant terminology and difficulties.

4.1 Introduction to necklaces and horoball systems

Theorem 1.8 gives a nontrivial word that is the identity in the fundamental group of a complete hyperbolic
3-manifold with a cusp of low volume. The next lemma shows that this algebraic condition corresponds
geometrically to the existence of a necklace.

Definition 4.1 A (k-)necklace η = (N1, . . . ,Nk) is a cyclically ordered set of horoballs such that Ni is
has disjoint interior from and is tangent to Ni+1 for 1 ≤ i ≤ k . Further, any two horoballs have disjoint
interiors or coincide. We also require that there are at least 3 distinct horoballs in η . In what follows, the
indices for a k-necklace are always taken cyclically with Nk+1 = N1. The Ni ’s are called the beads, and
k is called the necklace or bead number of η. We often abuse notation by denoting

⋃
Ni by η.

Lemma 4.2 Suppose Y is a complete hyperbolic 3-manifold H3/Γ with a maximal cusp κ. Fix a bicuspid
subgroup 〈m, n, g〉 ≤ Γ corresponding to κ. Suppose w is a word in m, n, and g that is the identity in Γ

and has g-length k. Then there is a k-necklace in H3 consisting only of lifts of κ.

Proof See the proof of [Ago10, Lemma 5.3]. Writing w =
∏degg(w)

i=1 λig± where λi ∈ 〈m, n〉 and letting
wk =

∏k
i=1 λig±, the desired necklace is {wi(H) : 1 ≤ i ≤ k}. Note that in such a necklace a horoball

could be visited multiple times, i.e. we could have Ni = Ni+j for some j with |j| > 1.

Definition 4.3 A horoball system (H, T ) is a collection of horoballs {Ci} ⊂ H3 with pairwise disjoint
interiors and T is a subset of the tangency points between these horoballs. We require that no triple
(Ci,Cj,Ck) of horoballs is pairwise tangent via tangencies in T . We call T the (true) tangency set. We
often abuse notation by denoting

⋃
Ci by H and refer to a horoball system as H when T is clear from

context. A tangency s between horoballs Ci,Cj in H is called false if s /∈ T . Let F denote the set of
false tangencies.
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We say that η is a necklace in (H, T ) if each Ni ∈ H and Ni ∩ Ni+1 lies in T . A necklace η is minimal
if Ni∩Nj ∈ T implies |i− j| = 1. It is globally minimal if it minimizes bead number among all necklaces
in (H, T ).

Since H is locally finite, removing balls of radius ε > 0 from H around all false tangencies produces
isotopic sets for all ε small enough. We call any set so obtained shaved(H), since the removal of the balls

“shaves” the false tangencies away from H.

For necklaces in (H, T ), shaved is inherited from the system. For a necklace η = (N1, . . . ,Nk) not in an
ambient horoball system, shaved(η) or shaved(Ni) denotes a shaving-back non-sequential tangencies.

Lemma 4.4 If (H, T ) is a horoball system and η = (N1, . . . ,Nk) is a non-minimal necklace in (H, T ),
then a globally minimal necklace has length at most (k + 2)/2.

Proof If η is non-minimal, then Ni ∩ Nj ∈ T for some i < j with |i− j| > 1. Then (Ni,Ni+1, . . . ,Nj)
and (Nj, . . . ,Nk,N1, . . . ,Ni) are necklaces, and one of them has bead number at most (k + 2)/2.

Figure 2: A local picture of a horoball system

Remark 4.5 A horoball system can arise naturally as the preimage in H3 of a maximal horocusp κ in a
cusped hyperbolic 3-manifold Y. We will refer to geometric objects, constructions, and operations in H3

as being upstairs, thinking of H3 as the universal cover sitting “above” some hyperbolic 3-manifold. Here
T is naturally in bijection with elements of O(1), the first orthoclass of κ, which is the Γ-orbit of a fixed
pair of tangent horoballs. Elements of O(1) are in 1-1 correspondence with elements of T by passing to
the point of tangency. See [GMM09] for more details. False tangencies arise when multiple orthoclasses
have 0 orthodistance. As shown in [CM01] or [GMM09], there are never three distinct pairwise tangent
horoballs with all pairs in O(1). That is, there are no (1, 1, 1) triples in the language of [GMM09]. For
this reason we disallow triples of pairwise tangent horoballs with all tangencies in T in general horoball
systems.
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As in [GMM09], we will be constructing handle structures on submanifolds of a cusped hyperbolic
3-manifold Y. Here, our handle structure W1 will have base T2 × I and have a single 1-handle σ attached.
The T2 × I will be a shaved maximal horocusp (to avoid creating extra topology) and the 1-handle will
be a neighborhood of the preferred tangency. We will then prove that we can attach a single 2-handle
embedded in Yr int(W1) to obtain an embedded manifold W . Upstairs, the shaving away of horoballs
at false tangencies is done because the 2-handle may need to pass through them. Going downstairs, W1

is understood to be appropriately shaved back. We further prove that we can choose this 2-handle to be
“good,” meaning W is a full necklace manifold.

W1

Figure 3: A picture showing W1 and a curve on ∂W1 along which we hope to attach an embedded 2-handle in
Y r int(W1) to obtain the necklace manifold W .

Notice that the subgroup of Γ generated by π1(X) is our bicuspid group B. Replacing the tangency set T
with a Γ orbit of a false tangency gives rise to a different bicuspid group. A k-necklace corresponds to an
element in the bicuspid group that is trivial in Γ and represented by a word with g-length equal to k.

Definition 4.6 If the horoball system (H, T ) arises from a bicuspid group of a cusped hyperbolic
3-manifold, then we say that H arises geometrically.

Notation 4.7 If S ⊂ H3 , then ∂∞S denotes its limit points in ∂∞H3 . We let Ŝ = S ∪ ∂∞S. Conversely,
given a set Ŝ ⊂ H3 ∪ ∂∞H3, S will denote Ŝ ∩H3.

Definition 4.8 Let η = (N1, . . . ,Nk) be a necklace is a horoball system (H, T ). For horoballs Ci and Cj ,
let γ(Ci,Cj) denote the geodesic from ∂∞Ci to ∂∞Cj . If t ∈ T , then γt = γ(Ci,Cj) where Ci ∩ Cj = t .
For necklaces, we use the convention that γi denotes the geodesic γ(Ni,Ni+1). Each γ̂t is called a tie.
Notice that distinct ties can only intersect at endpoints. We call

⋃k
i=1 γ̂i the frame of η and denoted by

frame(η). Define the open frame of η to be frame(η)∩H3. When η is minimal, we build a simple closed
curve C(η) ⊂ H3, unique up to isotopy, called the core of η obtained by taking a union of arcs δi, where
δi is an unknotted arc in Ni connecting Ni−1 ∩ Ni to Ni ∩ Ni+1.



Hyperbolic 3-manifolds of low cusp volume 25

Figure 4: A picture showing a compressing disc for an unknotted necklace.

Definition 4.9 Let Kη = H3r int(shaved(η)). The necklace η is unknotted if there exists a properly
embedded 2-disc (D, ∂D)→ (Kη, ∂Kη) whose boundary meets each Ni ∩ Ni+1 exactly once. D is called
a spanning, unknotting or compressing disc. We say that an unknotted η is blocked in a horoball
system H if there exists t ∈ T such that γt transversely intersects int(D) for some spanning disc D for η
exactly once up to proper isotopy in (Kη, ∂Kη). Otherwise, we say η is unblocked in H. We say that η
is unlinked in H if there exists a spanning disc D for η with int(D) inside H3r shaved(H). If (H, T )
arises from a maximal cusp of the hyperbolic 3-manifold Y, then an unlinked necklace η is simple if it
has a compressing disc D such that φ(D) ∩ D = ∅ for all nontrivial φ ∈ Γ.

Remark 4.10 For a geometric horoball system (H, T ) as in Remark 4.5, there exists a simple unlinked
necklace in (H, T ) if and only if ∂W is compressible in Yr int(W). This follows by applying the loop
theorem to any compressing disk.

Lemma 4.11 Let (H, T ) be a geometric horoball system and let η be an unlinked k-necklace in (H, T ).
Then either η is simple or there exists a simple k′ -necklace η′ with k′ ≤ k. Further, if k is odd, one can
take k′ < k.

Proof Let D be a spanning disk for η and assume η is not simple. Since the action of Γ is properly
discontinuous and D is compact, D meets only finitely many Γ-translates of itself. By a standard cut-
and-paste argument, we can assume no intersections are entirely in int(D), so every intersection with a
translate arises from shared horoballs. Cutting and pasting this finite collection of discs gives spanning
discs of simple necklaces. Since all of these necklaces are made from pieces of Γ-translates of η, one of
these is a k′ -necklace with k′ ≤ k . Further, if k is odd we can choose k′ < k .

Remarks 4.12 We now record some basic facts and examples.

(1) The core of a minimal necklace is unique up to isotopy in H3.

(2) If η is minimal and unknotted, then core(η) is the unknot in R3 .
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(3) Every link in R3 is realized as the core of a disjoint union of minimal necklaces. Figure 5 shows an
18-bead trefoil.

(4) There exist knotted necklaces with unknotted cores. Figure 6 gives a 14-bead example and Figure 7
shows a 2-component link with 3 and 8 beads with unlinked cores.

(5) There exist unknotted and unblocked necklaces in horoball systems that are linked. Figure 8 shows
a Borromean necklace.

(6) There exist horoball systems (H, T1) and (H, T2) with T2 ⊂ T1 such that η is a necklace in both
system but is unlinked in T2 and linked in T1.On Configurations of Solid Balls in 3-Space 319

Fig. 11. 18 balls sitting on T

under the balls 6 and 7. By an inversion (of power 1) with center at a point on
T , the top plane numbered 1 goes to a sphere sitting on the table. The numbering
1, 2, . . . , 18 shows the cyclic order of the balls to make a cycle that forms a trefoil.
(Numbers of the six small balls are omitted in Fig. 11.)

To show the lower bound, let bT (TF) = n, and let (B1, B2, . . . , Bn) be an n-cycle
consisting of n balls sitting on a table T with forming a trefoil.

A size-adjusting-move on the table implies to move a ball with adjusting its size
so that the ball keeps tangent to its neighbors and the table. By size-adjusting-moves
on the table, we can make some ball Bi touches a ball other than Bi−1, Bi+1. To
see this, suppose this is impossible. Then we can make Bi , by size-adjusting-moves
on the table, arbitrary big, and similarly, we can make Bi+2 arbitrary big. However,
since Bi and Bi+2 have a common neighbor Bi+1, they will become tangent before
they overlap.

Now, by applying size-adjusting-moves on the table, we assume that B1 touches
some Bj , 2 < j < n. We may suppose that j ≤ #n+2

2 $. Let ! be the closed polygonal
curve obtained by connecting the centers of B1, B2, . . . , Bj in this cyclic order. If
! is a knot, then since a trefoil is a prime knot, ! itself is a trefoil, and the balls
Bj+1, Bj+2, . . . , Bn would not be necessary. So, we suppose that ! is unknot. If we
can contract ! to a line segment connecting the centers of B1, Bj , with avoiding
other part of the string of the cycle, then the balls B2, B3, . . . , Bj−1 would not be
necessary. Hence, ! cannot be contracted to a line segment, and hence there are two
consecutive balls B", B"+1 (j < " < n) such that the line segment connecting their
centers over-crosses an edge of !. In this case, the three balls B", B"+1, T and the
cycle (B1, B2, . . . , Bj ) form a (3, j)-link. Hence, j ≥ 6 by Theorem 3.1. If j = 6,
then both B", B"+1 touch all B1, B2, . . . , B6. Then by the same reason, both cycle
(B"+1, . . . , Bn, B1, B2) and (B5, B6, . . . , B") have length at least 6. Hence n ≥ 14. If
j ≥ 7, then since j ≤ #n+2

2 $, we have n ≥ 12. !
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Figure 5: A necklace whose core is a trefoil. Picture from [Mae07].
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Figure 6: A knotted necklace with unknotted core.
The 14th horoball is at infinity.

Figure 7: A knotted link with unknotted core. The
third blue horoball is at infinity.

Outline of the proof of Theorem 1.9. The proof breaks down into two main steps. First, using the
terminology of this section, we prove that every geometric horoball system that contains some ≤ 7-
necklace must contain a (possibly different) globally minimal simple ≤ 7-necklace η . Then, we show



Hyperbolic 3-manifolds of low cusp volume 27

Figure 8: A Borromean necklace. It is unknotted and unblocked, but is linked. The arcs are ties in a horoball system.

that the handle structure W obtained by attaching the 2-handle corresponding to a compressing disc for η
downstairs can be replaced by some (possibly different) full necklace-≤ 7 structure.

To attack step one, it is enough to find an unlinked ≤ 7-necklace by Lemma 4.11. In the following
subsections, we first show that minimal ≤ 8-necklaces are unknotted, then demonstrate that minimal
unblocked ≤ 7-necklaces are unlinked, and finally prove that globally minimal ≤ 7-necklaces in geometric
systems must be unblocked. We remark that this is a rather technical task as unblocked-ness is false
when working with non-orientable manifolds. There are non-orientable examples that contain blocked 6-
necklaces as observed in [AK13]. Lastly, to get a full structure, we use tools similar to those in [GMM11]
which involve some controlled topological surgery arguments.

4.2 Unknotting criteria

Definition 4.13 A spanning disc for a geodesic γ ∈ H3 is an embedded smooth closed disc D̂ ⊂
H3 ∪ ∂∞H3 with ∂D = γ. A spanning or unknotting disc for frame(η) is an embedded smooth closed
disc D̂ in H3 ∪ ∂∞H3 with ∂D̂ = frame(η). If such a D̂ exists then we say that frame(η) is unknotted.

Lemma 4.14 If η is a necklace, then shaved(η̂) deformation retracts to frame(η).

Proof In a shaved necklace, each shaved horoball is only tangent to two others. It therefore defamation
retracts to the piece of the frame it contains.

Theorem 4.15 (Unknotting Criterion) A minimal necklace η = (N1, · · · ,Nk) is unknotted if and only
if frame(η) is unknotted if and only if each tie γ̂i has a spanning disc D̂i with D̂i ∩ frame(η) = γ̂i.

Proof The first “if and only if” follows from Lemma 4.14. The backward direction of the second
implication follows from the fact that if each γ̂ has a spanning disc with interior disjoint from frame(η),
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then, since ties can only meet at endpoints, the usual cut and paste argument produces a collection of such
discs D̂i that intersect only along ∂∞ frame(η). Since ∪k

i=1∂∞Di is a simple closed curve in ∂∞H3 it
follows that frame(η) is unknotted. The forward direction follows from the next topological lemma.

Lemma 4.16 Let U1, . . . ,Uk denote smooth properly embedded arcs in the closed upper half-space of
R3 each with a single local maximum and otherwise transverse to the planes z = constant. Let u′i and u′′i
denote the endpoints of Ui and assume that u′′i = u′i+1 and that there are no other points of intersection
among the Ui ’s. Let F =

⋃
Ui. Then F bounds a disc D if and only if each Ui bounds a spanning disc Di

with Di ∩ F = Ui.

Proof By a standard cut and paste argument we can assume that the Di ’s are pairwise disjoint, so
∪iDi ∩ {z = 0} is a simple curve and the backward direction is immediate.

Now let D be a spanning disc for F. We can assume that D is smooth and standard near {z = 0}. The
forward direction entails properly isotoping both D and F, until F becomes a union of closed geodesics in
a closed hyperbolic plane and D is the region bounded by them. This isotopy follows standard geometric
arguments as in [Rol90]. Here is a brief outline. First isotope D to eliminate all local minima. Then by
isotoping both F and D eliminates all local maxima disjoint from F. At this point D has only saddle
tangencies so D and F can be properly isotoped to the standard pair.

Theorem 4.17 Minimal ≤ 8-necklaces are unknotted.

Proof We will consider the case of length 8, as the other cases are simpler. We show that frame(η)
satisfies the unknotting criterion, where η = (N1, · · · ,N8). It suffices to show that the tie γ̂8 has a spanning
disc. Conjugate H3 so that N8 = {(x, y, z)|z ≥ 1} and N1 is full-sized and centered at (0, 0). The total
visual angle of N2, · · · ,N7 from γ8 is ≤ 2π with equality if and only if each is full-sized and tangent to
N1. In that case, the N7,N2 tangency t is false and can let ` denote the ray from (0, 0) in {z = 0} through
π(t), where π is the projection map to {z = 0}. In the other case, let ` be the ray from (0, 0) disjoint from
π(N2) ∪ · · · ∪ π(N7). Then, `× [0,∞) ∪∞ is a spanning disc for γ8.

We expect that 8 is far from optimal. However, Remark 4.12 (iv) shows that 13 is an upper bound.

Conjecture 4.18 Minimal necklaces of length ≤ 13 are unknotted.

A related result of Maehara states that necklaces of length ≤ 11 have unknotted cores [Mae07, Theorem
10]. Given Maehara’s example of an 18-necklace trefoil in Figure 5, it is natural to ask if this is optimal.

Conjecture 4.19 Minimal necklaces of length < 18 have unknotted cores.



Hyperbolic 3-manifolds of low cusp volume 29

4.3 Minimal unblocked ≤ 7-necklaces are unlinked

Following Definition 4.9, we want to find short simple unlinked necklaces in geometric horoball system.
By Lemma 4.10, we know that is it enough to find an unlinked necklace. This section is devoted to proving
the following proposition.

Proposition 4.20 If η is minimal, unblocked, and k ≤ 7, then η is unlinked.

To motivate what follows, we preview the structure of the proof of Proposition 4.20. To show η is unlinked,
we must find an unknotting disc inside H3r int(shaved(H)). We already know by Theorem 4.17 that η
admits an unknotting disc D in H3 . Our goal will be to surger this disc so that its interior if disjoint from
shaved(H). This ultimately comes down to accounting for tangencies involving non-necklace horoballs.

Definition 4.21 Let η = (N1, · · · ,Nk) be a necklace in a horoball system (H, T ). Let T ′ ⊂ T denote
the tangencies of the form Ci ∩ Cj, where Ci ∈ η and Cj /∈ η and let T ′′ ⊂ T denote tangencies with
both Ci, Cj /∈ η. If t ∈ T ′, then let Nt denote the horoball of η that contains t and Bt the non-η horoball.

We need ways of separating non-necklace tangencies from our disc D. We do this through the use of a
transverse hull and escape planes. The former controls tangencies between two non-necklace horoballs.
The latter control tangencies between a necklace horoball and a non-necklace horoball.

4.3.1 Transverse hull

Our first goal is to control the tangencies in T ′′ . For this subsection H is a horoball system containing a
minimal, unknotted, unblocked, k ≤ 7-necklace η . For δ > 0, let

Kδ = {p ∈ H3 | d(p, hull(frame(η)) ≤ δ}.

Lemma 4.22 (Universal Hull Radius) There is a universal ε > 0 such that for all 0 < δ < ε one has
Kδ ∩ γt = ∅ for all t ∈ T ′′ .

Proof Suppose t ∈ T ′′ and t = B1 ∩ B2. Conjugate H3 so that B2 is H∞ and B1 is H0 . Let λ =

π(frame(η)), viewed as an oriented piecewise linear periodic loop λ : R→ R2r (0, 0). Here, the vertices
of λ are the centers ∂∞Ni, and the edges are the projections of the ties. Each edge has visual angle at
most π/3 at (0, 0). Since γ(B1,B2) does not block η, the winding count of η around γ(B1,B2) is zero.
Define θ(t) to be the cumulative signed angle between λ(0) and λ(t) as measured from (0, 0). Then, since
the winding count of η is zero, θ attains a maximum θmax and minimum θmin. Now, the visual angle of
each segment is at most π/3, so immediately θmax − θmin ≤ 7π/3. But in fact, since the winding count of
η is zero, every deviation from λ(0) must be compensated eventually by an equal and opposite deviation.
Hence θmax − θmin ≤ 7π/6. So the visual angle φ = θmax − θmin of λ at (0, 0) satisfies φ ≤ 7π/6 < 2π.



30 Gabai, Haraway, Meyerhoff, Thurston and Yarmola

Consequently, we may define Wφ to be the minimal closed wedge bounded by two rays based at (0, 0)
such that λ ⊂ Wφ, so that Wφ has angle φ.

We claim that in fact φ < π . Let R1 and R2 be the bounding rays of Wφ. Each contains vertices of λ.
Permuting the indices, we can assume ∂∞N1 ⊂ R1 and ∂∞Nj ⊂ R2. These vertices divide λ into two arcs
λ1 and λ2, with λ1 determined by N1,N2, . . . ,Nj and the other by Nj,Nj+1, . . . ,N1. The visual angles of
λ1 and λ2 are both just φ. We can assume that λ1 has no more segments than λ2, and hence that λ1 has
at most 3 segments. If λ1 has fewer than three segments, then its visual angle φ ≤ 2π/3 < π . If λ1 has
three segments, then k ≥ 6 and φ ≤ π. Assume for a contradiction that φ = π. The four vertices of λ1 are
the centers of the beads N1, . . . ,N4 of η. Since φ = π, these beads are full-sized and tangent to B1. Let P
be the hyperbolic plane tangent to N4 and N3 at N4 ∩ N3. Then L = ∂∞P is a Euclidean line through
the points (0, 0) and π(N4 ∩ N3). L makes an angle of π/6 with R2. Since N5 is tangent to N4 and has
interior disjoint from N3, we see, by conjugating N3 to H∞, that ∂∞N5 must lie in the closed half space
of R2 with boundary L that contains ∂∞N4. It follows that, going back to the perspective with ∂∞B2 at
infinity, the visual angle ψ of the ∂∞N4, ∂∞N5 edge at (0, 0) is at most π/6. A similar argument holds
for ∂∞Nk, ∂∞N1. Therefore, the union of the remaining edges of λ2 must have visual angle at least 2π/3.
When k = 6, this is impossible. Then k = 7, it follows that each of N5,N6,N7 are also full-sized and
tangent to B1. However, since ψ ≤ π/6, this contradicts disjoints of N4 and N5 . So φ < π as claimed.

We now argue by compactness to show that φ ≤ π − ε1 for some universal ε1 > 0. Let P be the space
of all minimal, unknotted, unblocked, k ≤ 7-necklaces for which 5π/6 ≤ φ ≤ π . We claim that it is
compact and therefore the supremum of φ is attained and is π − ε1 for some ε1 > 0. For every η′ in P,
∂∞η

′ must lie in a closed annulus around (0, 0). This is because the projection of each tie is length at most
1 and therefore the necklace cannot be too far from (0, 0) as this would contradict φ ≥ 5π/6. Also note
that ∂∞η cannot be too close to (0, 0), as an isometry swapping B1 and B2 does not change φ and we can
replay the previous argument. Since the disjointness conditions for the horoballs are all closed, it follows
that P is compact and we are done.

Finally, since φ ≤ π − ε1 , we can bound the distance from γ(B1,B2) to the convex hull of frame(η)
as follows. By construction, hull(frame(η)) ⊂ hull(Wφ). Notice that the distance between γ(B1,B2)
and hull(Wφ) is entirely controlled by φ as hull(Wφ) lies outside a tubular neighborhood of γ(B1,B2)
whenever φ < π . Thus, there is a lower bound for this distance in terms of ε1 , giving a universal bound
for d(γ(B1,B2), hull(frame(η))).

Definition 4.23 (Transverse hull) By a suitable choice of 0 < δ < ε, we may ensure that K = Kδ is
transverse to all horoballs and shaved horoballs, and that ∂K ∩ γt = ∅ for all t ∈ T ′ . We call such a K a
transverse hull.
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4.3.2 Escape planes

Definition 4.24 For t ∈ T ′, an escape plane P̂t ⊂ (H3 ∪ ∂∞H3)r (int(shaved(η))∪ int(Bt)) is a smooth
properly embedded disc with t ∪ ∂∞Bt ∪ ∂∞Nt ⊂ P̂t and ∂P̂t ⊂ ∂∞H3 ∪ ∂B̂t ∪ ∂N̂t. P̂t is said to be
generic if P̂t ∩ (T ∪ F) = t, P̂t ∩ ∂∞H = ∂∞Bt ∪ ∂∞Nt. Note that Pt is orthogonal to both Nt and Bt.

See Figure 9.

Nt

Bt Pt

Figure 9: An escape plane with Nt at infinity and Bt the full sized horoball.

Notation 4.25 Let π : H3 → R2 be the vertical projection in the upper half-space model.

Lemma 4.26 (Escape Planes) Suppose given a ≤ 7-necklace η = (N1, · · · ,Nk) in (H, T ). There exists
a set {P̂t}t∈T ′ of generic, totally geodesic escape planes transverse to K such that

(1) the intersection with H3 is a locally finite set, and

(2) for distinct s, t ∈ T ′, each component α of P̂t ∩ P̂s is an arc with an endpoint on ∂∞H3, ∂Nt or
∂Ns.

Proof Let t ∈ T ′ be a tangency between Bt /∈ η and N ∈ η. By reindexing η we can assume that
N = Nk. Conjugate H3 so that Nk is the horoball z ≥ 1 and Bt is the full-sized horoball centered at
(0, 0). Let τ = frame(η). Let ρ : R2 \ {0} → S1 be the projection given by ~v 7→ ~v/‖~v‖. Then ρ(π(τ ))
is a connected interval of length φt ≤ 5π/3 (that is, the visual angle of π(τ ) from (0, 0) is at most
5π/3), with equality holding exactly when k = 7 and N1, . . . ,N6 are full-sized and tangent to Bt. By
taking the preimage under ρ, we may identify S1 with the rays in R2 originating at (0, 0), endowing this
collection with the resulting topology. Let R′ be the ray originating at (0, 0) that projects to the midpoint
of S1 \ ρ(π(τ )). That is, R′ is the bisecting ray of the “wedge” of rays from (0, 0) disjoint from frame(η).

We now show there are enough rays to guarantee the properties we require. First, either φt = 5π/3 or
φt < 5π/3. If φt = 5π/3, then k = 7 and N1 and N6 are full-sized and tangent. Let p = N1 ∩ N6. Then
R′ passes through π(p). Let η′ = η\Nk. Since p is a non-sequential tangency, and since these were shaved
away, R′ is disjoint from π(shaved(η′)). If φt < 5π/3 instead, then R′ is disjoint from π(η′), See figure
10. In either case, R′ is disjoint from the closed set π(shaved(η′)). So the open set S1 \ ρ(π(shaved(η′)))
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has a component κ containing ρ(R′). Next, either (0, 0) is in the interior of the convex hull of π(τ ) or
not. If not, then every point on R′ \ π(t) is further from every point of τ than π(t). Having every point
further from every point of τ than π(t) is an open condition, which we will call “pointing away from
τ.” Furthermore, only countably many rays originating at (0, 0) pass through π(T ∪ F). Also, for any
countable collection Ξ of circles, only countably many rays originating at (0, 0) are tangent to some
element of Ξ. Finally, since t /∈ ∂K, only countably many rays originating at (0, 0) are not transverse to
K. Therefore, for any countable collection Ξ of circles, let G be the set of rays R that originate at (0, 0);
that miss π(shaved(η′)), π(τ ), and π(T ∪ F); that point away from τ if R′ does; that are not tangent to
any element of Ξ; and, finally, that are transverse to K. Then G is a set of rays dense in an open cone of
rays containing R′.

ψt

ψt
Bt

Bs

R′

`+

`−

Figure 10: An escape plane with Nt at infinity and Bt full-sized at (0, 0).

We turn to the proof of item 1, local finiteness. For any ray R in G, let P̂R be R× [0, 1] \ int(Bt). Then
P̂R is a generic totally geodesic escape plane orthogonal to Nt and Bt, and its closure in H3 is transverse
to the closures of the planes determined by Ξ. Making any such choice of R for every t ∈ T ′ ∩ N, we
get a family FN = {P̂t | t ∈ T ′ ∩ N}. We claim any such family is locally finite. To that end, note first
that the set C = π(T ′ ∩ N) of sources of the rays is locally finite, since it is the set of centers of disjointly
embedded discs of radius 1. Let Ut be the union of {P ∈ R2 | d(P, π(τ )) < t} with the convex hull of τ.
Since τ is bounded, so is Ut . Now, if a ray R points away from τ and intersects Ut, then its source is in
Ut. Since C is locally finite, only finitely many such rays can intersect Ut. So the set of rays is locally
finite as claimed. Making any such choice of family FN with Ξ = ∅ for all the horoballs N in η proves
item 1.

To prove the second conclusion of the lemma, we are slightly more careful with our choice of escape
planes. First set Ξk = ∅. Then in decreasing order, for all k ≥ i ≥ 1, choose a family FNi not tangent to
Ξi of escape planes for non-necklace tangencies to Ni, and then define Ξi−1 to be the union of Ξi and the
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boundaries of the new escape planes.

For any two escape planes P̂s and P̂t so chosen (possibly associated to different horoballs of η ), every
component of P̂s ∩ P̂t is a compact geodesic arc α̂ . (A priori, since these are not convex objects, their
intersection could be disconnected.) If α̂ 6= α, then the second conclusion of the lemma is immediate. If
α = α̂, then we need to show ∂α does not lie in Bt ∪ Bs.

Bt

Bs

Ns

Vs

Pt

`s+π/3`s

Bs
ψs

Bt

Nt `s+π/3

`s Ps

Figure 11: A escape plane with Nt at infinity and Bt full-sized at (0, 0).

Suppose for a contradiction that ∂α ⊂ Bt ∪ Bs. Then Pt must intersect Bs. We claim that under this
assumption, Ps ∩ Bt = ∅, a contradiction by symmetry. Now, Pt intersects Bs either in a disc as in Figure
10 or in a single point. Consider first the perspective letting Nt be the unit horoball at infinity, Bt full-sized
at the origin, and Pt the positive x-axis. By reflection, if necessary, we may also assume Ns lies below
the x-axis, and this determines the perspective. Let `s be the oriented line from the center of Bt to the
center of Ns and let `s+π/3 be the line obtained by rotating `s by π/3 in the clockwise direction around
the center of Bt; see Figure 11. Recall that φt is, from this perspective, the angle measure of the wedge
of rays at (0, 0) intersecting the projection π(frame(η)) of the frame. When φt = π, the arrangement of
Bt, Bs, and Ns is rigid—they are full sized and are part of the hexagonal horoball packing. In this case,
there is a half space containing γ(Bs,Ns) that avoids all other points of ∂∞η, so it must contain the escape
plane Ps. This half space is disjoint from Bt, so Ps ∩ Bt = ∅ as claimed. If instead φt > π, then the π/3
wedge Vs formed by `s and `s+π/3 above the x-axis must contain a center at infinity of the necklace η.
It follows that at least 3 such centers must lie to the right of `s+π/3. Change perspective now as before,
but with s instead of t, so that Ns is the unit height horoball centered at infinity, Bs `s+π/3 becomes a
circle bounding a disc. By Lemma B.1 in the Appendix, the visual angle of this disc from the center of Bs

is at most π/3. In particular, φs ≤ π/3 + 2π/3 = π. It follows that ψs ≥ π/2. When ψs > π/2, this
contradicts the fact that Nt and Bt are tangent. Thus, Ps cannot intersect Bt. The case of ψs = π/2 is
identical to the case above where φt = π.
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4.3.3 Unblocked implies unlinked

We now prove the main proposition of this subsection.

Proof of Prop. 4.20. Suppose η is a minimal k-necklace with k ≤ 7. Construct a transverse hull K and
escape planes {Pt} as above. Now, η has an unknotting disc by Theorem 4.17. Thus shaved(η) admits an
unknotting disc D whose boundary is the core C(η) away from small neighborhoods of the false tangencies,
and at most one arc per side of such a tangency. Now, there are arbitrarily small isotopies of proper
embeddings (D, ∂D)→ (H3 − η, ∂η) making D transverse to K and to all {Pt}. Since C(η) ⊂ int(K),
we may choose an isotopy so small, and in the appropriate direction, that also ∂D ⊂ K. In particular,
∂D∩ ∂K = ∅. We will prove the proposition by a base case and reduction to the base case. It is a proof by
induction on a notion of complexity that we leave implicit.

The base case is as follows. Suppose that D ∩ ∂K = ∅ and that for all t ∈ T ′, D ∩ Pt = ∅. Then in
particular, D ⊂ K. By construction (i.e. by Lemma 4.22) K ∩ T ′′ = ∅, so D ∩ T ′′ = ∅. Moreover, since
T ′ ⊂

⋃
Pt, D ∩ T ′ = ∅. Therefore, the interior of D lies in the exterior of T ′ ∪ T ′′. In particular, it lies

in the exterior of shaved(η). So η is unlinked, as desired.

Now for the reductive steps. Suppose that D ∩ ∂K is not empty. We will now change D, fixing
∂D pointwise, to be disjoint from ∂K. For convenience, let C = H3 \K. Since ∂D ∩ ∂K = ∅, by
transversality D ∩ ∂K is a multicurve in the interior of D. We will proceed below by induction on its
number of components. Before that induction, though, we prove the following claim. Suppose α is an
innermost such curve.

Claim: α bounds a disc in ˆ∂K disjoint from the vertices ∂∞K̂.

Proof of Claim. Since α is innermost, it bounds a disc DD in D with interior disjoint from ∂K. Also, α
bounds a disc KD in ∂K̂. If KD contains no vertices of K̂, we are done. Suppose instead KD contains
some vertices of K̂. Let V be the vertices contained by ∆, and W the other vertices.

Suppose for a contradiction that W is nonempty. Necessarily DD ⊂ K or DD ⊂ C since DD ∩ ∂K = α.

Now, C deformation retracts to ∂K = ∂C. So C is boundary-incompressible (open compressing discs are
not allowed here). Therefore, properly embedded discs in C are trivial. In particular, their boundaries are
inessential, and hence do not separate vertices of K̂. Since W and V both are nonempty, α does separate
vertices. Hence DD cannot lie in C. Therefore DD ⊂ K. However, since frame(η) is connected, some tie
γ connects V and W. Since α separates V and W in ∂K̂, DD separates them in K̂. Thus DD intersects
γ and hence intersects frame(η). This contradicts D being a compressing disc for η.

Therefore, W must be empty. Consequently, if KD contains any vertices of K̂, then KD must contain all
vertices of K̂. Thus the complementary disc, also bounded by α, contains no vertices of K̂, proving the
claim. �

Now, let KD be such a disc in ∂K̂. Then KD ⊂ ∂K, being disjoint from the vertices. Let DD be
an innermost disc for α in D. Since ∂KD = ∂DD = α, D′ = (D \ DD) ∪ KD is a compressing
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disc for η. Let R be a regular neighborhood of KD. If DD ⊂ C, push D′ into K in R; if instead
DD ⊂ K, push D′ into C in R. This yields a new compressing disc D′′ for η transverse to ∂K with
|π0(D′′ ∩ ∂K)| = |π0(D ∩ ∂K)| − 1. Thus by induction, we may assume D ⊂ K. Moreover, none of the
above changes modified ∂D.

To conclude the proof of Proposition 4.20, it will not suffice just to show that we may change D to be
disjoint from the escape planes. We must also ensure that we can do so maintaining D ⊂ K. First, we will
change D to have boundary disjoint from the escape planes. Finally, we will use another innermost disc
argument to change D to have no interior intersections with the escape planes.

We perform the first isotopy one necklace horoball at a time. Choose a necklace horoball, and relabel so
that it is the last one, Nk. Conjugate H3 so that Nk is the z ≥ 1 horoball. Let π : H3 → ∂Nk denote the
orthogonal projection. Let λ denote π(frame(η)), a piecewise linear path from N1 ∩ Nk to Nk−1 ∩ Nk.

Now, the P̂t ’s intersecting Nk are orthogonal to ∂Nk. Moreover, all P̂t ’s are disjoint from shaved(η). Thus
(∪P̂t) ∩ λ = ∅. Note that the convex hull of λ in ∂Nk lies in int(K). Choose a regular neighborhood U of
this hull in K. Now, the previous part of the proof did not modify ∂D. So we may still assume the arc
A = ∂D ∩ ∂Nk lies arbitrarily close to the segment PkQk of the core C(η) on ∂Nk, where Pk = N1 ∩ Nk

and Qk = Nk−1 ∩ Nk. In particular, A and λ both are paths between Pk and Qk in the disk U ∩ Nk. So
A is isotopic in U ∩ Nk fixing Pk and Qk to λ. We may therefore isotope D in U through embeddings
(D, ∂D) ↪→ (K,K ∩ Nk) until ∂D ∩ Nk is close enough to λ to be disjoint from all the P̂t. Note that all
Ni ∩ Nk tangencies for a fixed k lie in λ, even if η is not minimal, so the isotopy need not pass through
such tangencies in its interior. After cycling through the indices from k to 1, we can assume ∂D ∩ P̂t = ∅
for all t, and still have D ⊂ K. By local finiteness of P̂t and boundedness of D, we may also assume that
D is transverse to each P̂t, and that D ∩ P̂t 6= ∅ for only finitely many t.

Finally, suppose that for some t ∈ T ′ that D ∩ P̂t is nonempty. A component of this intersection is either
a circle or an arc.

Suppose D ∩ P̂t contains a circle component. Let δ be one innermost in P̂t. Let E ⊂ P̂t denote the disc
bounded by δ in P̂t. Now P̂t is geodesic and K is convex, so P̂t ∩K is convex. But α ⊂ P̂t ∩K. So
E ⊂ P̂t ∩K and hence E ⊂ K. In fact, since α ⊂ int(K), E ⊂ int(K). So we may compress D along E
in int(K). Let D1 denote the resulting disc component in K. Now, by Lemma 4.26, for any other tangency
s ∈ T ′, each component of P̂s ∩ P̂t is an arc with an endpoint on ∂P̂t. Thus E ∩ P̂s = ∅ if and only if
δ ∩ P̂s = ∅. Doing the compression sufficiently close to E, we can guarantee that if s 6= t, then D1 ∩ P̂s

has as many arc components and circle components as D ∩ P̂s . Moreover, we may also maintain that
int(D1) ⊂ int(K) and that int(D1)∩ shaved(η) = ∅. Thus by induction on the number of circle components
of D ∩ P̂t, we may ensure that no component of D ∩ P̂t is a circle, for every t.

To complete the proof, suppose instead that D ∩ P̂t contains an arc component α. Since ∂D ∩ Pt = ∅ and
int(D) ∩ η = ∅, it follows that ∂α ⊂ ∂Bt. We can assume that α is an innermost such arc in Pt. Let E
denote the half disc bounded by α and an arc in Bt. Since P̂t is geodesic and K is convex, as above we
have E ⊂ int(K). We may isotope D to D1 by boundary compressing D near E. By Lemma 4.26, no arc
component of Ps ∩Pt has endpoints in both Bs and Bt. Thus E ∩ P̂s = ∅ if and only if α∩ P̂s = ∅. Again,
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isotoping sufficiently close to E, we can guarantee that for s 6= t, D1 ∩ P̂s has as many components as
D1 ∩ P̂s 6= ∅. So by induction on the number of arc components, we can isotope D such that no component
of D ∩ P̂t is an arc, for every t. Thus we can isotope D to be disjoint from every P̂t as desired.

4.4 Globally minimal ≤ 7-necklaces in geometric systems are unblocked

In this subsection, we focus on the geometric constraints of horoball necklaces. We will prove:

Proposition 4.27 If η is a globally minimal ≤ 7-necklace in an oriented geometric horoball system
(H, T ), then η is unknotted, unblocked, and unlinked.

The proof will require a lot of technical geometric control of ≤ 7-necklaces. Our goal is to prove that
≤ 7-necklaces cannot wind around a “blocking” tie γb in a geometric horoball system. Note, this will
require a good deal of work as this is false in the non-orientable case even for 6-necklaces, see [AK13].

We start with a few basic facts about horoball geometry.

Lemma 4.28 (Horoball distance) Let B1,B2 be two horoballs with disjoint interiors in the upper-half-
space model with bi = ∂∞Bi ∈ R2 and of Euclidean heights hi. Then the hyperbolic distance dH(B1,B2)
between B1,B2 is given by

dH(B1,B2) = log
(

dE(b1, b2)2

h1h2

)
.

Proof Consider the point b′2 = b1 − (b2 − b1) and let γ be the geodesic between b2, b′2. Note that γ has
Euclidean radius dE(b1, b2). The highest point P of γ lies directly above (or below) the highest point of
B1 in the upper-half-space model. In particular, we have the distance dH(P,B1) = log

(
dE(b1, b2)/h1

)
.

Let Rγ be 180◦ rotation around γ . In the plane through b1, b2, and ∞, Rγ acts as reflection in γ, or in
Euclidean terms, inversion in γ ’s associated circle. Thus under Rγ , B1 maps to a horoball at infinity of
Euclidean height dE(b1, b2)2/h1. Since B1,B2 had disjoint interiors, it follows that h2 ≤ dE(b1, b2)2/h1

and

dH(B1,B2) = log
(

dE(b1, b2)2

h1h2

)
.

Lemma 4.29 (π/3-angle) Let B1,B2 be two horoballs with disjoint interiors in the upper-half-space
model with bi = ∂∞Bi ∈ R2 and of Euclidean heights hi. Then the hyperbolic distance dH(B1,B2)
between B1,B2 is given by

dH(B1,B2) = log
(

dE(b1, b2)2

h1h2

)
.

Definition 4.30 Let γ be a geodesic in H3 with endpoints b1, b2, let η be a k-necklace with frame(η) ∩
γ = ∅, and let ρ2 ∈ Isom(H3) map b2 to ∞. The winding count of η around γ is the absolute value of
the winding number of π(ρ2(frame(η))) around ρ2(b1).
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Remark 4.31 This definition is independent of the orientation of η, exchanging endpoints of γ, and the
choice of ρ2. Also, this definition is equivalent to the winding count around b1 (resp. b2 ) of the piecewise
circular arc given by circles through b2 (resp. b1 ) and consecutive points of η at infinity.

Lemma 4.32 (Two eyes) Let B1,B2 be two disjoint full-sized horoballs and η a k-necklace of at most
full-sized horoballs. Assume that {Bj,Ni} have disjoint interiors for all i, j and that η has positive winding
count around both γ(B1,H∞) and γ(B2,H∞). Then, k > 7.

Proof We will use a visual angle argument to understand the positions of ∂∞Ni. Assume that k ≤ 7. We
can translate and rotate so that (0, 0) = b1 = ∂∞B1 and (d, 0) = b2 = ∂∞B2 in R2, so that π(int(Bj))
are disjoint open discs of radius 1/2, and therefore d ≥ 1. Our hypothesis on winding count implies that
every ray in R2 from bj must intersect some π(γi). In addition, since all horoballs are disjoint and at most
full size, the visual angles of π(γi) from bj are at most π/3.

b1 b2

D1 D2

nL
1

nF
1

nL
2

nF
2

`+1

`−1

`+2

`−2

Figure 12: Trying to wind around two full-sized horoballs.

Consider the rays `±j from bj perpendicular to the x-axis and going in the positive and negative y-directions,
respectively. We can define the regions

D1 = {(x, y) ∈ R2 | x < 0} ∪ `+1 and D2 = {(x, y) ∈ R2 | x > d} ∪ `+2 .

Using visual angle from bj, we see that each Dj must contain at least two projected edges π(γi), and
therefore each Dj contains at least 3 points of tangency of η. Since η is cyclically ordered, there are last
and first points of tangency nL

1 ∈ D1, nF
2 ∈ D2 going from D1 to D2 and nL

2 ∈ D2, nF
1 ∈ D1 going from

D2 to D1. By construction, there must be a sequence of edges connecting nL
1 , n

F
2 and nL

2 , n
F
1 . Since the

length of π(γi) is at most 1, nL
1 , n

F
2 (or nL

2 , n
F
1 ) can be connected by only one edge if and only if d = 1 and

nL
1 ∈ `

+
1 , n

F
2 ∈ `

+
2 (or nL

2 ∈ `
+
2 , n

F
1 ∈ `

+
1 ). Since k ≤ 7, it follows that one of the pairs nL

1 , n
F
2 and nL

2 , n
F
1

is connected by only one edge. If it’s nL
1 , n

F
2 , then nL

1 ∈ `
−
1 and nF

2 ∈ `
−
2 . If it’s nL

2 , n
F
1 , then nF

1 ∈ `
+
1 and

nL
2 ∈ `

+
2 . In either case, each Dj ∪ `±j must contain at least 3 projected edges, by a similar visual angle

argument at bj. This contradicts k ≤ 7 and our proof is complete.
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Lemma 4.33 (Three eyes) Let B1 be a full-sized ball, B2,B3 be a pair of tangent horoballs of at most
full size and η a k-necklace of at most full-sized horoballs. Assume that {Bj,Ni} all have pairwise disjoint
interiors and frame(η) has positive winding count around both γ(B1,H∞) and γ(B2,B3). Then, k > 7.

Proof Label bj = ∂∞Bj. Let di j = dE(bi, bj) and hj denote the Euclidean heights of Bj. Without loss
of generality, let d1 2 ≤ d1 3. Consider a convex disc D2 with b2, b3 on its boundary. We will make the
choice of D2 below. Any isometry ρ of H3 that sends b3 7→ ∞ also sends D2 to a half-plane Π2. Now
frame(η) has positive winding count around γ(B2,B3). So by visual angle from ρ(b2), at least two edges
π(ρ(γi)) lie in Π2. If neither of these edges intersects ∂(Π2), then int(Π2) has three centers of infinity
of ρ(η). If one of them does intersect ∂(Π2), then Π2 contains at least three edges. In this case, int(Π2)
would contain at least two centers of infinity of ρ(η). In both cases, int(D2) contains at least two centers
of infinity of η.

b1

b2 b3

D2

α

r

c

Figure 13: Diagram for Case 1 of Lemma 4.33.

Assume for a contradiction that the visual angle of D2 from b1 is at most π/3. Notice that the visual
angle from b1 of the two edges π(γi) contained in D2 is strictly less than π/3 since at least two centers at
infinity of η must lie in the interior of D2. Assuming k ≤ 7, there are at most 5 unaccounted edges π(γi)
that need to fit into strictly more than 5π/3. Since each edge has visual angle at most π/3 from b1, this is
a contradiction.

We will now choose the appropriate D2 whose visual angle from b1 is at most π/3. Let c be the distance
from b1 to the midpoint of b12 and b23.

Case 1: c > d12. Let D2 be the disc of diameter d23 with b2, b3 on its boundary. Since B1,B2 have
disjoint interiors, dH(B1,B2) ≥ 0. As h1 = 1, Lemma 4.28 implies that d2

12 ≥ h2. Similarly, since B2,B3

are tangent and at most full size, we have that d2
23 = h2h3 ≤ h2 and so d23/d12 ≤ 1. Consider the right

triangle in Figure 13. By construction, r = d23/2 and c > d12 and we have

α = arcsin
( r

c

)
< arcsin

(
d23

2 d12

)
≤ arcsin

(
1
2

)
=
π

6
.

It follows that the visual angle of D2 is at most 2α < π/3.
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b1

b3

b2

D2

D′

π/3

Figure 14: Diagram for Case 2 of Lemma 4.33.

Case 2: c ≤ d12. Let D2 be the unique disc tangent to the ray from b1 to b2 which contains b2, b3 on
its boundary, see Figure 14. The dashed circles in Figure 14 have radius d12. The condition that c ≤ d12

and the fact that d23 ≤ d12, imply that b3 lies in the shaded region denoted in Figure 14. Note that the
region is somewhat larger than it needs to be. Let D′ be the maximal disc tangent at b2 to the ray from b1

to b2 with clockwise visual angle of π/3. By construction, for all b3 in the shaded region, D2 ⊂ D′ and
therefore has visual angle at most π/3.

b1

ni

ni+1

di

αi

xi

xi+1

Figure 15: Diagram for Lemma 4.34.

Lemma 4.34 (Basic blocking properties) Let η be a globally minimal ≤ 7-necklace in a geometric
horoball system (H, T ) and assume that η is blocked by B1 ∩ B2 ∈ T ′′, where B2 = H∞ of height 1.

Define the following as in Figure 15. Let ni = ∂∞Ni ∈ C, di = `E(π(γi)), xi = |ni − b1|, αi =

∠
(
ni − b1, ni+1 − b1

)
, and hi = heightE (Ni) . Then for all i one has

(1) αi ≥ 0
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(2) π/3 ≤ αi + αi+1 ≤ 2π/3

(3) 2π/3 ≤ αi + αi+1 + αi+2 ≤ π
(4) d2

i = hi hi+1

(5) hi ≤ 1 and di ≤ 1

(6)
√

hi ≤ xi

(7) xi ≤ 2
√

hi

(8) 1/4 ≤ hi

Proof (4), (5), and (6) follow from Lemma 4.28 and disjointness. For (1), we use the fact that α0 + α1 +

· · ·+ α6 = 2π and that αi ≤ π/3 by horoball packing. For (2) and (3), we again use αj ≤ π/3 for the
complementary set of angles.

Results (7) and (8) require a bit of calculus and geometry. Without loss of generality, let i = 1. The law of
cosines gives x2

1 + x2
2 − 2 cos(α1)x1x2 = d2

1 = h1h0 and similarly for the triangle bounded by x0 and x1 .
Adding the two equations and solving for x1 gives:

2x1 = x0 cosα0 + x2 cosα1 ±
√

2h1(h0 + h2)− 2(x2
0 + x2

2) + (x0 cosα0 + x2 cosα1)2.

Since we want an upper bound, we take the + term. Notice that this equation is symmetric in the
pairs (x0, α0) and (x2, α1). Additionally, it is easy to see that one can always flow towards the diagonal
(x0, α0) = (x2, α1) while increasing the value of x1 , so there are no critical points on the interior of the
realizable parameters. Further, this can be done while enforcing π/3 ≤ α0 + α1 Note, flowing to the
diagonal may take us through non-realizable parameters, but this doesn’t matter as we need an upper
bound. On the diagonal α0 = α1 ≥ π/6 and basic calculus shows that α0 = α1 = π/6 maximizes the
value of x1 This gives us 2x1 =

√
3x +

√
2h1(h0 + h2)− x2 where x = x0 = x2 . Taking h0 = h2 = 1

further maximizes the value, with the final equation 2x1 =
√

3x +
√

4h1 − x2 maximized at x =
√

3h1

and value x1 = 2
√

h1 , giving us (7).

For (8), we solve the same sum of equations for h1 instead of x1 , giving

h1 =
2x2

1 + x2
0 + x2

2 − 2x1(x0 cosα0 + x2 cosα1)
h0 + h2

.

A similars observation show that it is possible to flow to the diagonal (x0, α0) = (x2, α1) while keeping
π/3 ≤ α0 + α1 and decreasing h1 . On the diagonal, h1 is minimized when α0 = α1 = π/6. Notice that
there are parameters with α0 = α1 = π/6 that a realized by necklaces, so we can restrict to this case. At
such a realizing parameter, the horoballs N0 and N2 are visually π/3 apart. This forces all angles αi for
i 6= 0, 1 to be π/3, which in turn forces the horoballs Ni for i 6= 1 to be full-sized and form the hexagonal
packing. It is then easy to see that the smallest Euclidean height for N1 is 1/4, giving us (8).

Lemma 4.35 (Blocking edge) Let η be a globally minimal 7-necklace in a geometric horoball system
(H, T ). If η is blocked by B1 ∩ B2 ∈ T ′′ and ζ = (N′1, . . . ,N

′
7) is a conjugate of η containing B1 and B2,

then {B1,B2} = {N′i ,N′i+1} for some i.
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Proof The distance in ζ between B1,B2 is at most 3. If B1∩B2 is not part of ζ, then adding this tangency
to the shortest path between B1,B2 makes a ≤ 4-necklace. This contradicts global minimality of η.

For the remainder of this section, η will be a globally minimal 7-necklace in a geometric horoball
system (H, T ) and will be blocked by B1 ∩ B2 ∈ T ′′.

Let γb = γ(B1,B2) and for each tie γi for η, let fi be the element acting on (H, T ) that takes γb to γi.

Set ηi = fi(η) and notice that ηi is blocked by γi by construction.

Notation 4.36 For two necklaces η and ζ in a horoball system, we use η e ζ to denote the set of shared
horoballs. This is their intersection as finite sets of horoballs, not their intersection as subspaces of
hyperbolic space. The latter may include tangency points; the former does not.

Lemma 4.37 (Forced share) If ηi does not contain B1 or B2, then ηi e η 6= ∅.

Proof Assume, without loss of generality, that ηi does not contain B2 and conjugate the picture so that
B2 = H∞. Let πi = fi ◦ π ◦ f−1

i be the “projection” from ni or ni+1, with notation as in Lemma 4.34. By
construction, the winding count of πi(frame(ηi)) is nonzero around either ni or ni+1. As ηi is blocked by
γi, πi(frame(ηi)) ∩ π(frame(η)) must contain a component lying entirely in π(γi). Positive winding count
implies that πi(frame(ηi)) ∩ π(frame(η)) has at least two connected components. A second component
either contains nj for some j or, for some k 6= i, γk passes under or over some tie κ of ηi. However, the
latter case violates Lemma 4.33 as either η is blocked by γb and κ or ηi is blocked by γi and γk. Thus,
η e ηi is non-empty and contains some horoball of η.

Lemma 4.38 (No accidental true tangencies) Bk ∩ Nj /∈ T for all k = 1, 2 and j = 1, . . . , 7.

Proof. Assume otherwise. Without loss of generality, let Bk = B2 and Nj = N1 with B2 ∩ N1 ∈ T . Send
B2 to H∞ and let f acting on (H, T ) take γ(B1,H∞) to γ(N1,H∞). Then f (η) is a necklace of at most
full-sized horoballs that winds around γ(N1,H∞). Projecting to the plane, we obtain piecewise linear
curves µ = π(frame(η)) and µf = π(frame(f (η))), which are embedded by Lemma 4.34. Each curve then
divides the plane into two open regions: the “inside” containing b1 or n1 accordingly, and the “outside”.

Notice that if γ is a tie of frame(f (η)) with one endpoint inside µ, the other outside µ, and passes over
frame(η), then η has non-trivial winding count around γ . However, this would contradict the Three Eyes
Lemma 4.33 as η also has non-trivial winding around γ(B1,H∞). By symmetry, the same applies to any
tie of frame(η) that has endpoints on either side of µf and goes over frame(f (η)).

Since µ and µf are both simple, there are three possible isotopy types, which we now consider.

Case 1: µf winds around b1 . This is impossible by the the Two Eyes Lemma 4.32.

Case 2: µf does not wind around b1 or µf does goes through b1 . For this to hold, µf must intersect the
half-open line segment [b1, n1) between b1 and n1 . In particular, µf must cross from outside of µ to the
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inside, and then again from inside to outside. Looking at the ties, we have seen that these crossing cannot
arise from frame(f (η)) passing over frame(η). Every underpass of frame(f (η)) under frame(η) must be
cancelled out by another underpass, because a tie of frame(η) lying over such an underpass must have
endpoints on the same side of µf . Thus, by parity, we must have at least two crossings via shared horoballs
A1 and A2 . We further assume that a neighborhood of ai in µf has a point inside µ for i = 1, 2. This
implies that that A1 and A2 cannot be neighbors in both η and f (η), as otherwise π(γ(A1,A2)) is an edge
of both µ and µf , so µf would not inside µ. In particular, we get that the shortest paths between A1 and
A2 in η and f (η) are distinct. Gluing them together would give a ≤ 6-necklace, contradicting minimality.

We have exhausted all possible avenues, so our proof by contradiction is complete.

Lemma 4.39 η e ηi cannot contain Ni+2 or Ni−1

Proof Assume otherwise. Notice that f−1
i
(
{Ni,Ni+1}

)
= {B1,B2} and f−1

i (ηi) = η by definition. If
Ni+2 or Ni−1 are in ηi then f−1

i (Ni+2) or f−1
i (Ni−1) are in η. Then, f−1

i (γi+1) or f−1
i (γi−1) is a tie between

Bk and η, which contradicts Lemma 4.38.

Lemma 4.40 If η e ηi 6= ∅ then ηi contains both B1 and B2.

Proof Normalize so that B2 = H∞ as before. Looking at the 7-necklace η wrapping around B1, we
heuristically see that there isn’t very much room for the 7-necklace ηi to snake around Ni and Ni+1. By
Lemma 4.39, η and ηi can only share Ni+3,Ni−2, or Ni+4. By symmetry, the cases of Ni+3 and Ni−2 are
identical. We will assume that η e ηi includes Ni+3. The case of Ni+4 only requires minor modifications
to the arguments below.

We claim that B1 and B2 must both be in the necklace ηi. First, we prove that if we assume that neither B1

nor B2 is in ηi, then we are led to a contradiction. Second, we will prove that if exactly one of B1 or B2 is
in ηi, then we are also led to a contradiction.

Case 1: Assume neither B1 nor B2 is in ηi.

Normalize via a Möbius action g on (H, T ) sending Ni to H∞ and Ni+1 to a full-sized horoball. We will
denote g(Ni+3) as C3 ; it is preceded and succeeded in the necklace g(ηi) by C2 and C4; see Figure 16.
Note that we have drawn parts of the two necklaces g(η) and g(ηi), and these agree at g(Ni+3) = C3. Note
also that C2 or C3 could possibly be g(Ni+4), but no other necklace horoball nor B1,B2 .

The necklace g(ηi) consists of horoballs that are less than or equal to full-size, and is blocked by g(γi).
In particular, g(ηi) must encircle the full-sized horoball g(Ni+1). If g(ηi) were a 6-necklace, then all the
horoballs in it would have to be full-sized and form a hexagonal pattern with g(Ni+1). Because g(ηi) is a
7-necklace we have more room to maneuver, but not much more room as seen in Lemma 4.34.

Our main focus will be on the five horoballs C2, C3, C4, g(B1), g(B2). The horoball centers run around
C3 in a pattern either of the form g(B∗), g(B∗),C∗,C∗ (“BBCC”) or of the form g(B∗),C∗, g(B∗),C∗
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B1

Ni+3

Ni

Ni+1

g(Ni+1)

g(B1)

g(B2)g(Ni+2)

g(Ni+4)

C2

C3

C4

Figure 16: (Left) Z horoball and view from B2 . (Right) View from g(Ni) = H∞ in Case 1.

(“BCBC”). (Degeneracies of collinearity can be construed in either of these categories, since the inequalities
of Lemma 4.34 are not strict.) We will first treat the former, more difficult case.

Case 1A: B1,B2 /∈ ηi, BBCC pattern.

We will analyze four visual angles based at C3 : ∠(C2, C3, C4); ∠(C4, C3, g(B2)); ∠(g(B2), C3, g(B1));
and ∠(g(B1), C3, C2). Of course, these angles can also be interpreted as dihedral angles at the geodesic
running from C3 to ∞. The four angles should add up to 2π , but because of various constraints we will
show that the calculated sum is in excess of 2π , thereby obtaining a contradiction.

Claim I: ∠(g(B2), C3, g(B1)) ≥ 2π/3.

First note that this is the dihedral angle of the edge from C3 to ∞ in the ideal tetrahedron formed by
the centers of g(B2), C3, g(B1) and ∞. Consider the isometric tetrahedron formed by the centers of
B2, Ni+3, B1, Ni (that is, apply g−1 to the previous ideal tetrahedron). The dihedral angle at the edge
from C3 to infinity in the first tetrahedron corresponds to the dihedral angle at the edge from Ni+3 to Ni in
the second tetrahedron, but this dihedral angle is equal to the dihedral angle at the edge from B1 to B2

(note that the center of B2 is infinity). The dihedral angle at γ(B1,B2) is equal to the visual angle from the
center of Ni to the center of Ni+3 measured at the center of B1. This visual angle must be at least 2π/3 by
Lemma 4.34.

This proves Claim I.

Claim II: ∠(C2, C3, C4) ≥ 2π/3.

First, we contend that the Euclidean height of C3 is between 1/4 and 1/3. The ≤ 1/3 constraint is
equivalent to showing dH(Ni,Ni+3) ≥ log 3. To prove this, consider the picture with B2 at infinity



44 Gabai, Haraway, Meyerhoff, Thurston and Yarmola

and refer to Lemma 4.34. Since exp(dH(Ni,Ni+1)) = dE(ni, ni+3)2/(hihi+3), we just need to show
dE(ni, ni+3)2 ≥ 3hihi+3 . The law of cosines gives

dE(ni, ni+3)2 = x2
i + x2

i+3 − 2xixi+3 cosβ ≥ x2
i + x2

i+3 + xixi+3 ≥ hi + hi+3 +
√

hihi+3 ≥ 3hihi+3,

where β ≥ 2π/3 is the visual angle measured at B1 and we use the fact that
√

hi ≤ xi for all i. The last
inequality follows from basic calculus. Thus, the height of C3 is at most 1/3.

The lower bound of 1/4 also comes from Lemma 4.34 (8), where a 7-chain of at most full-sized horoballs
surrounding a full-sized horoball (here Ni+1 ) must have all horoballs of Euclidean height at least 1/4.

Using these height bounds and the fact that g(ηi) winds around γ(g(Ni), g(Ni+1)), we now show that the
visual angle ∠(C2, C3, C4) is at least 2π/3. The argument is similar to the arguments proving Lemma

α1

α2g(Ni+1) center

C4 center, height h1

C3 center, height h

C2 center, height h2

β1

β2

d1

d2

y1

y2

Figure 17: Diagram for Case II of Lemma 4.40.

4.34. With labels as in Figure 17, the law of cosines gives

cos(β1 + β2) =
d2

1 − y2
1 + d2

2 − y2
2 + 2 cos(α1 + α2)y1y2

2d1d2

One can then see that the maximum value of cos(β1 + β2) must be on the diagonal (y1, α1) = (y2, α2) as a
quick gradient analysis shows that we can always flow towards this diagonal while increasing cos(β1 +β2).
Since necklace horoballs are tangent, we know d2

i = hhi . With y = yi and α = αi , we have

cos(β1 + β2) ≤ d2
1 + d2

2 − 4 sin(α)y2

2d1d2
=

hh1 + hh2 − 4 sin(α)y2

2h
√

h1h2
=

h1 + h2

2
√

h1h2
+

2
h

y√
h1

y√
h2

sin2(α)

Since we only need to consider realizable parameters on the diagonal, Lemma 4.34 gives that y/
√

hi ≥ 1
and α = (α1 + α2)/2 ≥ π/6, so we must have

cos(β1 + β2) ≤ h1 + h2

2
√

h1h2
− 2

h
1
4
≤ 1− 3

2
= −1

2

where we use the fact that 1/4 ≤ h ≤ 1/3 and a straightforward upper bound on the first term as
1/4 ≤ hi ≤ 1. Thus, the visual angle ∠(C2, C3, C4) = β1 + β2 is at least 2π/3.

This proves Claim II.
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If we can show that the other two angles ∠(C4, C3, g(B2)) and ∠(g(B1), C3, C2) are each greater than
π/3, then we will have our contradiction. To get control of these angles we first need lower bounds for the
sizes of C2 and C4. To minimize C2 we must first maximize C3, so we assume that the height of C3 is
1/3. We start with a warm-up example. Assume C2 and C4 are of the same height, h2. Then the distance
between the centers of C2 and C3 is h/(

√
3), as is the C3 to C4 distance. The sum of these two distances

must be greater than or equal to the distance between the centers of C2 and C4, which, as we saw above, is
at least 1. So the smallest allowable height for C2 = C4 satisfies 2h/

√
3 = 1, and we see that the smallest

height for C2 = C4 is 3/4. We have finished the warm-up example.

If we let one of the two horoballs, say C4, increase then the smallest height for the other horoball decreases.
The worst case is when C4 has height 1, in which case the distance between the centers of C3 and C4

is 1/
√

3, and the sum of the distances between the centers of C2,C3 and C3,C4 is (h + 1)/
√

3. We
compare that with the distance between the centers of C2 and C4. We can assume the center of C2 is
(−1/2,

√
h2 − 1/4) and the center of C4 is (1/2,

√
3/2). We can then calculate that the minimum height

is 0.62127.4 With these height bounds established, we make the following claim.

Claim III: ∠(C4, C3, g(B2)) > π/3.

We argue by contradiction and start by assuming that the angle is less than π/3. We know that C4 abuts
C3, and although C4 and g(B2) might not abut, the smallest angle at C3 will occur when C4 abuts g(B2),
so we will make this assumption. Note, we have freedom to rotate g(B2) around C3 to make this happen
since it is not a necklace horoball and since the height of C4 is at least 1/4 by Lemma 4.34 (i.e under the
rotation we cannot not miss C4 because it is big enough).

We begin by getting some control over the height of g(B2); this is the same as the height of Ni in the
original picture (both depend on the hyperbolic distance from B2 to Ni ). Consider the triangle formed by
the centers of the 3 horoballs Ni+3, B1, Ni in the original horoball diagram. It will be convenient to use
some notation from [GMM]: We will work with the so-called Euclidean lengths between horoballs; given
two horoballs separated by hyperbolic distance o(n), the associated Euclidean length is exp(o(n)/2). We
will often associate to a single horoball X its Euclidean distance denoted eX from H∞ ; we can compute
that the Euclidean height of this horoball is then 1/e2

X. As computed before, if ep, eq are Euclidean lengths
from two horoballs to H∞, and er is the Euclidean length between those two horoballs, then the Euclidean
distance between the centers of these two horoballs is er

epeq
as given by Lemma 4.28.

In our set up, let ep and eq be the Euclidean lengths associated to the horoballs Ni and Ni+3 respectively.
Note that ep is the Euclidean length from horoball Ni to horoball B2, which is also the Euclidean length
from g(Ni)–which is H∞–to g(B2). Let er be the Euclidean length from horoball Ni to horoball Ni+3, and
d the Euclidean distance between their centers. Note that the Euclidean length of the (full-sized) horoball
B1 is 1.

4 One might wonder whether relaxing the condition that the horoball C2 abuts the horoball g(Ni+1) in our setup
might allow for a smaller C2 ? (Similarly for C4.) However, a straightforward calculation shows that rolling C2

along C1 does not allow for a decrease in the size of C2.
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Consider the triangle formed by the centers of Ni, B1, Ni+3 with edges of length y1, y2 and d , which was
defined above. Since B1 has height 1, we know that y1 ≥ 1/ep and y2 ≥ 1/eq . Let α be the angle at the
center of B1. By the Euclidean Law of Cosines, we have d2 = y2

1 + y2
2 − 2 cos(α)y1y2. As observed above,

α is between 2π/3 and π . Hence, 1 ≤ −2 cos(α) ≤ 2 and d2 ≥ 1/e2
p + 1/e2

q + 1/(epeq). So,

(er/(epeq))2 ≥ 1/e2
p + 1/e2

q + 1/(epeq)

e2
r ≥ e2

q + e2
p + epeq

0 ≥ e2
p + (eq)ep + (e2

q − e2
r )

So, we have a quadratic inequality in ep and the solution is

−eq −
√

4e2
r − 3e2

q

2
≤ ep ≤

−eq +
√

4e2
r − 3e2

q

2

The broadest range of values is when er is maximized and eq is minimized. Because er is the Euclidean
length from Ni to Ni+3, i.e., the Euclidean length from g(Ni) to C3, we see that

√
3 ≤ er ≤ 2 (correspond-

ing to the height of the horoball C3 being in the range from 1/3 to 1/4). So the maximum value for er is
2. The minimum value for eq is 1 and this occurs when Ni+3 is a full-sized horoball. Plugging into the
formula for ep we see that the range of possible values for ep is from 1 to (−1 +

√
13)/2 = 1.302775 . . . .

This is a crude bound and we can improve it if we have better control over eq.

eq is the Euclidean length from Ni+3 to B2, which is equal to the Euclidean length from C3 to g(B2). The
Euclidean distance t between the centers of the horoballs g(B2) and C3 is then t = eq/(epeC3). We will
analyze t values (so that we can control eq values) by studying the angle ∠(C4, C3, g(B2)); we want to
eliminate t values that result in an angle (at C3 ) of more than π/3. C3 and C4 abut, and although C4 and
g(B2) do not necessarily abut, we can swing C4 towards g(B2) until they do abut and in so doing, decrease
the angle at C3. As such, we will assume that C4 and g(B2) abut.

Thus we have a Euclidean triangle formed by the centers of C4, C3, g(B2). We should denote the
associated Euclidean lengths by eC4 , eC3 , eg(B2), but in the interest of simplifying some formulas we will
abuse notation and denote them respectively as C4, C3, B2. Note that in this notation B2 = ep. Now, the
edges of the triangle are t, 1/(B2C4), 1/(C3C4); note that 1/(B2C4) is the edge opposite the angle at C3

which we will call γ. Using the Euclidean Law of Cosines, we have

1/(B2C4)2 = t2 + 1/(C3C4)2 − (2t/(C3C4)) cos(γ)

0 = t2 + (−2 cos(γ)/(C3C4))t + 1/(C3C4)2 − 1/(B2C4)2

Hence,

t =
1
2

(
2 cos(γ)/(C3C4)±

√
(2 cos(γ)/(C3C4))2 − 4((1/(C3C4)2 − (1/(B2C4)2)

)
t =

1
C3C4B2

(
B2 cos(γ)±

√
B2

2 cos2(γ)− B2
2 + C2

3

)
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So,

eq = C3ept = C3B2t =
1

C4

(
B2 cos(γ)±

√
B2

2 cos2(γ)− B2
2 + C2

3

)
We want to resolve the choice of ± above. Recall that we have the bounds 1 ≤ C2,C3 ≤ 2, since the
horoballs have heights at least 1/4, 1 ≤ B2 = ep ≤ 1.302775 . . . and 0 ≤ γ ≤ π/3, by above. Since
eq ≥ 1 by definition, it is easy to see that over these parameters the must choose + in the ± above.

What’s the smallest allowable eq (where the angle γ is between 0 and π/3)? Previously, we only needed
the trivial bound eq ≥ 1, but here we can do better. Now, first, we take the smallest cos(γ), i.e. 1/2, to
obtain

eq =
1

2C4

(
B2 +

√
B2

2 − 4B2
2 + 4C2

3

)
=

1
2C4

(
B2 +

√
−3B2

2 + 4C2
3

)
Next, we take the smallest C3, which is

√
3 to obtain

eq =
1

2C4

(
B2 +

√
12− 3B2

2

)
The minimum occurs at the largest allowable value of B2 = ep, which is 1.302775 . . . . Combining this
with our above upper bound on C4 =

√
1/0.62127 = 1.2687, we get that eq ≥ 1.54928.

We now have better control over eq and we can go back up to our ep control calculation and improve it.

ep ≤
(
−eq +

√
4e2

r − 3e2
q

)
/2

≤ −1.5492 +
√

16− 3(1.5492)2)/2

≤ 0.708532

This is a contradiction, and we conclude that our original assumption that the angle at C3 is π/3 or less is
incorrect.

This proves Claim III.

Claim IV: ∠(g(B1), C3, C2) > π/3.

Taking our original set-up we can invert in the totally geodesic plane equidistant from B1 and B2. We then
redo the analysis with B1 replacing B2, and C2 replacing C4. We see that the angle at C3 must be greater
than π/3.

This proves Claim IV, and thus concludes the proof of Case 1A.

Case 1B: B1,B2 /∈ ηi, BCBC pattern.

We operated under the assumption that the cyclic positioning of the horoballs around C3 was (clockwise)
B1,B2,C4,C2. We need to rule out B1,C4,B2,C2 (the other case follows similarly). In particular, we
need to rule out that C4 lies in the angle B1,C3,B2. We argue by contradiction and assume that C4 is
within that angle. We construct the triangle with centers at B1,B2,C4 and see that its angle at C4 is
maximized when the Euclidean distance between the centers of B1 and B2 is 1. Denote the distance
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between the centers of B1 and C4 as a and the distance between the centers of B2 and C4 as b. Then
a2 + b2 ≥ (

√
0.62127)2 + (

√
0.62127)2 > 1. Now, using the Euclidean Law of Cosines, we see that the

angle at C4 must be less than π/2. Consequently, the angle B1,C3,B2 must be less than π/2 as well,
which is a contradiction.

This proves Case 1B, and finishes the proof of Case 1.

Case 2: Assume B1 or B2, but not both, in ηi .

The previous argument is still valid as long as g(B1) is not C2 (similarly for g(B2) and C4 ). But, if g(B1)
were C2 then there would be a tangency in T between g(B1) and C3, hence B1 and Ni+3. But the latter is
not allowed by Lemma 4.38, above.

This proves Case 2.

Therefore, B1,B2 ∈ ηi.

We can now combine all the pieces to prove part of the main result of of this section.

Proposition 4.41 If η is a globally minimal ≤ 7-necklace in an oriented geometric horoball system
(H, T ), then η is unknotted, unblocked, and unlinked.

Proof By Theorem 4.17, we know that η is unknotted. Assume, by way of contradiction that η is blocked
by some γb = γ(B1,B2) for b ∈ T . We can further assume that b ∈ T ′′ since η is minimal and we can
make the unknotting disk disjoint form T ′ ties by Lemma 4.26. Thus, the Ni are at most full size. It
was shown in [AK13, Proposition 2.8] that all ≤ 6-necklaces in an oriented geometric horoball system
are unblocked. Note, however, [AK13] gives an example of a non-orientable 3-manifold with a blocked
6-necklace.

We now turn to the case where k = 7.

By Lemmas 4.37 and 4.40, ηi contains both B1 and B2 = H∞ for all i = 1, . . . , 7. By Lemma 4.35, each
ηi contains the tie γb. In particular, this implies that ηi must be one of the seven conjugates of η that pass
though γb. Further, ηi 6= ηj for i 6= j as fi 6= fj. Thus {ηi} is exactly the set of seven conjugates of η
passing through γb.

Let ζi = f−1
i (η), which are again all distinct. Both ηi and ζi contain the tie γb and are conjugates of η.

Thus, ηi = ζj for some pair (i, j). Since i, j = 1, . . . , 7, by parity we have that ηk = ζk for some k. Then
fk(η) = f−1

k (η) and f 2
k (η) = η. This is a contradiction as f 2

k cannot have finite order.

Therefore, η must be unblocked. By Proposition 4.20, η is therefore unlinked.
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4.5 Full Necklace Structures

We will need an additional condition on our compressing disks. This condition is called “fullness” and
will allow us to enumerate manifolds combinatorially in the next section.

Throughout this section, we use the notation of [GMM11].

Definition 4.42 Let M be a compact 3-manifold with ∂M a union of tori and B ⊂ ∂M is either a torus, a
disc, or one or two annuli. A general-based necklace-n structure (M,B,∆) is a handle structure on M
of the form B×I with a single 1-handle and a single valence-n 2-handle attached to B×1, where we require
that if I1, I2 ⊂ B× 1 are the islands, then the core of each bridge is an essential arc in B× 1 r int(I1 ∪ I2).

Definition 4.43 A necklace-n structure is a general based necklace-n structure where B is a torus.

Definition 4.44 We say that ∆ is full if every lake of ∆ is a disc.

Following the convention of [GMM11], a compact hyperbolic 3-manifold (N, T), is a manifold N whose
interior supports a complete hyperbolic structure of finite volume, where T is a component of ∂N, i.e. T
identifies a preferred cusp.

Definition 4.45 Let N be a compact hyperbolic 3-manifold. An internal necklace-n structure on N
consists of a non-elementary embedding f : M → N, where (M,B,∆) is a necklace-n structure and each
component of ∂M is either boundary parallel in N or bounds a solid torus complementary to M.

Remarks 4.46 (i) f as above is π1 -surjective.

(ii) By adding 1-handles we can subdivide the 2-handle into valence-3 2-handles. Thus a necklace-n
structure gives rise to a Mom-(n− 2) structure. On the other hand a Mom-2 structure gives rise to a
necklace≤ 5 structure with the same underlying manifold.

(iii) Since an internal Mom-n structure on a hyperbolic 3-manifold must have n ≥ 2 it follows that an
internal necklace structure must have n ≥ 4.

The following is the necklace analogue of Lemma 1.13 [GMM11].

Lemma 4.47 A non-elementary embedding of the necklacen manifold M into the compact hyperbolic
3-manifold N will fail to give an internal necklacen structure on N if and only if some component of ∂M
maps to a convolutube. In that case, a reimbedding of M, supported in a neighborhood of the convolutubes
gives rise to an internal necklacen structure on N. Components of ∂M that are boundary parallel in N are
fixed under the reimbedding.

Proposition 4.48 Let (N, T) be a 1-cusped hyperbolic 3-manifold with the internal necklace-k structure
(M,T,∆). If ∆ is not full, then there exists a full necklace-k′ structure (M′,B′,∆′) on N with k′ < k.
Furthermore, if k ≤ 7 or k is odd and k′ = k − 1, then this structure can be chosen so that B′ = T.
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Remark 4.49 Note that the key conclusion here is fullness. It is an open question if the structure can be
made hyperbolic. In this paper, we will be shown this to be true for k ≤ 7.

Proof To start with, if ∆ is not full, then each non-disc lake is an annulus. Indeed, a lake with smaller
Euler characteristic can only be attained if all bridges are parallel (i.e. a punctured torus or a punctured
annulus). In that case, we see that M contains a boundary connect sum of B × I and a lens space
r int(N(B3)), which is impossible Since π1(N) is torsion free it follows that the inclusion map B → N
induces a π1 -surjection, which is a contradiction.

Through repeated application of Lemmas 4.51 and 4.52 below we will produce internal necklace structures
of smaller and smaller necklace number, hence will eventually obtain the full necklace-k′ structure
(M′,B′,∆′). Repeat applications may be necessary since the result at a given step may have annular lakes.
If |∂M′| = 2 and B′ 6= T, then by replacing ∆ by its dual handle structure we can assume that B′ = T. If
k is odd and k′ = k − 1, then we shall see that only Step 1 will apply, it will be invoked exactly once and
|∂M′| = 2. Thus, if k ≤ 7 we can either arrange for B′ = T or k′ ≤ 5 and |∂M′| = 3.

Assume k′ ≤ 5 and |∂M′| = 3. We now show that either M′ is hyperbolic or N has a full internal
necklace≤ 5 structure (M′′,B′′,∆′′) with M′′ hyperbolic and |∂M′′| = 2 in which case we are finished as
before. By Remark 4.46, it follows that ∆′ subdivides to a full Mom-≤ 3 structure on N. By Theorem 4.1
[GMM11] and its proof we can assume that either M′ is hyperbolic or N has an internal Mom-2 structure
whose underlying manifold is hyperbolic. In the latter case, using Remark 4.46, it follows that there exists
a full internal necklace-≤ 5 structure (M′′,B′′,∆′′) on N such that M′′ is hyperbolic and is the underlying
manifold to a Mom-2 structure. By [GMM11] |∂M′′| = 2, so we can arrange that B′ = T.

Finally, if M′ is hyperbolic, then since |∂M′| = 3, it follows from [GMM11] that M′ = s776, also known
as the magic manifold. Since Diff(s776) acts transitively on its ends, we can arrange that B′ = T.

Remark 4.50 In what follows we make repeated use of the following standard topological facts about
hyperbolic 3-manifolds. Suppose that N is a compact hyperbolic 3-manifold and M = N r int(N(L))
where L is a link with components L1, · · · ,Ln. Suppose that A ⊂ M is a properly embedded annulus
whose boundary components are essential in ∂M.

(1) If ∂A ⊂ T, where T is a component of ∂N, then A is boundary parallel in N.

(2) If A connects T to ∂N(Li), then |A ∩ Di| = 1, where Di is a meridian of N(Li).

(3) If A intersects the distinct components N(Li) and N(Lj), then |A ∩ Dm| = 1 for some m ∈ {i, j}.

(4) If ∂A ⊂ N(Li), then A separates M.

Proof This is obvious possibly except for the case that A hits two tubes. In that case the tubes and N(A)
give a Seifert-fibered space X with two singular fibers of index p, q. If ∂X is incompressible in N, then
this gives a π1 contradiction. If N compresses, then there are three cases. In each case N is a non-trivial
connect sum, which is a contradiction. If the boundary of the compressing disc is parallel to a fiber, then
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N is a non-trivial connect sum with two lens spaces. If the boundary hits once, then it is a connect sum
with one lens space. If it hits more than once, then N is a connect sum with a Seifert-fibered space with
three singular fibers.

Lemma 4.51 (Step 1) If ∆ has a single annular lake and is necklacen, then N has an internal necklace<
n structure.

Proof First observe that ∂M has two or three components where the latter occurs if and only if the
attaching curve of the 2-handle is separating. Thus, if k is odd, then |∂M| = 2. Let A be an annulus in
B× I that cuts open the lake. By Remark 4.50, the resulting manifold M1 = Mr int(N(A)) is isotopic to
N or Nr int N(K) depending if |∂M| = 2 or 3. M1 has a general based necklace structure (M1,B1,∆1),
where B1 is an annulus. Note that ∆1 has two islands I1, I2 and k bridges. Also x parallel bridges connect
I1 to I1, x parallel bridges connect I2 to I2, and the bridges that connect I1 to I2 fall into two parallel
families containing a and b bridges respectively. Assume that a ≥ b. Note that ∆ has a single annular
lake if and only if a > 0. Also that k = 2x + a + b, hence ∆ has a single annular lake if k is odd.

Now M1 = B1×I∪η∪σ, where η is the 1-handle and σ is the 2-handle. Let σ′ be the core of the 2-handle
and J = B1×I∪η. Let E be a properly embedded disc in B1×I such that |E∩∂σ′| = 2x+b. Let α ⊂ int(J)
be a simple closed curve disjoint from E, that goes through η once and then parallels part of B1 along the
a-bridges. Similar to the operation in Lemma 4.6 [GMM11] we can hollow out N(α) from M1 to obtain a
new internal necklace-(2x+b) structure (M2,B2,∆2) on N where M2 = M1

rint(N(α)),B2 = ∂N(α),N(E)
becomes the 1-handle and σ continues as the 2-handle.

Lemma 4.52 (Step 2) If ∆ has two annular lakes and is necklacem, then m = 2n and N has an internal
necklace≤ n-structure.

Proof Let M1 be obtained by splitting B × I along vertical annuli which intersect B × 1 in the cores
of the annular lakes. Using Remark 4.50 this gives rise to a general based internal necklace structure
(M1,B1,∆1) where B1 consists of two annuli and M1 is obtained by starting with B1 × I, attaching a
1-handle η to the components of B1 × 1 and then attaching a valence-k 2-handle σ. With notation as in
Lemma 4.51, we have a = b = 0 and 2x = k. Let C and C′ be the components of B1 and let E be a
compressing disc for C′ × I disjoint from η. Let (M2,B2,∆2) be the necklace-k 3-manifold constructed
as follows. First let M2 = M1. Next observe that B1× I∪η is isotopic to C× I∪η′ where η′ is a 1-handle
with cocore E. Here η ∪ (C′ × Ir N(E)) have been absorbed into C × I. With respect to this structure, σ
is now of valence x = k/2. The ∆2 necklace structure is based on the annulus B2. The proof of Step 1
now produces an internal necklace-≤ x structure (M3,B3,∆3) on N.

5 Enumerating internal necklace structures

We are almost ready to prove Theorem 1.1. So far, by Sections 2 and 4, we have shown that if N is
a complete hyperbolic 3-manifold with at least one cusp of maximal cusp volume 2.62, then N has a
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full, internal necklace-k structure with k ≤ 7—that is, a nonelementary embedding of a full handle
structure based on a torus, with one 1-handle and one 2-handle of valence at most 7. In the present section,
we enumerate full necklace-n structures ("Problem Bead"), and classify their possible nonelementary
embeddings ("Problem NE") to show that our original cusped hyperbolic 3-manifold N is gotten by Dehn
filling of at least one of the 16 cusped hyperbolic 3-manifolds listed in Table 1. This is all put together
in the proof of Theorem 1.1 in subsection 5.4. We start off by codifying some common notions in the
literature of hyperbolic 3-manifolds.

In the theory of Jørgensen and Thurston, one gets around the infinity of certain classes of hyperbolic
3-manifolds by showing these classes admit finite sets of ancestors where every element of the given class
is a Dehn filling of one of these ancestral manifolds.

Definition 5.1 Suppose S is a set of 3-manifolds. An ancestral set for S is a set A of 3-manifolds such
that for every s ∈ S , there exists A ∈ A and a list c of Dehn-filling coefficients for the cusps of A such
that s is homeomorphic to A[c].

Every set of 3-manifolds is, trivially, an ancestral set for itself. Usually, however, the objective is to obtain
a finite ancestral set for an infinite class of 3-manifolds. For instance,

Theorem 5.2 (Jørgensen-Thurston) For all V > 0 the class VOL(V) of hyperbolic 3-manifolds with
volume at most V admits a finite ancestral set.

Another example of this is the theorem of Gabai, Meyerhoff, and Milley.

Theorem 5.3 The set {m125,m129, · · · , s959} is an ancestral set for the class of 1-cusped orientable
hyperbolic 3-manifolds with volume at most 2.848.

Our main result, Theorem 1.1, likewise gives a finite ancestral set for the class of orientable hyperbolic
3-manifolds with a maximal cusp of volume at most 2.62. Seeing as how we have proven that every such
3-manifold admits a nonelementary embedding from a necklace manifold of at most 7 beads, it behooves
us to solve the following computational problems.

Definition 5.4 A generalized link exterior is the interior of a compact connected orientable 3-manifold5

whose boundary is a disjoint union of at least one torus.

Definition 5.5 Suppose M is a compact 3-manifold. NE+(M) is the class of all finite-volume hyperbolic
manifolds into which M admits a nonelementary embedding.

To make the problem of finding NE+(M) computationally accessible and algorithmic, we replace M with
an oriented finite triangulation6.

5Some authors require that the given closed 3-manifold be irreducible. We do not make this requirement.
6This in not an ideal triangulation, but a triangulation of the compact manifold M with boundary.



Hyperbolic 3-manifolds of low cusp volume 53

Problem 5.6 (NE) Given an oriented finite triangulation T of M , find an algorithm to compute a finite
ancestral set for NE+(M) consisting of hyperbolic 3-manifolds.

Problem 5.7 (Bead) Given a natural number n, to enumerate the necklace manifolds with n beads.

The reason for the restriction in problem NE to hyperbolic 3-manifolds is that they admit good algorithms
for determining hyperbolicity of Dehn fillings.

The main results of this section are solutions to problems NE and Bead. The solution to problem NE relies
upon algorithms in normal surface theory and a reformulation of results in [GMM11]. The solution to
problem Bead is a simple exercise in recursion.

5.1 Problem NE

Before beginning the solution to problem NE, we note in passing the following fact: if A and B are
ancestral sets, respectively, for sets U and V of 3-manifolds, and W ⊂ U ∪ V , then A ∪ B is an ancestral
set for W .

5.1.1 Nonelementary embeddings

We first show that Definition 5.1 gives just the set of hyperbolic Dehn fillings of M , though prima facie it
could give a proper superset of these fillings.

Lemma 5.8 If M is a generalized link exterior, then NE+(M) is the class of cusped hyperbolic Dehn
fillings of M .

One could prove this as an elementary consequence of Proposition 1.7 of [GMM11]. The idea there is to
embed convolutubes (tori that only compress towards the generalized link exterior boundary) in disjoint
balls in N . But we provide a “hands-on” proof in the Appendix C.

Definition 5.9 A fault in a generalized link exterior M is a properly embedded surface with nonnegative
Euler characteristic that is one of the following:

• nonorientable;

• a sphere not bounding a ball (an essential sphere);

• a disc not separating a ball from M (a compressing disc);

• an incompressible torus not parallel to ∂M (an essential torus); or

• an incompressible, ∂ -incompressible annulus (an essential annulus).
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A generalized link exterior is irreducible when it admits no essential sphere; is boundary-irreducible
when it also admits no compressing disc; is geometrically atoroidal when it also admits no essential
torus; and, finally, is anannular when it also admits no essential annulus.

The following lemma, which relies to a large extent on Lemma 1.13 of [GMM11], enables the computation
of a finite ancestral set for NE+(M) for any given a triangulation T of M , ultimately by recursion on the
natural decomposition of M along spheres and tori.

Lemma 5.10 Let M be a generalized link exterior.

(1) If M admits a nonseparating fault, then NE+(M) = ∅.

(2) If M = L # R, then NE+(M) ⊂ NE+(L) ∪ NE+(R).

(3) If M = L ∪φ R, where φ : TL → TR is a homeomorphism between two torus boundary components
TL and TR of L and R, then NE+(M) ⊂ NE+(L) ∪ NE+(R).

(4) If M is irreducible, boundary-irreducible, and is geometrically atoroidal, but has an annulus
separating it into two solid tori, then NE+(M) = ∅.

We note that if M is irreducible, boundary-irreducible, and geometrically atoroidal, and does not admit
a nonseparating fault, but has an essential annulus, then that annulus cuts M into two solid tori. It is
markedly easier to show an annulus cuts M into two solid tori than to show further that that annulus is
essential, so the former is the condition we use in the algorithm for computing NE+(M).

Proof

(1) If i : M ↪→ N were a nonelementary embedding, and Σ were a nonseparating fault in M , then
i(Σ) ⊂ N would be a nonseparating fault in N , contrary to hyperbolicity of N .

(2) Suppose M = L # R. Let S ⊂ M be a reducing sphere with the surgery of M along S being
L t R, i.e. such that M \ S ≈ L∗ t R∗ , L∗ and R∗ being L and R punctured. Suppose further that
i : M ↪→ N is a nonelementary embedding of M into an orientable hyperbolic 3-manifold N . Then
i(S) is a sphere in N . Thus, since N is hyperbolic, N \ S = N∗ ∪ D3 . Then exactly one of L∗ and
R∗ has image in D3 . Say it’s L∗ . Then π1(M) = π1(L∗) ∗ π1(R∗) and

i∗(π1(M)) ' i∗(π1(L∗)) ∗ i∗(π1(R∗)) ' i∗(π1(R∗)).

Hence i|R∗ is a nonelementary embedding. In this case, capping i(R∗) off with the D3 above yields
a nonelementary embedding on R into N . Similarly, if R∗ has image in D3 , then i can be modified
to a nonelementary embedding of L into N . Hence, NE+(M) ⊂ NE+(L) ∪ NE+(R).

(3) Suppose i : M ↪→ N is a nonelementary embedding. Then by item 1, the identified torus T =

TL/φ = TR/φ splits M into two components. By item (iv) of Lemma 1.10 of [GMM11], on one of
those components, i restricts to a nonelementary embedding.



Hyperbolic 3-manifolds of low cusp volume 55

(4) Suppose M is irreducible, ∂ -irreducible, and geometrically atoroidal, but admits an annulus splitting
it into two solid tori. Then π1(M) ' Z ∗ZZ. Such a group does not admit a nonelementary map into
PSL2 C. Therefore M does not admit a nonelementary embedding into an orientable hyperbolic
3-manifold.

Theorem 5.11 Algorithm 1 is a solution to problem NE for nontrivial generalized link exteriors.

Algorithm 1 Problem NE
procedure PROBNE(T )

Assume T is a generalized link exterior.
if π1(T ) already has a common axis presentation then

return ∅
else if T admits a strict angle structure then

return {T }
Let F be the set of fundamental normal surfaces in T .
if there is a nonseparating fault in F then

return ∅
else if there is a reducing sphere S in F then

Calculate TL, TR such that T = TL # TR.

return PROBNE(TL) ∪ PROBNE(TR)
else if there is an essential torus T in F then

Calculate TL, TR such that T − T = TL t TR.

return PROBNE(TL) ∪ PROBNE(TR)
else if there is an annulus A in F splitting T into two solid tori then

return ∅
else

return {T }

The initial two sanity checks are discussed below in § 5.2. We turn now to the bulk of the algorithm.

Proof Suppose M is a nontrivial generalized link exterior.

If M admits a nonseparating fault, then by Lemma 5.10.1, NE+(M) = ∅, so the algorithm returns a correct
ancestral set.

If M admits a reducing sphere S , then, letting L # R be the connect-sum decomposition of M along S ,
Lemma 5.10.2 shows that NE+(M) ⊂ NE+(L) ∪ NE+(R). By induction on the size of the prime and JSJ
decompositions of M , we may let U =

⋃
Y∈NE+(L) NE+(Y) and V =

⋃
Y∈NE+(R) NE+(Y) be the ancestral

sets of NE+(L) and NE+(R), respectively. Thus U ∪ V is an ancestral set for NE+(M), so the algorithm
returns a correct ancestral set.
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If M is a solid torus, then π1(M) ' Z, and so M admits no nonelementary embeddings. Thus the algorithm
returns a correct ancestral set.

Otherwise, M is irreducible and ∂ -irreducible. If in this case M admits a separating essential torus T ,
then, letting L t R ≈ M − T be the components of the exterior of T in M , Lemma 5.10.3 shows that
NE+(M) ⊂ NE+(L)∪NE+(R). As with the case of a reducing sphere, we recursively compute the ancestral
sets U and V of NE+(L) and NE+(R), respectively. It follows that U ∪ V is an ancestral set for NE+(M),
so that the algorithm returns a correct ancestral set.

Otherwise, M is irreducible, ∂ -irreducible, geometrically atoroidal, and admits no nonseparating faults.
Thus, since M is a nontrivial generalized link exterior, either M is Seifert-fibered over a disc with two
exceptional fibers, or M is hyperbolic. In the former case, M admits an essential annulus A separating it
into two solid tori, and so by Lemma 5.10.4, NE+(M) = ∅, so the algorithm returns a correct ancestral set
in this case, again by induction on the complexity of the decomposition of M .

Otherwise, and finally, if M admits no faults in F , then by Lemma 5.13 in section 5.1.2, M admits no
faults at all, and therefore is hyperbolic by Thurston’s Haken hyperbolization theorem. So by Lemma 5.8,
{M} is an ancestral set for NE+(M). Thus the algorithm returns a correct ancestral set in this case.

Python listings implementing this code using REGINA are available under the name problemNE.py at
[Gita].

5.1.2 Fault finding

To turn the above lemmas into implementable code requires algorithms for various tasks, all to do with
finding faults. To determine the existence of a fault and, if one exists, to find one, we may appeal to the
theory of normal surfaces as implemented in REGINA, which we now briefly review.

Definition 5.12 Fix a triangulation T of a 3-manifold. A normal isotopy is an isotopy through isomor-
phisms of T . A normal disc in a tetrahedron τ is a properly embedded disc either separating one vertex
of τ from the others, or separating two pairs of vertices.7 A normal surface is a properly embedded
surface transverse to T that is a disjoint union of normal discs.

The following theorem is the theoretical backbone of our use of normal surface theory. It is a corollary of
well-known results (cf. [Mat07]).

Proposition 5.13 Suppose T is a triangulation whose underlying space is a 3-manifold M . There is a
finite set F of normal surfaces in T , called fundamental normal surfaces, that is computable from T ,
such that

7That is, regarding τ as an affine simplex, a normal disc is a properly embedded disc normally isotopic to an
affine disc transverse to τ .
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• if M has an embedded projective plane, then there is one in F ;

• else, if M has an essential S2 , then there is one in F ;

• else, if M has a compressing D2 , then there is one in F ;

• else, if M has an embedded Klein bottle, then there is one in F ;

• else, if M has an essential torus, then there is one in F ;

• else, if M has an embedded Möbius band, then there is one in F ;

• else, if M has an essential annulus, then there is one in F .

In particular, M admits a fault if and only if it admits a fault in F .

Proof This is essentially a concatenation of Theorems 3.3.30, 4.1.12, 4.1.13, 4.1.36, 6.4.7, and 6.4.8 of
[Mat07].

Remark 5.14 In fact our implementation only enumerates vertex normal surfaces. This smaller collection
of surfaces sufficed for our needs.

Proposition 5.15 Algorithm 2 determines whether or not a given triangulation is homeomorphic to
T2 × I .

Algorithm 2 Homeomorphism to T2 × I
procedure IS T2 × I (T )

if T has different homology from T2 × I then
return False

Simplify T so that each boundary component has a one-vertex triangulation.
Pick a boundary component k ; it has three edges.
for edge e of k do

Let Te be gotten from T by closing-the-book along e.
if Te is not a solid torus then

return False
return true

Proof We give a brief outline. For more details, see [Har20]. Closing-the-book along an edge in a
one-vertex triangulation of the torus accomplishes a Dehn filling along the flip of the edge. Dehn filling
T2 × I always yields a solid torus. Hence, if closing-the-book doe not yield a solid torus, then certainly T
is not T2× I . Suppose, on the other hand, that each filling of T along a flip αe of an edge of the boundary
triangulation yields a solid torus. Then T admits three Dehn slopes distance 3 apart that fill to solid tori.
By [Gab89] and [Gab90], it is not difficult to show that T must be homeomorphic to T2 × I .
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Remark 5.16 The above algorithm, though very short, relies crucially upon solid torus recognition. The
lowest known upper bounds on worst-case running time for solid torus recognition are exponential in the
number of tetrahedra. So the same is true of the above algorithm.

Algorithms 3, 4, 5, and 6 therefore accomplish the tasks required from Algorithm 1, assuming the ambient
triangulation in which S lies is connected, and, in Algorithm 5, assuming that triangulation is irreducible.
In Algorithm 1, this assumption is satisfied at the point where Algorithm 5 is needed.

Algorithm 3 Is a normal surface a non-separating fault?
procedure ISNONSEPARATINGFAULT(S)

if χ(S) < 0 then
return False

Let T be the triangulation in which S lies.
Let T ′ be T cut along S .
if T ′ is connected then

return True
else

return False

Algorithm 4 Is a normal surface an essential sphere?
procedure ISESSENTIALSPHERE(S)

if S is not a sphere then
return False

Let T be the triangulation in which S lies.
Let T ′ be T cut along S .
if T ′ is connected then

return True
T ′ has two components; call them L and R.
if L or R is a ball then

return False
else

return True

Python listings implementing the above algorithms using REGINA are available under the names faultFinding.py
and problemNE.py at [Gita].

5.2 Sanity checks

The previous section technically completes our solution to problem NE. However, a few additional
considerations speed up our computations. We turn to these now.
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Algorithm 5 Is a normal surface an essential torus?
precondition The ambient triangulation is irreducible.
procedure ISESSENTIALTORUS(S)

if S is not a torus then
return False

Let T be the triangulation in which S lies.
Let T ′ be T cut along S .
if T ′ is connected then

return True
T ′ has two components; call them L and R.
if L or R is ∂ -compressible or T2 × I then

return False
else

return True

Algorithm 6 Is a normal surface an annulus separating T into two solid tori?
procedure ISSOLIDTORUSANNULUS(S)

if S is not an annulus then
return False

Let T be the triangulation in which S lies.
Let T ′ be T cut along S .
if T ′ is connected then

return False
T ′ has two components; call them L and R.
if L and R are both solid tori then

return True
else

return False
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First, all necklace gluings are orientable. Likewise, they are all connected. If we were testing arbitrary
MOM gluings, then we would add a connectedness test. One other requirement, though, is that the links of
all the vertices must be tori. Many necklace gluings are not generalized link exteriors, and hence are of no
concern to us in our enumeration. So, we must implement a test for being a generalized link exterior.

Another fast, extremely useful check is a fundamental group check. REGINA has routines for calculating
and simplifying presentations of fundamental groups of triangulations (and ideal triangulations). A
significant plurality of necklace gluings of bead number at most 7 admit fundamental group presentations
of one of the following forms, and these presentations admit no nonelementary embeddings into PSL2 C.

Definition 5.17 Suppose P = 〈a, b | . . . 〉 is a two-generator finite presentation of some group. A
common axis commutator is a relation of the form [ap, bq] for some p, q ∈ Z. A common axis
equation is a relation of the form apbq for some p, q ∈ Z. We call these common axis relations.

Lemma 5.18 Presentations with common axis relators do not present fundamental groups of 3-manifolds
admitting nonelementary embeddings into hyperbolic 3-manifolds.

Proof Suppose such a presentation P presents G < PSL2 C.

If P has a common axis commutator or equation, then ap and bq commute. Since G < PSL2 C, a and b
must commute as well, since commuting elements have the same axis, and ap, bq have the same axes as
a, b, respectively. So G is a quotient of Z⊕ Z.

Python listings implementing these sanity checks using REGINA are available under the name sanity.py

at [Gita].

Yet another sanity check one can do on a triangulation is to try to find a strict angle structure on it.

Definition 5.19 Suppose Qτ is the set of all normal isotopy types of quadrilaterals in a tetrahedron τ ,
and that QT =

⋃
τ∈T Qτ . A strict angle structure is a function θ : QT → (0, π) such that∑

q∈Qτ

θ(q) = π

for all τ ∈ T , and such that ∑
q opposite e

θ(q) = 2π

for all edges e of T .

Theorem 5.20 ([Lac00],[FG09]) If an ideal triangulation of a generalized link exterior M admits a strict
angle structure, then M is hyperbolic.

REGINA already provides a routine that can usually find such structures in practice. Note that this result
implies that any oriented finite triangulation of M has no faults.

The final sanity check one may perform on a triangulation is to determine if it lies in a census of known
manifolds. REGINA provides such censuses, and our computations in the next section rely overwhelmingly
on the pre-computed properties of census manifolds. We describe this reliance in more detail there.
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5.3 Problem Bead

We now enumerate all necklace manifolds with a given number of beads, solving problem Bead. The
representations of the manifolds are the same as in [GMM11]. The actual enumeration is also done
similarly, but with an appeal to isomorphism signatures instead of to symmetries of dipyramids.

We review the representations briefly. A full handle structure without 3-handles deformation retracts to a
“core” 2-skeleton of the handle structure. This 2-skeleton is a spine for the 3-manifold. Taking the dual of
this complex gives one an ideal cellulation C of the 3-manifold by dipyramids, an n-dipyramid being the
suspension of an n-gon. The face-pairing maps preserve the distinction between the polygons’ vertices
and the suspension points. We call such a gluing of dipyramids a MOM gluing. It is important to note that
this construction required the fullness condition.

We triangulate an n-dipyramid with n tetrahedra by identifying n tetrahedra “around an edge,” which
edge runs between the suspension points of the dipyramid. The suspension base is not a subcomplex of
this triangulation. A MOM gluing thus yields a natural ideal triangulation of the corresponding handle
structure. We call such triangulations and face-pairings split, as they are precisely those triangulations
that admit splitting surfaces, normal surfaces with no triangles and one quadrilateral in every tetrahedron.
A full necklace manifold on n beads is, among other things, a full handle structure with one 1-handle of
valence n. The split triangulation of such a handle structure is a split face-pairing of a single n-dipyramid.
For any pair of faces, there is only one face-pairing between them preserving the distinction between
n-gon vertices and suspension points and reversing the orientation on the faces. A full necklace manifold
on n beads is thus determined merely by which pairs of faces are glued. This puts these structures in
bijection with partitions of Dn = {i : 0 ≤ i < 2n} into pairs, or perfect matchings on Dn. These are our
representations of these manifolds.

Lines 1309–1401 of enum_gluings.cpp and the function IncrementMatching starting at line 297 of
enum_utils.cpp from [GMM11] give an explicit, “unrolled” iteration over perfect matchings. Algorithm
7 iterates over these perfect matchings recursively instead. We found the latter more transparent and easier
to implement, though its call stack presumably makes it less space-efficient.

Algorithm 7 Do f (µ) for all perfect matchings µ on l∪m with subpartition p that match the first element
of l to something else in l.

procedure PFM(p, l,m, f )
if l = nil then

if m = ∅ then
do f (p)

else if tail(l) 6= nil then
let x0, x1, l2 = head(l), head(tail(l)), tail(tail(l))
do PFM(cons((x0, x1), p), l2 ∪ m, ∅, f )
do PFM(p, cons(x0, l2), {x1} ∪ m, f )
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Notice that our ultimate goal in enumerating these gluings is to get triangulations of the underlying
3-manifolds. Therefore, it would suffice to enumerate the isomorphism signatures of all such triangulations
as defined in [Bur11]. We thank Neil Hoffman for this suggestion. This enables a simpler and more
efficient enumeration than was done in [GMM11]. We maintain a hash table sigs of the isomorphism
signatures seen so far, and then for every perfect matching, construct the associated triangulation and put its
isomorphism signature into sigs if it isn’t there already. That is, define f (µ) to be the operation of putting
the isomorphism signature of µ’s gluing into sigs if it isn’t there already, and run PFM(nil, [0, . . . , 2n−
1], ∅, f ). This solves problem Bead.

Remark 5.21 There are 242 cusped necklace manifolds with 4 to 7 beads. Among these, 35 admit a strict
angle structure; 63 admit a common axis group presentation; and the remaining 144 admit a nonseparating
fault. Census checks play a small role in this calculation. The opposite was true for the calculation in
section 6.

5.4 An ancestral set for manifolds of low cusp volume

We conclude this section with a proof of the main technical result of the paper.

Theorem 1.1 Let Y be a complete hyperbolic 3-manifold with cusps8. Either each cusp of Y has an
embedded horocusp of volume > 2.62 or Y is obtained by filling one of the 16 manifolds listed in Table 1.

s596 s647 s774 s776 s780 s782 s785 v2124
v2355 v2533 v2644 v2731 v3108 v3127 v3211 v3376

Table 1: An ancestral set for all hyperbolic 3-manifolds with vol(κ) ≤ 2.62.

Proof Suppose N is a complete nonelementary hyperbolic 3-manifold with at least one maximal cusp
of volume at most 2.62. Since N is complete and hyperbolic, we may identify N with H3/Γ for some
discrete, torsion-free, nonelementary Γ < PSL2C. Since N has a maximal cusp of volume at most 2.62,
there is a bicuspid triple (P, S, L) ∈ P whose associated bicuspid marking’s group G is conjugate into Γ.

Without loss of generality, we may thus assume G < Γ. Let m, n, g be the generating set for G associated
with (P, S,L). Because (P, S,L) ∈ P, by Theorem 1.8 there is a reduced non-identity word w in m, n, g
with g-length at most 7 such that w is trivial in G, and hence trivial in Γ.

Let H be the associated horoball system upstairs, the preimage of the chosen maximal cusp κ of N
under the universal cover H3 → H3/Γ = N . Letting ` be the g-length of w, by Lemma 4.2 there is an
`-necklace in H . Letting η be a minimal necklace in H , η must be a k-necklace with k ≤ ` ≤ 7. By
Proposition 4.41, η is unknotted, unblocked, and unlinked. Moreover, by Lemma 4.11, we may assume η
is simple. Hence, there is a compressing disk for η which descends to an embedded disk D in N . In fact, in

8Cusps are always rank-two in this paper. Note, additional boundary types are allowed in the hypothesis.
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N we have a handlebody M based on the maximal cusp neighborhood (actually, based on T × [0, 1] where
T is the torus boundary of the maximal cusp neighborhood), with one-handle σ associated to O(1) and
2-handle τ gotten by thickening our embedded disk D. By construction, M is non-elementarily embedded
in N . Lemma 4.47 and Proposition 4.48 tell us that we can assume this nonelementary embedding produces
an internal necklace-n structure on N with n ≤ 7, and that this structure is full.

The solution of problem Bead in section 5.3 enumerates all full necklace structures with given bead number.
Let FNS≤7 be this set of triangulations so enumerated. Then N ∈ NE+(M′) for some element M′ ∈ FNS≤7 .
The solution of problem NE in Theorem 5.11 computes a finite ancestral set A(M′) for NE+(M′) for all
M′ ∈ FNS≤7. So by Lemma 5.8 N is a Dehn filling of some element M ∈

⋃
M′∈FNS≤7

A(M′). This union
has the 28 elements given in Table 3, which are all hyperbolic as one would expect from Theorem 5.11.
Since they are hyperbolic, with SnapPy one may easily check Table 9, which asserts that the associated
manifolds from Table 3 are Dehn fillings of the magic manifold s776. Thus, N is a Dehn filling of some
element of Table 1.

m125 m129 m202 m203 m292 m295 m328
m359 m367 s441 s443 s596 s647 s774
s776 s780 s782 s785 v1060 v2124 v2355

v2533 v2644 v2731 v3108 v3127 v3211 v3376

Table 3: Initial ancestral set with Dehn fillings of s776 in bold.

m125 : (2, 1) m129 : (3,−1) m202 : (1, 2)
m203 : (3,−2) m292 : (3, 1) m295 : (4,−1)
m328 : (2,−3) m359 : (4,−3) m367 : (5,−2)

s441 : (4, 1) s443 : (5,−1) v1060 : (−6, 1)

Table 9: Dehn fillings of s776 in the shortest-next-shortest basis of any cusp.

The Python listing provegordon.py available at [Gita] performs the above calculations in the course of
proving Theorem 1.7.

Remark 5.22 The paper [GMM11] showed that every MOM-≤ 4 manifold that embedded nonelemen-
tarily into a hyperbolic 3-manifold was itself hyperbolic. Our calculations showed likewise that every
necklace-≤ 7 manifold that embeds nonelementarily into a hyperbolic 3-manifold is itself hyperbolic.
Both show this by cutting along surfaces. However, [GMM11] performed the cutting in the text of the
paper, showing that a calculation could skip over non-hyperbolic MOM structures. We did not skip over
them, cutting along the surfaces during the calculation.
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6 Applications

6.1 Gordon’s conjecture

In this section we apply our previous work, together with some more computations, to prove the following
conjecture of Cameron Gordon from 1995. To state the theorem, let e(M) denote the number of exceptional
Dehn fillings of M .

Theorem 1.7 The figure-8 knot exterior is the unique 1-cusped hyperbolic 3-manifold with nine or more
non-hyperbolic fillings.

Our proof of this theorem depends upon the following important result, known as the 6-Theorem:

Theorem ([Ago00], [Lac00]) Suppose N is a hyperbolic generalized link exterior and s is a slope on
∂N . If `(s) > 6 on the maximal cusp torus, then N(s) is hyperbolic.

We note their original conclusion was that N is irreducible and has infinite word-hyperbolic fundamental
group, a condition they called hyperbolike. However, by Perelman’s affirmative resolution of Thurston’s
Geometrization Conjecture, this implies that N is in fact hyperbolic.

Lemma 6.1 ([Ago10]) A 1-cusped orientable hyperbolic 3-manifold N with more than 8 exceptional
Dehn fillings admits a cusp of maximal area at most 36/7.

Proof Suppose the set S of N ’s exceptional Dehn fillings has more than 8 members. Then by Lemma 8.2
of [Ago00], the pairwise intersection numbers of elements of S are not all bounded above by 6. So some
two distinct exceptional Dehn fillings s, s′ must have ∆(s, s′) ≥ 7. Now,

∆(s, s′) =
`(s)`(s′) sin(θ)

A
,

where ` is geodesic length and θ is the angle between s and s′ on the maximal cusp torus, and A is its
area. By the 6-Theorem, the lengths of s and s′ are at most 6. Therefore, A ≤ 36/7.

Proof of Thm. 1.7. Just for this proof, let us call 1-cusped orientable hyperbolic 3-manifolds admitting
at least 9 exceptional Dehn fillings superexceptional. Suppose M is a superexceptional manifold. By
Lemma 6.1 below, M has a cusp of volume at most 18/7 = 2.571428, which is less than 2.62. Thus, by
Theorem 1.1, M is a Dehn filling either of s776 or of one of the 15 other manifolds detailed in Table 1.
The Dehn fillings of s776 were classified in detail in [MP06]; in particular, their Corollary A.6 shows that
the only superexceptional Dehn filling of s776 is m004. So either M is m004, or M is a Dehn filling of
a manifold in Table 1. An simple special case of the method of isolated slopes used in [MP06] can be
implemented as discussed in the following subsections. Running this method on each manifold of Table 1
only ever yields m004. Therefore, m004 is the only superexceptional manifold. That is, m004 is the only
1-cusped hyperbolic 3-manifold admitting at least 9 exceptional Dehn fillings.

As we remarked in the introduction, Crawford [Cra18] carried out an analysis of these Dehn filling families
using an alternate approach.
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6.1.1 Determining short slopes

The methods of [MP06] depended critically on being able to enumerate all slopes on a maximal cusp with
lengths at most a given bound B, which, fixing B, we will call short slopes. (In [MP06] and [MPR14]
B = 2π; for us, B = 6.) The software from the more recent paper [MPR14] follows the methods of
[MP06]. Instead of enumerating just the short slopes, this software in general enumerates a set containing
those slopes, but that is sufficient for our needs. Moreover, for manifolds of small complexity like those
in Table 1, this larger set includes few extraneous long slopes, if any at all. It is also now possible to
rigorously enumerate small slopes in SnapPy when imported as a module in Sage; this is the approach we
take.

6.1.2 Heuristics for determining hyperbolicity of closed 3-manifolds

We now turn to the question of determining the hyperbolicity of closed 3-manifolds. With Regina we
can at least determine whether or not a closed 3-manifold admits any faults, using the algorithms from
section 5.1.2. If a closed, orientable 3-manifold admits a fault, then it is not hyperbolic. If, on the other
hand, it admits no fault, then all we can conclude is that it is geometric. If it is not hyperbolic, then the
3-manifold is small-Seifert-fibered. There are algorithms to recognized small-Seifert-fibered manifolds,
given by Tao Li in [Li06] and Hyam Rubinstein in [Rub04]. Unfortunately their algorithms are not yet
feasible to implement in code. Fortunately, Regina is able to recognize some triangulations of many
such 3-manifolds. In particular, it recognizes all the nonhyperbolic faultless closed triangulations we
encountered as small-Seifert-fibered spaces, after some randomizations and simplifications.

Thus we turn to figuring out how one can verify the hyperbolicity of a closed 3-manifold. In many cases
SnapPy in SAGE can already do so, when the given triangulation is a geometric triangulation—that is,
when the triangulation supports a solution to Thurston’s gluing equations each tetrahedron of which is
positively oriented. Our methods then amounted to coaxing out various different triangulations of the
same 3-manifold, until finding one that SnapPy can prove geometric. Previous methods incorporated the
taking of covers. But we found this did not help much. The techniques we found most useful for proving
hyperbolicity were partial filling and dual curve drilling.

We first remind the reader briefly of how SnapPy works with closed 3-manifolds. At the core of SnapPy
is a modification of Newton’s method, applied to Thurston’s gluing equations for an ideal triangulation.
If the triangulation is not ideal in the usual sense, then the solution space for the equations might not be
0-dimensional, regardless of the conditions one places on the cusps. SnapPy’s Newton’s method is not
designed for this situation. Instead, one represents a closed 3-manifold as a Dehn filling of a generalized
link exterior. With an ideal triangulation of the generalized link exterior, one gets a 0-dimensional solution
space after imposing the completeness equations as usual. But also, one gets a 0-dimensional solution
space by imposing, instead of the completeness conditions, a modified condition on the cusp depending
on the choice of Dehn filling coefficient. If SnapPy’s Newton’s method settles on a putative solution to
these modified equations, and SAGE verifies this solution, and if, of course, the tetrahedra are positively
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oriented, then the incompleteness in the structure amounts to a missing geodesic. Filling in this geodesic
recovers the original closed 3-manifold, and proves it admits a hyperbolic structure.

In the course of our work, we are given a generalized link exterior M and a Dehn filling coefficient c
on its boundary, and we wish to determine whether or not M(c) is hyperbolic. One has several options
at this point. The most obvious option is to attach to Thurston’s gluing equations the cusp conditions
corresponding to c, and hope SnapPy finds a geometric solution to those equations. If this does not work,
one has the following two other options. If M is multiply-cusped, then one may pick a cusp τ , take the
slope s of c on τ , construct an ideal triangulation of M(s), and consider the generalized link exterior
M(s) with the Dehn filling coefficient c − s. M(s)(c − s) is homeomorphic to M(c). But SnapPy very
well may be able to find a positive solution for the equations coming from M(s)(c− s) and not on those
coming from M(c). This was a useful technique, which decreased the number of cusps. The opposite
technique, that of drilling out curves instead of filling them in, also proved useful. SnapPy can drill out
a curve in the dual 1-skeleton of a triangulation, putting an ideal triangulation on its complement, and
remembering which slope on the new boundary component is the meridian µ. (We thank Neil Hoffman for
pointing out this feature to us.) Again, SnapPy might be able to find a positive solution for the equations
on (M − γ)(c + µ) and not on M(c). These heuristics sufficed for us to verify the hyperbolicity of the
hyperbolic closed 3-manifolds we encountered.

6.1.3 Resolving Gordon’s conjecture

To resolve Gordon’s conjecture, we now only require an accounting of exceptional slopes. Suppose M
is a hyperbolic 3-manifold with 2 cusps. We wish to determine the superexceptional Dehn fillings of
M . To that end, recall that for us a slope s is short when it is of length at most 6 on a maximal torus
boundary of its associated cusp. We may first classify the short slopes of M on each cusp into hyperbolic
and exceptional. It is routine to accomplish such a classification. To enumerate short slopes on τ , just
have SnapPy determine an area form estimate on τ , then use the methods of section 6.1.1. To determine
which among them are hyperbolic and which are exceptional, use the methods of sections 5.1.2 and 6.1.2.
For each cusp τ , let hyp(τ ) be the hyperbolic short slopes on τ and exc(τ ) the exceptional slopes, and let
short(τ ) be all the short slopes.

Pick a cusp τ . For each hyperbolic short slope s on τ , we may determine the exceptional fillings of M(s)
as above. This directly decides whether or not M(s) is superexceptional. So our problem comes down to
determining whether or not there are any superexceptional long fillings on τ . There are infinitely many
such slopes, so a simple enumeration is out of the question. We use the following lemma to treat these
slopes. Here, we let hyp(s) and exc(s) be the short hyperbolic and exceptional slopes on the unique cusp
of M(s).

Lemma 6.2 Suppose M is an orientable hyperbolic 2-cusped 3-manifold. Suppose τ is a cusp of M and
s is a long slope on τ . Let τ ′ be the other cusp of M . Then

(6–1) |exc(s)| ≤ |exc(τ ′)|+ |{s′ ∈ hyp(τ ′) | s ∈ exc(s′)}|.
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Proof Suppose that s is a long slope on τ . Then by the 6-Theorem, M(s) is hyperbolic. Suppose s′ is an
exceptional filling of M(s). We may interpret this as the exceptional filling M(s, s′) of M . Since this is an
exceptional filling and s is long, by the 6-Theorem, s′ must be short on its cusp τ ′ in M . So s′ ∈ short(τ ′).
This already gives us the bound |exc(s)| ≤ |short(τ ′)| = |hyp(τ ′)|+ |exc(τ ′)|. However, we may do even
better. Suppose s′ ∈ hyp(τ ′) and M(s, s′) is exceptional. Then s is an exceptional slope on M(s′). So
s ∈ exc(s′). We thereby get the better bound

|exc(s)| ≤ |exc(τ ′)|+ |{s′ ∈ hyp(τ ′) | s ∈ exc(s′)}|.

Python listings implementing the above bound are available in gordon.py at [Gita].

6.2 Results on hyperbolic volume

The arguments in this subsection largely follow those in Section 9 of [GMM09]. As in [GMM09] we will
use the following theorem of Futer, Kalfagianni, and Purcell:

Theorem ([FKP08], 1.1) Let M be a complete, finite-volume hyperbolic manifold with cusps. Suppose
C1, . . . ,Ck are disjoint horoball neighborhoods of some subset of the cusps. Let s1, . . . , sk be slopes on
∂C1, . . . , ∂Ck, each with length greater than 2π. Denote the minimal slope length by `min . If M(s1, . . . , sk)
satisfies the geometrization conjecture, then it is a hyperbolic manifold, and

vol(M(s1, . . . , sk)) ≥

(
1−

(
2π
`min

)2
)3/2

vol(M).

Corollary 6.3 Every one-cusped orientable hyperbolic three-manifold of volume at most 3.07 is a Dehn
filling of a manifold in Table 1.

Proof Suppose N is a 1-cusped orientable hyperbolic 3-manifold. Let VC(N) be the volume of its
maximal cusp. As in [Mey86], by horoball packing results of Böröczky, VC(N) ≤

√
3 · vol(N)/(2V),

where V is the volume of a regular ideal hyperbolic tetrahedron. If vol(N) < 3.07 < 2.62 · 2V/
√

3, then
VC(N) < 2.62. Thus by Theorem 1.1 N is a Dehn filling of a manifold in Table 1.

Theorem 1.5 The 14 complete non-compact hyperbolic 3-manifolds with volume ≤ 3.07 are those listed
in Table 2.

m003 m004 m006 m007 m009 m010 m011
m015 m016 m017 m019 m022 m023 m026

Table 2: One-cusped hyperbolic 3-manifolds with volume less than 3.07.
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Proof By Corollary 6.3 we just need to enumerate all the one-cusped fillings of elements of Table 1 with
volume at most 3.07. Suppose M(s) is a Dehn filling of a manifold M in Table 1. Suppose the volume of
the Dehn filling is at most 3.07. Then by [FKP08, 1.1] above,

`min(s) ≤ 2π · (1− (3.07/ vol(M))2/3)−1/2 = FKP(M).

Let s be a Dehn filling coefficient of s776 with `min(s) ≤ FKP(s776). Let si be the slope of s with
minimum length. Then s776(s) is also a Dehn filling of s776(si). So a one-cusped Dehn filling of s776
with volume at most 3.07 is also a Dehn filling of a two-cusped Dehn filling of s776 along a slope of
length at most FKP(s776). There are finitely many slopes on s776 of length at most FKP(s776). The
two-cusped fillings of s776 along such slopes that are not in Table 1 are as follows:

m125 m129 m202 m203 m292 m295 m328 m329 m357 m359

m366 m367 m388 m391 s441 s443 s503 s506 v1060 v1061

Table 11: Two-cusped fillings of s776 along slopes of length less than FKP(s776).

For each M in Tables 1 and 11, for each cusp of M, we have SnapPy in Sage determine a maximal horoball
neighborhood C of the cusp, then enumerate the slopes on ∂C of length at most FKP(M). The resulting
one-cusped manifolds with volume less than 3.07 are in Table 2.

Theorem 1.6 The closed orientable hyperbolic three-manifolds of volume at most 1.01749 are

(i) the Weeks-Matveev-Fomenko manifold, a.k.a. m003(2,1), with volume 0.94271± ε,

(ii) the Meyerhoff manifold, a.k.a. m004(5,1), named in [CFJR01], with volume 0.98137± ε,

(iii) Vol3, a.k.a. m007(3,1), named in [GMT03], with volume 1.01499± ε,

where ε = 10−5.

Proof As in [GMM09] we use the following lemma of Agol, Culler, and Shalen.

Lemma 6.4 ([ACS06, 3.1]) Suppose that M is a closed, orientable hyperbolic 3-manifold, and that
C is a shortest geodesic in M such that tuberad(C) ≥ (log 3)/2. Set N = drillC(M). Then vol(N) <
3.02 · vol(M).

The proof of the lemma above relies on [AST07, Prop. 10.1] and [Prz06, Cor. 4.4]. The proofs of these
results only assume the given geodesic is embedded, not shortest. The same is true of the proof of this
lemma. So the word “shortest” above can be omitted. Suppose then that N is a closed orientable hyperbolic
3-manifold of volume at most 3.07/3.02. Then either N is a Dehn filling of a one-cusped hyperbolic
3-manifold of volume at most 3.07, or else no embedded geodesic in N admits a tube of radius at least
(log 3)/2. For instance, no embedded geodesic in the manifold Vol3 admits such a tube. But in fact, it is
the unique orientable hyperbolic 3-manifold with this property [GT15, Cor. 2]. Thus either N is a Dehn
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filling of a one-cusped hyperbolic 3-manifold of volume at most 3.07, or else N is Vol3. By Theorem 1.5
either N is a Dehn filling of an element of Table 2 or N is Vol3. In volume_bounds.py we use SnapPy,
the lemma of Futer, Kalfagianni, and Purcell, and our hyperbolicity tests to enumerate the hyperbolic
Dehn fillings of elements of Table 2 with volume at most 3.07/3.02. The only such fillings are m003(2,1)
m004(5,1), and Vol3.
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A Group isomorphisms

Here we list the group isomorphisms necessary for completing the proof of Theorem 1.2. As these are
isomorphisms between presentations, they can easily be verified by hand.

Lemma A.1 For each pair for relators r1 and r2 in Table 4, there is an isomorphism between Γ(r1, r2) =

〈m, n, g | mnMN, r1, r2〉 and π1(m003). Similarly, we have isomorphisms for each pair in Table 5 and
π1(m004).

Proof From SnapPy, we have π1(m003) = 〈a, b | abAAbabbb〉. Using the quotpic package by Holt and
Rees [HR99], we list the isomorphisms φ in the Table 12.

Group φ(a) φ(b) φ−1(m) φ−1(n) φ−1(g)
Γ(GNgMgNG,mGnGmGmnGmnG) G mGn BBABA aaBA A
Γ(MnGmGMngg,MgggMgNg) gMgN gMg BABBA Ab BA
Γ(mGGmgMNg,mmnGGmGmGG) G Gm Ab BAbabA A
Γ(mgNgmGG,mGmGGmnGG) G Gm Ab BABBA A
Γ(mnGGmngMg,NGmGGGmG) MGmGN GGm ABBAB aB ABB
Γ(mnGNggNG,GGmnGmGmnG) Gnm Gm aBABab Ba aBABa
Γ(nGNmggNmG,NgMgNggg) gNgM gNg Ab BABBA BA
Γ(ngMgnGG,mNGmGGGmG) mGM NmG ABABB AAba BABAbab

Table 12: Isomorphisms with π1(m003) = 〈a, b | abAAbabbb〉 .

Similarly, π1(m004) = 〈a, b | aaabABBAb〉. We list the isomorphisms ψ in the Table 13.

Group ψ(a) ψ(b) ψ−1(m) ψ−1(n) ψ−1(g)
Γ(MNgmGMGmg,MgMGmgNgmG) gN nGnGM BAA ABabaBAb BabaBAb
Γ(MnGmgMgmG, gmGMgMGmg) g mG ba baBAbABa a
Γ(MnGmgMgmG,mgmGMgNgMG) Ng mGnGn baa bABabaBA bABabaB
Γ(mGMnGmgMg,MGMgmGnGmg) Gn NgNgM BAA BabABAba BabABAb
Γ(mnGMgmgMG,MgmGGmgMG) G mg ba AbaBabAB A

Table 13: Isomorphisms with π1(m004) = 〈a, b | aaabABBAb〉 .

B Technical necklace theory

The following lemma is used in the proof of Lemma 4.26. As the details are a bit technical, we chose to
leave it out of the main exposition and place it in the appendix.
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Lemma B.1 Let B0 be a full-sized horoball centered at (0, 0) and let B1,B2 be a tangent pair of at most
full-sized horoballs. Let D be the disk though b1 = ∂∞B1 and b2 = ∂∞B2 that makes an angle of π/3
with the oriented ray from b2 though b1 . If all the horoballs are disjoint, then the visual angle of D from
(0, 0) is at most π/3.

B0

π − θ B1

B2

π
3 D

Figure 18: .

Proof Let A, B, and C be, respectively, the centers of B0 , B1 , and B2 . Let hA , hB , and hC likewise
be their heights. Then hA = 1 since A is full-sized, and hB, hC ≤ 1 since B,C are at most full-sized.
Likewise, by Lemma 4.28, AB2 ≥ hAhB = hB and AC2 ≥ hAhC = hC since the interiors of B0 , B1 , and
B2 are all disjoint. Moreover, BC2 = hBhC since B1 and B2 are tangent. From these inequalities, we
can conclude BC ≤ AB · AC and BC ≤ 1. Conversely, if BC ≤ AB · AC and BC ≤ 1, then there is
some choice of heights hB and hC yielding a collection of horoballs as given above. So the conditions
BC ≤ AB · AC and BC ≤ 1 together are equivalent to the antecedent of the lemma.

On the other hand, we can also rewrite the consequent. Let r be the radius of D , D its center, and d = AD.
Then the visual angle of D at A is at most γ if and only if sin(γ/2) ≤ r/d . So 2r ≤ d is equivalent to the
consequent. Thus the lemma is equivalent to the following: if BC ≤ AB · AC and BC ≤ 1, then 2r ≤ d .

We now want to rewrite this in terms of r and d and one other parameter. First, by construction of D ,
BC2 = 3r2 . So BC ≤ 1 is equivalent to 3r2 ≤ 1.

Next, consider all the possible configurations with a given pair of d and r . These are parametrized by the
angle ∠ADB. However, we find it more convenient to use instead the parameter φ = ∠ADB− π/3, which
measures the deviation from the symmetric position where AB = AC and A and D lie on opposite sides of
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the supporting line of BC . By the law of cosines,

AB2 = d2 + r2 − 2dr cos(π/3 + φ)

= x− y(cos(φ)/2−
√

3 sin(φ)/2) and

AC2 = d2 + r2 − 2dr cos(π/3− φ)

= x− y(cos(φ)/2 +
√

3 sin(φ)/2),

letting x = d2 + r2 and y = 2dr. Thus

AB2 · AC2 = y2 cos2(φ)− xy cos(φ) + x2 − 3y2/4.

Hence the other part of the antecedent we may rewrite as

(B–1) 3r2 ≤ 4d2r2 cos2(φ)− 2 cos(φ)(dr3 + d3r) + d4 − d2r2 + r4.

Finally for this setup, we note first that, by assumption, φ ∈ [−π/3, π/3], for otherwise A and D would
lie on the same side of the supporting line of BC , contrary to how we drew D ; and second, that, of course,
we assume d > 0 and r > 0. Thus the lemma is equivalent to the following statement:

Suppose d, r > 0 and φ ∈ [−π/3, π/3]. Suppose 3r2 ≤ 1. Finally, suppose B–1 holds.
Then d ≥ 2r .

To show this, let us first bound the extreme values of the right-hand side of B–1 for φ ∈ [−π/3, π/3]. To
that end, we enumerate the critical points in [−π/3, π/3]. Using x and y as above,

d
dφ

(
AB2 · AC2) = y sin(φ)(x− 2y cos(φ))

First, y = 2dr = 0 is impossible. Next, sin(φ) = 0 when φ = 0, i.e. when cos(φ) = 1, since
φ ∈ [−π/3, π/3]. The last critical point condition yields cos(φ) = x/(2y). Finally, the edge cases
φ = ±π/3 both yield cos(φ) = 1/2. Thus the extreme values of AB2 · AC2 for φ ∈ [−π/3, π/3] are in
the set

S =
{

(y− 2x)2/4, (x− y)(y + 2x)/2, 3(x− y)(x + y)/4
}

=
{

(d2 − dr + r2)2, (d − r)2(d2 + dr + r2), 3(d − r)2(d + r)2/4
}
.

Therefore, under our assumptions, 3r2 ≤ s for some s ∈ S . These are all quartic forms. Dividing them all
by r4 and setting z = d/r yields the set

T = {(z2 − z + 1)2, (z− 1)2(z2 + z + 1), 3(z− 1)2(z + 1)2/4}.

Assuming 0 < r ≤
√

1/3, we have 3r2/r4 = 3/r2 ≥ 9. So it will suffice to show that if any element of T
is at least 9, then z ≥ 2. We finish by case analysis.

Suppose (z2 − z + 1)2 ≥ 9. Since z2 − z + 1 ≤ −3 is impossible, we have z2 − z + 1 ≥ 3. Now,
z2 − z− 2 = (z− 2)(z + 1). Since z > 0, z2 − z + 1 ≥ 3 implies z ≥ 2.

Suppose (z− 1)2(z2 + z− 1) ≥ 9. Let f (z) = (z− 1)2(z2 + z− 1). Then f ′(z) = (z− 1)(4z2 + z + 1). Now,
4z2 + z + 1 is positive for all z ∈ R. So f is decreasing on (−∞, 1] and increasing on [1,∞). Calculating,
f (0) = 1, f (1) = 0, and f (2) = 7. Hence if z ≥ 0 and f (z) ≥ 9, then z > 2.
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Finally, suppose 3(z − 1)2(z + 1)2/4 ≥ 9. Then (z2 − 1)2 ≥ 12. Since z2 − 1 ≤ −
√

12 is impossible,
z2 − 1 ≥

√
12. Since z > 0, z ≥

√
1 +
√

12 > 2.

C Convolotubes

The following is a “hands-on” proof of Lemma 5.8. Since this Lemma is a consequence of Proposition 1.7
of [GMM11], we only include the proof here for completeness. Recall that we want to show that if M is a
generalized link exterior, then NE+(M) is the class of cusped hyperbolic Dehn fillings of M .

Proof of Lemma 5.8 Abusing notation, we realize an embedding in NE+(M) as M ⊂ N where N is an
orientable hyperbolic finite-volume N . Suppose T is a torus boundary component of M . It therefore is
either ∂ -parallel in N or compressible in N, since N is atoroidal. Suppose T is compressible. Let ∆ be a
compressing disk for T in N . Up to isotopy, ∆ ∩ ∂M is a multicurve on ∆ with ∂∆ as a component.
There may or may not be other components.

• Suppose ∆ ∩ ∂M = ∂∆. Then either ∆ ⊂ M , or ∆ lies in a component of N \ int(M).

– Suppose ∆ ⊂ M . Then ∆ is a compressing disc for T in M . Let U be a regular neighborhood
of ∆ ∪ T in M , so that ∂U = T t Σ for some sphere Σ ⊂ M . Thus M is a (possibly trivial)
connect-sum with a solid torus, along Σ. Now, since N is irreducible, Σ bounds a ball B in
N . Either T ⊂ B, or not.

* If T ⊂ B, then U ⊂ B. Hence M = M′ ∪Σ U , where M′ = M \ int(B). Let i : M ↪→ N
be the inclusion of M into N . We may modify i on U to a different embedding so that
i(U) is the complement of an unknot in B. Thus after so modifying i, T bounds a solid
torus in N away from M , and no other boundary tori of M are modified, thus reducing
the number of convolutubes of i(∂M).

* Otherwise, U ∪ B is a solid torus T in N , and M ⊂ T . Thus the embedding of M in N
is elementary.

– Suppose ∆ lies in a component of N \M . Now let U be a regular neighborhood of ∆ ∪ T in
N \ int(M), so that ∂U = T t Σ for some sphere Σ ⊂ N \ int(M). Since N is irreducible, Σ

bounds a ball B in N . Either T ⊂ B or not.

* Suppose T ⊂ B. Then M ⊂ B, for M is connected and lies to that side of T away from
Σ. Hence the embedding of M in N is elementary.

* Otherwise, T bounds the solid torus U ∪ B in N to the side of T away from M .

Therefore, if ∆ ∩ ∂M = ∂∆, then either the embedding is elementary, or it admits a (possibly
trivial) redefinition such that T bounds a solid torus in N away from M .
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• Suppose instead that int(∆) ∩ ∂M 6= ∅. Then it has an innermost component γ . It bounds a unique
disc ∆′ in ∆ such that ∆′ ∩ ∂M = γ . Then ∂∆′ lies on some other boundary component T ′ of M .
On this component T ′ , ∂∆′ is either essential or not.

– If ∂∆′ is inessential on T ′ , then it bounds a disc δ on T ′ . Then ∂∆ ∪γ δ is a sphere Σ in N ,
and thus bounds a ball B in N . Hence we may isotope ∆, fixing ∂∆, through B, and then
slightly pushing off δ , to a new disc D such that int(D) ∩ ∂M = (int(∆) ∩ ∂(M)) \ γ , thus
reducing the number of components in int(∆) ∩ ∂(M), and leaving M invariant.

– If ∂∆′ is essential on T ′ , then ∂∆′ is a compressing disc for T ′ with ∆′ ∩ ∂M = ∂∆′ .

Thus by induction on int(∆)∩∂M , there is some compressing disc ∆ for some boundary component
of M such that ∆ ∩ ∂M = ∂∆, reducing to the previous case.

Therefore, if M ⊂ N is nonelementary, then there is some nonelementary embedding i : M ↪→ N such that
N \ i(M) consists of boundary collars and solid tori—that is, such that i manifests N as a Dehn filling of
M .

Conversely, if N is a Dehn filling of M , then the Dehn filling embedding i : M ↪→ N has i∗(π1(M)) =

i∗(π1(N)). In particular, if N is hyperbolic, then i∗(π1(N)) is nonabelian, so the embedding is nonelemen-
tary.

Thus the class of hyperbolic 3-manifolds N admitting nonelementary embeddings from M is the same as
the class of hyperbolic Dehn fillings of M .

D Computational aspects

In this appendix, we will go over the technical details needed to validate Propositions 2.15 and 3.5. We
organize the discussion around the theoretical aspects and the arithmetic of complex affine 1-jets, followed
by a description of the files, code, and data provided.

As described in Section 2, the proofs are provided as binary trees where each terminal node corresponds a
(sub)box of the parameter space B with a label that encodes an inequality which holds for all points in
that box. This inequality is rigorously verified by the programs verify and identify to hold over the
box. Each inequality is encoded either as a boundary condition or a word. In the following sections, we
prove the validity of how each inequality is constructed and the validity of the arithmetic used by verify.

Recall that the main parameter space objects are the parent box B, the compact subset P that is guaranteed
to contain a bicuspid triple for every cusped hyperbolic 3-manifolds with cusp volume ≤ 2.62, and D, the
set of all geometric bicuspid triples in P.

We have four types of terminal conditions at a (sub)box Bb of B. These are:

• Boundary conditions — these prove that Bb lies outside of P by showing that Bb that the inverse
of one of the inequalities in Proposition 2.5 holds over the entire box.
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• Killed words — a killer word w associated to Bb is used to prove that Bb ⊂ Kw , which by Corollary
2.10 means that Bb ∩D = ∅. This is equivalent to saying that the bicuspid triples in Bb are either
indiscrete or are incorrectly marked, meaning that a correct marking is found elsewhere in PB.

• Necklace words — a necklace word w associated to Bb is used to prove Bb ⊂ Uw , which by
Lemma 2.8 means that any triple in Bb ∩D is a relator of g-length at most that of w. In verify,
we allow this g-length to be at most 7, while in identify we limit this to 3.

• Variety words — a variety word w associated to Bb is used to prove Bb ⊂ Vw , which by Lemma
2.13 means that w is a relator for any bicuspid group associated to a triple in Bb∩D. This condition
is only used in identify.

The inequalities in the definitions of Kw , Uw , and Vw are straightforward to check after constructing the
matrix corresponding to w at points of the box Bb . To prove that these conditions hold over the entire box,
we use 1-jets with error and round-off error for computations as is done in [GMT03]. If one wanted to use
interval arithmetic instead, we expect that further subdivision would be necessary.

D.1 1-jets and error control

Our computational tool for verifying the above mentioned inequalities are 1-jets. Let

A = {(z0, z1, z2) ∈ C3 : |zi| ≤ 1}

and consider a (holomorphic) function g : A → C. A 1-jet approximation with error ε of g is a linear
map (z0, z1, z2) 7→ c + a0z0 + a1z1 + a0z2 such that

|g(z0, z1, z2)− c + a0z0 + a1z1 + a0z2)| ≤ ε.

Considering all maps approximated by a given 1-jet, one defines the jet-set

S(c, a0, a1, a2; ε) = {g : A→ C : |g(z0, z1, z2)− c + a0z0 + a1z1 + a0z2)| ≤ ε}.

In [GMT03], the authors derive the arithmetic for jets. For example, given jet-sets S1 and S2 , they show to
to compute the parameters for a jet-set S3 where f · g ∈ S3 for all f ∈ S1 and g ∈ S2 . They do this for all
basic arithmetic operations ±,×, /, and √ . In code, we call these ACJs for “affine complex jets.”

For our computations, we use this exact same arithmetic. Note, to make this arithmetic fast, the parameters
of S(c, a0, a1, a2; ε) are all given as floating-point doubles. Recall that floating-point numbers are a finite
subset of the reals represented via a list of bits on a computer. As such, any arithmetic operation between
two floating-point numbers must make a choice about which floating-point result to give, as the real
value of this result may not be representable as floating-point number. On a machine conforming to the
IEEE-754 standard [iee85], all operations performed with floating points numbers are guaranteed to round
in a consistent way to a closest floating-point representative, as long as overflow and underflow have not
occurred. The code supplied as part of verify and identify checks that underflow and overflow does
not happen during validation.
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Just as in Section 7 of [GMT03], each boxcode corresponds to a (sub)box of our parameter space that
has a floating-point center (c0, c1, c2, c3, c4, c5) and a floating-point size (s0, s1, s2, s3, s4, s5). Using the
IEEE-754 standard, the floating-point size is large enough so that the floating-point version of the box,
i.e. {(x0, x1, x2, x3, x4, x5) ∈ R6 : |xi − ci| ≤ si}, contains the true box as a proper subset. Recall that
over a box we associate the coordinate functions L = x3 + ix0 , S = x4 + ix1 , and P = x5 + ix2 for our
parameters. We can replace these coordinate functions with linear maps gL, gL, gP : A→ C given by:

gL(z0, z1, z2) = c3+ic0+(s3+is0)z0, gS(z0, z1, z2) = c4+ic1+(s4+is1)z1, gL(z0, z1, z2) = c5+ic2+(s5+is2)z2.

Notice that, by construction, the linear maps see all the L, S,P values over the given box. We can now
think of gL, gS, gP as living in jet-sets. For example, gP ∈ S(c5 + ic2, 0, 0, s5 + is2; 0) and similarly for
others. It follows that any evaluations with jet-arithmetic will include the true values over the box up to the
error that accumulates. See [GMT03], Sections 7 and 8 for concrete details.

D.2 Elimination conditions

Recall that the computational proofs of our results are encoded by binary trees where each terminal leaf
contains a string that encodes the necessary list of inequalities that we must hold true over the box. The
code in verify.c and identify.c is responsible for reading the tree starting from the root node, building
the box ACJ parameters for each boxcode, and checking each condition. The evaluations of each condition
occurs in elimination.c. The code in these files is commented and we believe the reader will be best
served by following the comments there as well as the README.md.

We want to stress a few main points. First, the jet arithmetic code is entirely borrowed from [GMT03],
aside from a tiny patch of a clear typo in the published code, see the patch file in the scripts folder of
[Gitb]. In addition, we make use of the floating-point rounding estimates from [GMT03] in a few places
in our code. In particular, we apply this error control to evaluate boundary conditions such as cusp area
and bounds on real and imaginary parts of parameters. Since most of these quantities are monotonic in
the parameters, we simply construct validated over and under estimates at the vertices of our box. These
are the nearer, further, and greater points, which are nearer than all box points to ~0, further than all
box points for ~0, and greater than all box points, respectively. This simple constructions allows us to
easily check the boundary conditions of Proposition 2.5. For a detailed explanation of how these points are
chosen, see the comments in box.c.
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