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Abstract

Let Diff(N) and Homeo(N) denote the smooth and topological group of automorphisms respec-

tively that fix the boundary of the n-manifold N , pointwise. We show that πn−4Homeo(S1 ×Dn−1)
is not finitely-generated for n ≥ 4 and in particular π0Homeo(S1 × D3) is infinitely generated.

We apply this to show that the smooth and topological automorphism groups of finite-volume

hyperbolic n-manifolds (when n ≥ 4) do not have the homotopy-type of finite CW-complexes,

results previously known for n ≥ 11 by Farrell and Jones. In particular, we show that if N is

a closed hyperbolic n-manifold, and Diff0(N) represents the subgroup of diffeomorphisms that

are homotopic to the identity, then πn−4Diff0(N) is infinitely generated and hence if n = 4, then

π0Diff0(N) is infinitely generated with similar results holding topologically.
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2 Ryan Budney and David Gabai

1 Introduction

The main result of this paper is the following.

Theorem 1.1 πn−4Homeo(S1 × Dn−1) is infinitely generated and in particular π0Homeo(S1 × D3) is

infinitely generated.

In the smooth category, this was the topic of [1], where it was shown that πn−4Diff(S1 × Dn−1) is

not finitely generated. Here all automorphism groups act via the identity on the boundary and

hence a given automorphism is homotopic to id. To prove this theorem we elaborate a method

briefly introduced in [1] using linking numbers coming from collinear and cohorizontal spaces

and use it to give in Section 3 a new proof that the δk families of [1] are linearly independent in

the smooth category, provided k ≥ 4. It’s new in the sense that it is a direct argument using that

theory starting with the δk families while [1] showed how to express δk ’s in terms of our G(p, q)

families. Remarkably, being based on elementary intersection theory, this method also works in

the topological category as detailed in Section 4. Our main result has the following applications.

Theorem 1.2 The automorphism groups of S1 × Dn−1 do not have the homotopy-type of finite-dimensional

CW-complexes, provided n ≥ 4.

For dimensions n ≥ 6 this result was proven by Hatcher and Wagoner [12] more than 50 years

ago, where they showed that the topological and smooth mapping class groups of S1 × Dn−1 are

not finitely generated. In contrast, the smooth and topological automorphism groups of S1 × Dn−1

have the homotopy-type of ΩS1 ≃ Z when n = 2, and when n = 3 these groups are contractible

by the work of Hatcher [11].

Theorem 1.3 If N is a complete hyperbolic n-manifold, then πn−4Diff0(N) and πn−4Homeo0(N) are

infinitely generated. In particular if n = 4, both π0Diff0(N) and π0Homeo0(N) are infinitely generated.

Here Diff0 and Homeo0 denote automorphisms homotopic to id. For n ≥ 11, this result was

proven by Farrell and Jones [6] over 30 years ago. Our result is sharp since Diff0(N) is contractible

when n ≤ 3 by [8] and [9]. Details are given in Section 5

Section 2 introduces the barbell manifolds Bn
i,j and defines corresponding barbell diffeomorphisms

generalizing the notion of barbell manifolds and diffeomorphisms given in [1]. They are of inde-

pendent interest and will be explored in a future paper. The barbell manifolds of [1] are the ones

denoted here by Bn
n−2,n−2 . This section includes two definitions of barbell diffeomorphisms, one

from a perspective analogous to the definition of a Dehn twist, in terms of resolutions of double-

points. The other perspective uses a product decomposition of barbell manifolds, and constructs

barbell diffeomorphisms as fibre-preserving maps, classically known as ‘horizontal’ diffeomor-

phisms. We also include some constructions of null isotopies, and null pseudoisotopies, for certain

implanted barbell diffeomorphisms.

Acknowledgements: Part of this work was developed during two visits to BIRS and one to Ober-

wolfach. We thank these institutions for their hospitality. The authors would like to thank Allen

Hatcher, Sander Kupers and Manuel Krannich for helpful comments on an initial draft of this

paper.
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On the automorphism groups of hyperbolic manifolds 3

2 Barbell diffeomorphisms

For the purpose of this paper, an n-dimensional barbell manifold will be the boundary connect-

sum of two trivial disc-bundles over spheres. We index the barbell manifolds by the dimensions

of the spheres, thus we define

Bn
i,j = Si × Dn−i♮Sj × Dn−j

as the standard (i, j)-barbell in dimension n . We will always assume i, j ≥ 1, as none of our

constructions below will be of interest when i = 0 or j = 0. The spheres Si × {0} in the first

summand and Sj × {0} in the second summand we call core spheres. The discs {∗} × Dn−i in the

first summand and {∗}× Dn−j in the second we call the cocores, where {∗} is a choice of basepoint

in the respective spheres. The mid-ball we denote Bn−1 , this is the embedded co-dimension one

disc that separates the boundary connect sum into a copy of Si × Dn−i and Sj × Dn−j respectively.

We will use the terminology Diff(M) to denote the group of diffeomorphisms of a manifold. If M

has boundary, we demand the diffeomorphisms restrict to the identity on the boundary, i.e. the

restriction map Diff(M) → Diff(∂M) is a constant function.

For the sake of argument, assume i ≤ j . Consider the barbell manifold as fibering over Dn−j−1

with fiber B
j+1
i,j . As a manifold, B

j+1
i,j is the once-punctured Si × Dj−i+1 . If we let DiffF (Bn

i,j)
denote the fiber-preserving diffeomorphism group of Bn

i,j , i.e, diffeomorphisms f : Bn
i,j → Bn

i,j

giving commutative diagrams

Bn
i,j

f
//

##●
●●

●●
●●

●
Bn

i,j

{{✇✇
✇✇
✇✇
✇✇

Dn−j−1

.

These are sometimes also known as ‘horizontal diffeomorphisms.’ Thus we have a homotopy-

equivalence DiffF (Bn
i,j) ≃ Ωn−j−1Diff(B

j+1
i,j ) .

Given that B
j+1
i,j is a once-punctured Si × Dj−i+1 , there is the restriction fibre-bundle

Diff(B
j+1
i,j ) → Diff(Si × Dj−i+1) → Emb(Dj+1, Si × Dj−i+1)

where the map to the base space is null-homotopic. The map is obtained by fixing a compact

(j + 1)-ball in the interior of Si × Dj−i+1 and taking the restriction map from Diff(Si × Dj−i+1) .

Thus we have a fibre sequence

ΩEmb(Dj+1, Si × Dj−i+1) → Diff(B
j+1
i,j ) → Diff(Si × Dj−i+1)

such that the induced maps on homotopy groups give short exact sequences

0 → πkΩEmb(Dj+1, Si × Dj−i+1) → πkDiff(B
j+1
i,j ) → πkDiff(Si × Dj−i+1) → 0.

The map ΩEmb(Dj+1, Si × Dj−i+1) → Diff(B
j+1
i,j ) is obtained by applying isotopy extension to the

loop in Emb(Dj+1, Si × Dj−i+1) , and restricting to B
j+1
i,j , i.e. the punctured copy of Si × Dj−i+1 .

preprint



4 Ryan Budney and David Gabai

By the (homotopy) classification of spaces of tubular neighbourhoods, we have that Emb(Dj+1, Si ×

Dj−i+1) has the homotopy-type of Si ×Oj+1 . Observe that the generator of πiS
i ≃ Z gives a non-

torsion element of πi−1Diff(B
j+1
i,j ) via the above short exact sequence with k = i − 1, and via the

equivalence DiffF (Bn
i,j) ≃ Ωn−j−1Diff(B

j+1
i,j ) it gives us a non-torsion element in πi+j−nDiffF (Bn

i,j)

provided i + j ≥ n .

We now analyze three special classes which are not completely disjoint:

(1) In the case of the twice punctured 2-disc B2
1,1 , the barbell diffeomorphism is the composite

of the Dehn twists [5] about the boundary curves such that the signs form a homology, i.e.

signs chosen consistent with the boundary orientation.

(2) The barbell diffeomorphism of Bn
n−2,n−2 is the family studied in [1]. These barbells have the

feature that one can knot them in the ‘handcuff’ fashion, provided n ≥ 3. The diffeomor-

phisms themselves are defined only when i + j ≥ n , thus requires n ≥ 4.

(3) When i+ j = n these barbells can be ‘Hopf-linked’ in S1 × Dn−1 provided i, j ≥ 3, i.e. n ≥ 6,

allowing us to relate to the work of Hatcher and Wagoner [12].

We offer an alternative, more symmetric definition of the induced map πi+j−nΩn−jSi ≡ Z →

πi+j−nDiff(Bn
i,j) when i + j ≥ n . Consider two vector subspaces of Rn isomorphic to Ri and R j .

We assume the two vector subspaces meet in a single point, {0} , thus n ≥ i + j . If n > i + j we can

use a small perturbation near the origin (say, using bump function) to deform the vector subspaces

to disjoint submanifolds. Provided n > i + j + 1, all such small deformations are isotopic, as the

normal sphere to the subspace spanned by Ri and R j is Sn−i−j−1 , which is connected. To ensure

we are dealing with compact manifolds, consider Di ⊂ Ri and Dj ⊂ R j . Using bump functions

supported in the interiors of these discs, gives us the following proposition.

PSfrag replacements
RiRi

R jR j Rn−i−jRn−i−j

Figure 1: Barbell diffeomorphism via resolution of double point.

Proposition 2.1 Consider the spherical family Sn−i−j−1 → Emb(Di ⊔ Dj, Dn) defined above. Then the

connecting map for the homotopy long exact sequence for the fibration Diff(Dn) → Emb(Di ⊔ Dj, Dn)
gives us an element of πn−i−j−2Diff(Dn, Di ⊔ Dj) . By thickening the embedded copies of Di and Dj

slightly, we can assume these diffeomorphisms are the identity in a neighbourhood of the embedded copies of

Di and Dj , thus this is an element of the homotopy group

πn−i−j−2Diff(Bn
n−i−1,n−j−1).

preprint



On the automorphism groups of hyperbolic manifolds 5

Moreover, if we let i′ = n− i− 1 and j′ = n− j− 1, this can be rewritten as an element of πi′+j′−nDiff(Bn
i′,j′) ,

and it is the barbell diffeomorphism, i.e. the induced map on πi′+j′−n for the map Ωn−j′Si′ → Diff(Bn
i′,j′) .

String link families in Proposition 2.1 are studied systematically in Koytcheff [14].

Proposition 2.2 The barbell diffeomorphism Z ≡ πi+j−nΩn−jSi → πi+j−nDiff(Bn
i,j) is essential, i.e.

there is a homomorphism

πi+j−nDiff(Bn
i,j) → Z

that detects the barbell diffeomorphism. This homomorphism is a version of the scanning map. Specifically,

let B be a mid-ball for Bi,j , i.e. a smoothly-embedded copy of Dn−1 that splits Bn
i,j into a boundary connect-

sum. Fiber B by parallel intervals. Scanning using B gives a map

πi+j−nDiff(Bn
i,j) → πi+j−2Emb(I,Bn

i,j).

This map detects the barbell diffeomorphism. Furthermore, the homomorphism

πi+j−2Emb(I,Bn
i,j) → Z

is computed by counting signed pairs of points t1 < t2 ∈ I such that f (t1) is on the first cocore, and f (t2)

is on the second cocore.

PSfrag replacements Bn
n−2,n−2

E1 E2

D2n−6 ≡ Dn−3 × Dn−3

Dn−3

Dn−3

Figure 2: Barbell diffeomorphism family restricted to mid-ball as map D2n−6 → Emb(I,Bn
n−2,n−2) .

The above two propositions are small variants of the arguments in [1], so we leave them to the

reader. Proposition 2.1 is obtained by a direct comparison, i.e. these two diffeomorphisms are

induced by the same isotopy-extension construction.

Proposition 2.2 has an alternative way of being expressed. Given the barbell diffeomorphism

family,

Si+j−n → Diff(Bn
i,j)

preprint



6 Ryan Budney and David Gabai

we can imagine this family fibering, i.e.

Si+j−n × Dn−j−1 → Diff(B
j+1
i,j ).

Now consider the mid-ball in Bn
i,j , this is a copy of Dn−1 . The preimage the two cocores in the mid-

ball is given by the intersection of the map Si+j−n × Dn−1 → Bn
i,j with the cocores, thus they will be

two disjoint (framed) closed manifolds of dimension (i − 1) and (j − 1) respectively in Si+j−n ×

Dn−1 . If we further use the fibering, we can imagine this as a Si+j−n × Dn−j−1 -parametrized family

of 0-manifolds and (j − i)-manifolds in the B
j+1
i,j mid-ball, which is a copy of Dj . This family can

be readily visualized. The 0-manifold family could be described as a parametrized family of null-

cobordisms of an embedded S0 , and the (j − i)-manifold family is similarly a parametrized null

cobordism of Sj−i , i.e. this is a family of disjoint spheres: one a copy of S0 and the other a copy

of Sj−i which on the boundary of this (i − 1)-dimensional family are spheres that bound disjoint

discs – which are used to construct the null cobordism. But since our family is (i − 1)-dimensional

this is exactly the right dimension that allows the family to link, which is exactly what is going

on. Proposition 2.2 is the homotopy-theoretic analogue of the linking number of this parametrized

family of high codimension links. With a slight change of perspective we could perform this

analysis in the mid-ball of Bn
i,j using the Si+j−n parameter space. This will be a family consisting

generically of two spheres: one Sn−j−1 and the other Sn−i−1 in Dn−1 , thus a family parametrized

by Si+j−n is precisely the correct dimension to allow for a linking number.

While Proposition 2.2 tells us that the inclusion Ωn−jSi → Diff(Bn
i,j) is non-trivial on the first

non-trivial homotopy group, the inclusion is in fact a retract, i.e. non-trivial on all homotopy and

homology groups of Ωn−jSi . To show this we need to construct a map back.

Definition 2.3 Observe there are maps

Diff(Bn
i,j) → Ωn−jSi, Diff(Bn

i,j) → Ωn−iSj

given by restricting to cocores and projecting to the cellular skeleton Si ∨ Sj , then forgetting the

complementary sphere wedge summand.

Proposition 2.4 The inclusion of the fiber-preserving subspace Ωn−jSi → Diff(Bn
i,j) is a retract, i.e.

composition with the above map Diff(Bn
i,j) → Ωn−jSi is homotopic to the identity.

ΩiSi

$$■
■■

■■
■■

■■
■

≃Id // ΩiSi

Diff(Bn
i,j)

::✉✉✉✉✉✉✉✉✉✉

.

The composite with the other map

Ωn−jSi

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

≃Σ(j−i)
// Ωn−iSj

Diff(Bn
i,j)

99sssssssssss

is homotopic, up to sign, to the iterated suspension map, i.e. Σj−i , i.e. we identify Ωj−iSi with the subspace

of Ωn−iSj with the subspace of maps that preserve j − i suspension coordinates.

preprint



On the automorphism groups of hyperbolic manifolds 7

Proof The idea is to chase through the definition of our family, using the fibration B
j+1
i,j → Bn

i,j →

Dn−j−1 . Thinking of the fiber as a once-punctured Si × Dj−i+1 . This gives us the inclusion

Ωn−jSi → Diff(Bi,j) as fiber-preserving diffeomorphisms. We consider the induced diffeomor-

phisms of the B
j+1
i,j fibers. The cocore complementary to the Si core sphere is a copy of Dj+1−i ,

while the cocore complementary to the Sj core sphere is a copy of the interval, D1 .

The fact that the composite Ωn−jSi → Diff(Bi,j) → Ωn−jSi is the identity map (after suitable iden-

tifications) is derivable immediately from the definition, carefully keeping track of the suspension

parameters.

The composite Ωn−jSi → Diff(Bi,j) → Ωn−iSj is depicted in Figure 3. The argument is essentially

identical to the previous case, but our fibrewise cocores are copies of Dj+1−i , i.e. an interval with

j − i additional parameters. These additional parameters supply the canonical null-homotopies

of the embedded interval, which is another way of stating that the map Ωn−jSi → Ωn−iSj is the

suspension Σj−i .

PSfrag replacements

B
j+1
i,j

Si × Dj+1−i Sj × D1

Figure 3: The composite Ωn−jSi → Diff(Bi,j) → Ωn−iSj in a fiber over a point in Dj−1 . The image

of {∗} × Dj+1−i from the Si × Dj+1−i summand is in blue, and the image of {∗} × D1 from the

Sj × D1 summand is in red.

We list one other elementary property of barbell diffeomorphisms. The idea is to consider the

standard inclusion Diff(Bn
i,j) → Diff(Si × Dn−i) and Diff(Bn

i,j) → Diff(Sj × Dn−j) obtained by

attaching an (i + 1)-handle or (j + 1)-handle respectively and extending via the identity map.

Proposition 2.5 The composites

Ωn−jSi → Diff(Bn
i,j) → Diff(Si × Dn−i)

and

Ωn−jSi → Diff(Bn
i,j) → Diff(Sj × Dn−j)

are canonically null-homotopic.

Proof Recall the map Ωn−jSi → Diff(Bn
i,j) was defined via a fibrewise isotopy-extension process.

The first map in the statement of the proposition corresponds to forgetting the ball used to con-

struct the isotopy extension, the second map corresponds to filling in the manifold in which the

preprint



8 Ryan Budney and David Gabai

ball moves. In the first case, the diffeomorphism family is tautologically null due to the Palais

homotopy long exact sequence. The second map is null as the input isotopy is itself null, i.e. the

parametrizing family Ωn−jSi factors through the inclusion Ωn−jSi → Ωn−jDi+1 .

The rationale behind constructing the above null isotopies is that we can use them to construct

certain null pseudo-isotopies, once we embed the barbell manifolds in larger manifolds. This is

the content of Proposition 2.6.

While the barbell diffeomorphisms themselves Ωn−jSi → Diff(Bn
i,j) are not null in pseudo-isotopy,

i.e. they do not lift to maps Ωn−jSi → PDiff(Bn
i,j) , the implanted barbell diffeomorphisms are often

null in pseudoisotopy. The next proposition is a variation of Proposition 2.5.

Proposition 2.6 Given an embedded barbell Bn
i,j → N where N is an n-manifold, the induced map

Ωn−jSi → Diff(N)

is null in pseudo-isotopy, provided one of the two core spheres is smoothly slice, i.e. is the boundary of a

smoothly-embedded Di+1 or Dj+1 in N × I . Precisely, there is a lift of the barbell diffeomorphism family

PDiff(N)

��
Ωn−jSi

99ssssssssss
// Diff(N)

.

Proof The group PDiff(N) is the collection of all diffeomorphisms of N × I which restrict to the

identity on N × {0} and (∂N) × I , often called the group of pseudo-isotopy diffeomorphisms. The

idea is to consider the manifold Si × Dn−i (or Sj × Dn−j ) as the barbell manifold Bn
i,j union an i + 1

(or j + 1)-handle respectively. We embed Bn
i,j × I into N × I using the map f (p, t) = (g(p), t/2)

where g : Bn
i,j → N is our barbell embedding. We embed the (i + 1) or (j + 1)-handle in N × I

so that its intersection with N × [0, 1
2 ] exists in U × [0, 1

2 ] where U is a small neighbourhood of

g(Bn
i,j) in N . We can do this by ensuring the height function for the smooth slice disc has height

> 1
2 outside of a small neighbourhood of the slice sphere. This ensures the handle, in its interior,

is disjoint from the image of f . The image of f union this handle is diffeomorphic to Si × Dn−i

or Sj × Dn−j respectively, thus our family of diffeomorphisms Ωn−jSi → Diff(N) extends to a

diffeomorphism of N × I , using the null-isotopy of Proposition 2.5 on the image of f union the

handle, which extends to N × I via the identity map.

Proposition 2.6 was inspired by a conversation with David Gay, who has alternative descriptions

of such null pseudoisotopies.

preprint



On the automorphism groups of hyperbolic manifolds 9

PSfrag replacements

N × I

f (Bn
i,j × [0, 1])

Figure 4: Null-pseudoisotopy via embedded null isotopy. Embedded handle in red.

We give a surgery description of the barbell diffeomorphisms in the case i + j = n . We start with

the observation that one full Dehn twist about about a curve in a punctured disc can be visualized

by a technique of embedded surgeries.

PSfrag replacements

k − 1

Figure 5: Surgery description of a Dehn twist

In the upper-left figure we see a blue arc splitting the twice-punctured disc into two annuli. We

perform a Dehn twist about the red circle, with the resulting embedded arc appearing in the

bottom-left. In the top right we have two linking copies of S0 embedded in the blue arc, repre-

senting the attaching maps for two one-handles on the left (in orange) and right (in magenta). The

result of the embedded surgery appears in the bottom-right.

The barbell diffeomorphism of Bn
i,j for i + j = n has an analogous description. One replaces the

blue arc in Figure 5 by the mid-ball (diffeomorphic to Dn−1 ). And one replaces the orange and

magenta 1-handle attachments with i and j-handle attachments respectively, with the i-handle

being the core of the Si × Dj summand, and the j-handle attachment being the core of the Sj × Di

summand of Bn
i,j . The important issue is that the boundaries of the handle attachments are linked

spheres in the mid-ball Si−1 ⊔ Sj−1 → Dn−1 .

preprint



10 Ryan Budney and David Gabai

Proposition 2.7 The action of the barbell diffeomorphism on the mid-ball of Bn
i,j when n = i + j is isotopic

to replacing the mid-ball by its surgered embedding, where one does surgery on a trivially framed link Si−1 ⊔
Sj−1 ⊂ Dn−1 (the mid-ball) where the first sphere is attaching map for the core of the Si × Dn−i summand,

and the Sj−1 is the attaching sphere for the core of the Sj × Dn−j summand. The link Si−1 ⊔ Sj−1 ⊂ Dn−1

has unknotted components, but the components have linking number ±1.

Proof To see this, consider Bn
i,j fibering over Di−1 with fiber B

j+1
i,j . Consider the action of the

barbell diffeomorphism on the mid-balls in the fibers. Specifically, consider the intersection of the

image of these mid-balls with the cocores. Generally these will consist of a disjoint union S0 ⊔ Sj−i .

The S0 comes from the Sj cocore, while the Sj−i comes from the Si cocore. At the centre of the

Di−1 parameter space the Sj−i and S0 sit on a common Dj−i+1 with one point of S0 inside the

Sj−i and the other on the outside. As one moves the Di−1 parameter the S0 is pushed out of the

subspace of the Sj−i , and as one approaches the boundary first the Sj−i is coned-off, then the S0 is

coned-off. This is exactly the slicing perspective on the standard linked pair Sj−1 ⊔ Si−1 ⊂ Dn−1 ,

slicing over Di−1 .

The advantage of this perspective is that it allows us to give a relatively elementary combinatorial

description of the barbell diffeomorphism, in terms of handle attachments.

Proposition 2.8 The barbell diffeomorphism, as an element of π0Diff(Bn
i,j) with i + j = n is non-trivial

in pseudo-isotopy. We have two arguments. The restriction to the mid-ball

π0Diff(Bn
i,j) → π0Emb(Dn−1,Bn

i,j)

is non-trivial in pseudo-isotopy, indeed if we let Map(Dn−1,Bn
i,j) denote the space of maps of Dn−1 to Bn

i,j

that restrict to the standard inclusion (the boundary connect-sum splitting disc) on the boundary, then the

map π0Diff(Bn
i,j) → π0Map(Dn−1,Bn

i,j) is homotopically non-trivial. This latter space, up to a canonical

homotopy-equivalence, is Ωn−1(Si ∨ Sj) .

The restriction to either cocore

π0Diff(Bn
i,j) → π0Emb(Di,Bn

i,j) or π0Diff(Bn
i,j) → π0Emb(Dj,Bn

i,j)

is non-trivial in pseudo-isotopy. Similarly, if we go one step further, the map π0Diff(Bn
i,j) → π0Map(Di,Bn

i,j)

is non-trivial.

Proof The key observation is that the barbell diffeomorphism restricted to the mid-ball is ob-

tained by surgery on a 2-component link, Si−1 ⊔ Sj−1 ⊂ Dn−1 corresponding to the core Si and

Sj respectively, i.e. the Si−1 is the attaching sphere for the i-handle, and the Sj−1 is the attaching

sphere for the j-handle, when building Bn
i,j from the midball by handle attachments. Given an

embedding Dn−1 → Bn
i,j it induces an element of Ωn−1Bn

i,j ≃ Ωn−1(Si ∨ Sj) and the barbell diffeo-

morphism induces the Whitehead product [wi, wj] where wi : Si → Si ∨ Sj is the inclusion of Si ,

and wj : Sj → Si ∨ Sj is the inclusion of Sj .

A second pseudo-isotopy obstruction follows from Proposition 2.4. Specifically, the embedding

of the i-dimensional cocore may be projected to the Si -core, giving an element of ΩiSi . For the

barbell diffeomorphism, this is a generating element of π0ΩiSi ≡ πiS
i ≃ Z .

preprint



On the automorphism groups of hyperbolic manifolds 11

Proposition 2.9 The action of the barbell diffeomorphism for i + j = n on the cocores corresponds to

tubing with the complementary core sphere. The intersection of the image of the cocores with the mid-balls

are Hopf-linked embedded copies of Si−1 ⊔ Sj−1 , as in the Figure 6.

PSfrag replacements

Si

Si

Sj

Sj

Si−1

Sj−1

Di

Di

Dj

Dj

Figure 6: Barbell applied to cocores having ‘linked’ tubings.

Proof Consider Bn
i,j fibering over Di−1 with fiber B

j+1
i,j . The map Di−1 → Diff(B

j+1
i,j ) corresponds

to the diffeomorphisms induced by ambient isotopy as one slides the ‘ j puncture’ about the ‘i

puncture’. The cocores in the fiber B
j+1
i,j correspond to embedded copies of D1 (corresponding to

the j-puncture) and Dj−i+1 (the i-puncture) respectively. In the i = 1 case, the cocore pair are

linked as described, by an explicit performance of the isotopy-extension. When i > 1 the cocores

are no longer linked in B
j+1
i,j . What we see is a fibering of the standard linked pair, fibered over

Di−1 .

Notice we have several equivalent ways to distinguish the barbell diffeomorphism from its inverse.

Proposition 2.8 tells us that if we consider the intersection of the mid-ball with the image of the

cocores, we get a standard linked pair. If we orient the linked pair using normal bundles (i.e. the

standard in oriented intersection theory) this would be a labeled and oriented 2-component link.

The linking number is therefore a well-defined integer and these will be opposite for the barbell

diffeomorphism and its inverse.
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Figure 7: Barbell image and pre-image of cocores.

There is an analogous result when i + j > n . In this case, the cocores intersected with the mid-ball

are too low-dimensional to link, but in the family of maps Si+j−n → Ωn−jSi → Diff(Bn
i,j) the family

of cocores intersected with the mid-ball analogously link.

Barbell diffeomorphisms are closely related to the diffeomorphisms constructed by Watanabe [19].

See [1] for details.

3 πn−4Diff(S1 × Dn−1) and the δk diffeomorphisms.

In this section prove Theorem 3.1 which is a new proof that the homotopy group πn−4Diff(S1 ×

Dn−1) is not finitely generated for n ≥ 4. On the large scale, this proof has several similarities to

the one presented in [1] in that we compute the same W3 -invariant on the same implanted barbell

diffeomorphisms δk to show they are linearly independent. The principal difference between the
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argument given here, and the one in [1] is that the computation of the W3 -invariant given here

is directly from our definition of the invariant W3 and diffeomorphisms δk . In [1] we deduced

relationships between the W3 -invariants of ‘nearby’ implanted barbell diffeomorphisms, somewhat

like bilinearity or a Skein relation. This relationship gave us a tool to reduce the computation of

the W3 -invariant of any implanted barbell diffeomorphism with linearly-embedded cuffs to that

of W3(G(p, q)) .

The elements δk ∈ πn−4Diff(S1 × Dn−1) are the implanted barbells diffeomorphisms that come

from embeddings of the Bn
n−2,n−2 barbells using ‘handcuff embeddings’ as depicted in Figure 8.

The element of πn−4Diff(Bn
n−2,n−2) corresponds to the image of the first non-trivial homotopy

group (πi+j−n ), under the map Ωn−jSi → Diff(Bn
i,j) when i = j = n − 2 defined in Section 2.

Ω2Sn−2 → Diff(Bn
n−2,n−2).
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Figure 8: δk barbell in S1 × Dn−1
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Figure 9: Projection of δk barbell to Dn−1

The inspiration for the W3 -invariant comes from Proposition 2.2, and it can also be seen in Figure 7.

Specifically, Proposition 2.2 states that barbell diffeomorphisms are detectable by considering the

mid-ball Bn−1 to be fibered by intervals, giving a map Diff(Bn
n−2,n−2) → Ωn−2Emb(I,Bn

n−2,n−2) . In

this formulation we consider pairs of points t1 < t2 ∈ I such that the embedding sends t1 to the

first cocore, and t2 to the second, as a signed intersection number for the family. Another way to
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14 Ryan Budney and David Gabai

state this is we are counting the linking number of the standard linking pair, of the pre-image of

the cocores, intersected with the mid-ball, i.e. it is a double-point formula for the linking number

of the pair depicted in Figure 7. Our preference is to state our invariant as a map of the form

πn−4Diff(Bn
n−2,n−2) → πn−4Ωn−2Emb(I,Bn

n−2,n−2) ≡ π2n−6Emb(I,Bn
n−2,n−2) → Z

as this is an expression that we can generalize to Diff(S1 × Dn−1) . Since we understand the barbell

diffeomorphism when restricted to the mid-ball, we can similarly ‘scan’ through {1} × Dn−1 ⊂
S1 × Dn−1 giving a map Diff(S1 × Dn−1) → Ωn−2Emb(I, S1 × Dn−1) . The W3 -invariant of an

element of πn−4Diff(S1 × Dn−1) takes values in Q ⊗ π2n−6Emb(I, S1 × Dn−1) . This homotopy-

group is detectable at the 3rd -stage of the Taylor tower, thus we consider the induced map of

3-point configuration spaces to extract invariants of the map.
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Figure 10: Scanning δk barbell in S1 × Dn−1 . Interval fibers of mid-ball {1} × Dn−1 in brown.

Notice when scanning through δk , if the brown interval fiber is disjoint from the bar, it is unaffected

by δk . But when it passes through the bar, imagine the bar’s cross-section as Dn−1 ≃ Dn−2 × I .

The Dn−2 together with the (n − 4)-parameter family of δk : Sn−4 → Diff(S1 × Dn−1) gives us a

(2n− 6)-parameter family of embedded intervals in S1 × Dn−1 , which are described in Proposition

2.2 and Figure 2. We modify Figure 2 as our barbell is embedded in S1 × Dn−1 in handcuff fashion.
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So as our brown interval passes through the bar, it curls as described in Figure 10. If we think of

our (2n− 6)-parameter family as Dn−3 ×Dn−3 , the first Dn−3 factor corresponds to the suspension

parameter Sn−2 ≡ ΣSn−3 and controls the red cylinder being swung around the red cuff. Similarly,

the second copy of Dn−3 corresponds to the suspension parameter of the blue cuff Sn−2 ≡ ΣSn−3

and parametrizes the blue cylinder being swung around the blue cuff. Lastly, the red and blue

straight lines (8 in total) depicted at the bottom of Figure 10 indicate the points of the embedding

that intersect the spanning disc for the cuffs, i.e. the points on the embedding that have parameters

with double-points.

Theorem 3.1

W3(δk) = (k − 1)
(

t−1
1 t1−k

3 + (−1)nt1−k
1 t−1

3 − t2−k
1 t1

3 + (−1)n−1t1t2−k
3

)

+

t1tk−1
3 + (−1)ntk−1

1 t3 − t1−k
1 t2−k

3 + (−1)n−1t2−k
1 t1−k

3 .

The W3 -invariant takes values in the group Q ⊗ π2n−3C′
3[S

1 × Dn−1]/R and the elements {W3(δk) : k ≥

4} are linearly-independent over Q .

The remainder of this section is devoted to explaining the above: what precisely the group Q ⊗

π2n−3C′
3[S

1 × Dn−1]/R is, how it can be considered a subgroup of Q ⊗ π2n−6Emb(I, S1 × Dn−1) ,

and how we compute W3(δk) from Figure 10 using only the double-point data. That said, the

claimed formula above for W3(δk) has some clear features in common with Figure 10. Notice

that the bar crosses {1} × Dn−1 at (k − 1) locations, marked with green dots. There similarly a

term with coefficient k − 1 in the W3(δk) formula. Roughly speaking, the remaining term in the

W3(δk) computation is a correction term, since there is a different combinatorial pattern in the

double-point data for the family as it crosses through the the green dot labelled k − 1.

Definition 3.2 If M is a manifold, the configuration space of k points in M is the space

Ck(M) = {(p1, · · · , pk) : pi 6= pj ∀i 6= j}.

The Fulton-Macpherson compactification of Ck(M) is denoted Ck[M] . This is obtained by taking

the closure of Ck(M) under the product map

Ck(M) → Mk × (Sn)(
k
2) × [0, ∞](

k
3)

where the inclusion Ck(M) → Mk is set-theoretic inclusion Ck(M) ⊂ Mk . The maps Ck(M) →

Sn come from taking unit displacement vectors between pairs of points,
pi−pj

|pi−pj|
i.e. we assume

M ⊂ Rn+1 . Lastly, the maps Ck(M) → [0, ∞] come from the relative ratio map
|pi−pj|

|pi−pl |
where

{i, j, l} ⊂ {1, 2, · · · , k} .

Provided M is compact Ck[M] is a compact manifold with corners. Moreover, the construction is

natural with respect to embeddings and the inclusion Ck(M) → Ck[M] is a homotopy-equivalence.

In the context where we are considering embedding spaces Emb(I, M) , the notation C′
k[M] in-

dicates a small variation of Ck[M] where. Specifically, we take the pull-back of the unit tangent

bundle under the map

UTMk+2

��

Ck+2[M] // Mk+2
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16 Ryan Budney and David Gabai

and then restrict to the subspace where p1 (and its vector) agree with the initial-point of the em-

beddings of Emb(I, M) , and pk+2 (and its vector) agree with the terminal point of the embeddings

defining Emb(I, M) . See [18] for details. In the case of the interval, we restrict to the subspace of

C′
k[I] such that t1 ≤ t2 ≤ · · · ≤ tk , i.e. we choose a standard connected-component. In this case,

C′
k[I] is known to be the k-th Stasheff Polytope, or associahedron.

Denote the generators of π1Ck[S
1 × Dn−1] ≃ Zk by {ti : i = 1, 2, · · · , n} . The class wij ∈

πn−1Ck[S
1 × Dn−1] has all k points stationary, with the exception of point j that orbits around

point i .

πn−1Ck[S
1 × Dn−1] is generated by the set {t

q
l .wij ∀i, j, l, q} , with the relations

• wii = 0 ∀i

• wij = (−1)nwji ∀i 6= j .

• tl .wij = wij provided l /∈ {i, j} .

• tj.wij = t−1
i .wij ∀i, j .

The way one proves the above is to observe the forgetful map Ck(S
1 × Dn−1) → Ck−1(S

1 × Dn−1)

is a locally-trivial fiber bundle. Moreover, the map has a section, so the homotopy-groups of

Ck(S
1 × Dn−1) are isomorphic to the product of the homotopy groups of the fibers (iteratively),

which are (individually) wedges of S1 with various copies of Sn−1 . The S1 factors contribute

the ti generators in π1 , while the sphere factors contribute the wij generators. By the Hilton-

Milnor theorem the higher rational homotopy groups are generated by Whitehead Products. The

Whitehead Product is a bilinear mapping [·, ·] : πiX × πjX → πi+j−1X satisfying the

(−1)pr[[ f , g], h] + (−1)pq[[g, h], f ] + (−1)rq[[h, f ], g] = 0,

where f ∈ πpX, g ∈ πqX, h ∈ πrX with p, q, r ≥ 2.

Due to the form of the above relation it is sometimes called a ‘graded Jacobi identity’ in analogy

with the Lie Bracket.

There are two elementary relations satisfied by the wij classes via the Whitehead product:

• [wij, wlm] = 0 when {i, j} ∩ {l, m} = ∅ .

• [wij + wil, wlj] = 0 for all i, j, l .

The latter relation should be viewed a generalized ‘orbital system’ map Sn × Sn → C3(Dn) where

there is an earth-moon-sun orbital triple. For this interpretation one views the Whitehead Bracket

as the obstruction to extending a wedge of maps, i.e. Si ∨ Sj → X to the product Si × Sj → X . For

an orbital triple such a map exists, thus the corresponding Whitehead bracket is zero.

The latter relation above can be rewritten as [wij, wjk]− [wjk, wki] = 0, giving the equality of the

three cyclic permutations,

[wij, wjk] = [wjk, wki] = [wki, wij].

Proposition 3.3 The rational homotopy-groups of Ck[S
1 × Dn−1] are generated by the Whitehead

products of the elements tm
l .wij . These satisfy the relations
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• [wij, wlm] = 0 if {i, j} ∩ {l, m} = ∅ ,

• [wij, wjl ] = [wjl , wli] = [wli, wij] ,

• tl .[ f , g] = [tl . f , tl .g] .

A relatively constructive way to verify much of the above is via intersection theory. Fix a unit

direction ζ ∈ ∂Dn−1 . Define tiCo2
1 to consist of pairs of points (p1, p2) ∈ C2(R1 × Dn−1) such that

the displacement vector ti
2.p2 − p1 is a positive multiple of ζ . We call tiCo2

1 a cohorizontal manifold.

Given an element of πn−1C2(S1 × Dn−1) , we lift the map to the universal cover C̃2(S1 × Dn−1) ⊂

C2(R × Dn−1) and take its intersection with the tiCo2
1 submanifold is a well-defined framed 0-

dimensional manifold as a cobordism class, thus an integer. This invariant detects the class ti
1w12 .

To similarly detect homotopy classes in π2n−3C3(S1 × Dn−1) we have the collinear classes. This

will consist of three points sitting on a ‘straight line’ in S1 × Dn−1 . Roughly speaking by ‘straight

line’ we are referring to geodesics in the standard Euclidean metric on S1 × Dn−1 . To be more

precise, the manifold Col1
α,β is the collection of points of the form (p1, p2, p3) ∈ C3(R × Dn−1) such

that (p2, tα
1 p1, t

β
3 p3) sit on a straight line in R × Dn−1 in the listed order. The manifold Col3

α,β is

similarly defined by the requirement (tα
1 p1, t

β
3 p3, p2) sit on a straight line in R × Dn−1 in the listed

order. The universal cover of C3(S1 × Dn−1) is naturally an open subspace of (R1 × Dn−1)3 , thus

we can consider Col1
α,β and Col3

α,β naturally as subspaces of the universal cover of C3(S1 × Dn−1) .

The manifolds Col1
α,β and Col3

α,β are disjoint and closed in the universal cover of C3(S1 × Dn−1) .

Given a map S2n−3 → C3(S1 × Dn−1) , we take its lift to the universal cover S2n−3 → C̃3(S1 × Dn−1)

and take the pre-image of the pair (Col1
α,β, Col3

α,β) . Generically, this gives us a disjoint pair of

compact oriented manifolds of dimension (n − 2) in S2n−3 , thus they have a well-defined linking

number. This linking number detects the coefficient of tα
1 t

β
3 [w12, w23] .

Given that linking numbers of pre-images of the pair (Col1
α,β, Col3

α,β) can be difficult to visualize

and compute for a lift of an arbitrary map S2n−3 → C3(S1 × Dn−1) , we describe an isotopy of the

pair (Col1
α,β, Col3

α,β) that converts the computation into something that is often more manageable.

For ǫ ∈ R consider the diffeomorphism of Rn given by

Pǫ(x1, x2, · · · , xn) =

(

x1, x2, · · · , xn−1, xn + ǫ
n−1

∑
i=1

x2
i

)

.

This diffeomorphism has the feature that it converts the xn = c hyperplanes into paraboloids,

when ǫ 6= 0, similarly it turns lines in the xn = c plane into parabolas, but on a line parallel to

the xn -axis the diffeomorphism acts by translation. Moreover, Pǫ1
◦ Pǫ2 = Pǫ1+ǫ2 and P−1

ǫ = P−ǫ . If

we consider the Coli
α,β manifolds to be submanifolds naturally defined in C3(Rn) (i.e. before we

pull them back to C3(R × Dn−1)), we can pull them back via the diffeomorphism Pǫ , and these

will be manifolds of coparabolic triples (plus triples on the lines parallel to the xn -axis). As Pǫ

is an orientation-preserving diffeomorphism, these manifolds when pulled-back to C̃3(S1 × Dn−1)

also detect the tα
1t

β
3 [w12, w13] classes. We denote the pull-backs of the collinear manifolds the

coparabolic manifolds, i.e.

Copi
α,β,ǫ = P∗

ǫ (Coli
α,β).

Given a map S2n−3 → C3(S1 × Dn−1) , we lift to the universal cover and take the pre-images of

Copi
α,β,ǫ for i = 1, 3. Given that these are disjoint closed, oriented manifolds in the codomain, their
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pre-images are disjoint compact, oriented manifolds in S2n−3 . Generically we can assume these

maps contain no cohorizontal triples, since the cohorizontal triple condition is of codimension

2n− 2 > 2n− 3. Thus for if ǫ is large, and our triples of points are not approximating infinitesimal

triples along the embedding, we can assume that the critical point of the parabola occurs outside

the R × Dn−1 , and this critical point separates two of the three points in the parabolic triple.

Thus in the limit, the linking of the pre-image of the pair (Cop1
α,β,ǫ, Cop3

α,β,ǫ) is computable as the

linking numbers of the pre-image of the pair (tαCo1
2 − tα−βCo1

3, tβ−αCo3
1 − tβCo3

2) , as steep segments

of parabolas approximate cohorizontal lines. The reason for the signs, such as the minus sign in

front of the tα−βCo1
3 term is that when computing the signed intersection number of a parabolic

triple, all the signs for the Co1
2 and Co1

3 are the same, with the exception for the reversal of direction

of the parabola.
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Figure 11: Parabolic triples, ǫ = 0 left. Large ǫ middle and right.

Lemma 3.4 Given a smooth map f : S2n−3 → C3(S1 × Dn−1) , generically we can assume it has no

cohorizontal triples. Moreover, provided the map does not have any cohorizontal triples, consider the lift to

the universal cover f̃ : S2n−3 → C̃3(S1 × Dn−1). The linking numbers in S2n−3 of the pre-images of the

disjoint pair of manifolds in C̃3(S1 × Dn−1)

(Col1
α,β, Col3

α,β)

agrees with the linking number of the pre-image of the pair

(tαCo1
2 − tα−βCo1

3, tβ−αCo3
1 − tβCo3

2)

of linear combinations of manifolds, for all α, β ∈ Z .

Lemma 3.4 is a variant of an argument the first author learned from Misha Polyak verbally in 2005,

who later described his argument in more detail in his presentation [17]. While Polyak’s argument

occurs at the 4th -stage of the Taylor tower, this variant works at the 3rd .

As in [1], given a map Sn−4 → Diff(S1 × Dn−1) we compose with the scanning map Diff(S1 ×

Dn−1) → Ωn−2Emb(I, S1 × Dn−1) . We further compose with the 3rd stage of the Taylor tower,

which we think of as the evaluation map Emb(I, S1 × Dn−1)×C′
3[I] → C′

3[S
1 × Dn−1] , or its adjoint

ev3 : Emb(I, S1 × Dn−1) → Map(C′
3[I], C′

3[S
1 × Dn−1])
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where in this mapping space we demand that maps are stratum-preserving and aligned, meaning

that when points collide in the domain, the corresponding points collide in the codomain, more-

over, their associated tangent vectors agree. Putting these ingredients together we have an induced

map

Sn−4 ∧ Sn−2 ≡ S2n−6 → Map(C′
3[I], C′

3[S
1 × Dn−1]).

One could have some concerns here that the lifts of these maps to the universal cover of C′
3[S

1 ×
Dn−1] have transversality issues on various boundary strata of C3[I] . Specifically, if our family in

Emb(I, S1 × Dn−1) has any velocity vectors parallel to the ‘vertical’ direction (i.e. the S1 -direction

of S1 × Dn−1 ) then one has collinear triples for infinitely many α, β of the Coli
α,β variety. For

example, on the t1 = t2 = t3 stratum, but also there are intersections of distinct codimensions

on the t1 = t2 stratum, where the co-dimension depends on the choice of α, β . There are several

ways to avoid these transversality problems. For example, if the family has no vertical tangent

vectors, this issue does not arise. That said, vertical tangent vectors are not known to be avoidable

(that said, we do know the tangent vector field along the embeddings to be canonically null-

homotopic). The underlying geometric problem is that the collinear manifolds contain all the

vertical lines R × {p} for p ∈ Dn−1 . Thus we can change our model to avoid this problem.

Using the coparabolic manifolds Copi
α,β,ǫ with ǫ 6= 0 suffices. Our families S2n−6 × C′

3[I] →

C′
3[S

1 × Dn−1] are generically transverse to these coparabolic manifolds, pulling them back to

oriented co-dimension n − 1 submanifolds, along all strata.

The associated map on the 2nd stage S2n−6 → Map(C′
2[I], C′

2[S
1 × Dn−1]) is torsion (see [1] for

details), so we can attach a null-homotopy to an appropriate multiple of the 3rd stage, giving a

homotopy-class of map S2n−3 → C′
3[S

1 × Dn−1] . Depending on which null-homotopy we attach,

we can get a different homotopy-class of map S2n−3 → C′
3[S

1 × Dn−1] . This is the subject of items

(1)–(4) below.

As we have seen π2n−3C′
2[S

1 × Dn−1] is isomorphic to π2n−3(S1 ∨ Sn−1) ⊕
⊕

2 π2n−3Sn−1 . Mod-

ulo torsion, the generators of π2n−3(S1 ∨ Sn−1) are the Whitehead products of elements tkw12

for k ∈ Z . This gives us the result that π2n−3C′
2[S

1 × Dn−1] , mod torsion, is isomorphic to

Z[t±1
1 , t±1

2 ]/〈t1t2 − 1 = 0〉 as a module over the group-ring of the fundamental group. The genera-

tor of π2n−3C′
2[S

1 × Dn−1] corresponding to a monomial tα
1t

β
2 is tα

1t
β
2 w12 . By attaching a homotopy-

class of maps S2n−6 × I × C2[I] → C′
2[S

1 × Dn−1] to a closed-off S2n−6 × C3[I] → C′
3[S

1 × Dn−1] we

change the homotopy class by adding:

(1) [tα
2w23, t

β
2 w23] . This comes from the t1 = 0 face. Thus the generator tα

1w12 is mapped to

tα
2w23 , and a Whitehead bracket [tα

1w12, t
β
1 w12] is mapped to [tα

2w23, t
β
2 w23] .

(2) [tα
1w12, t

β
1 w12] to [tα

1w13 + tα
2w23 + a1w21, t

β
1 w13 + t

β
2 w23 + a1w21] . This comes from the t1 = t2

face map, i.e. the inclusion C′
2[S

1 × Dn−1] → C′
3[S

1 × Dn−1] that doubles the first point, i.e.

(p1, p2) 7−→ (p1, ǫ+p1, p2) , where the perturbation ǫ+p1 is in the direction of the velocity

vector. The integer a1 is the degree of this velocity vector map. This map sends w12 to

w13 + w23 + a1w21 , t1 to t1t2 and t2 to t2 . The 2nd stage of the Taylor tower induces a null-

homotopy of the velocity vector map, so we can assume a1 = 0, but it is of interest that the

following computation gives the same answer for a1 6= 0. Thus it sends [tα
1w12, t

β
1 w12] to
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[tα
1w13 + tα

2w23 + a1w21, t
β
1 w13 + t

β
2 w23 + a1w21] . Expanding this bracket using bilinearity we

get

=
(

−t
α−β
1 t

−β
3 + (−1)nt

β−α
1 t−α

3

)

[w12, w23] + [tα
1w13, t

β
1 w13]+

a1

(

(−1)n−1t
−β
3 + (−1)nt

−β
3 + t−α

1 − t−α
1

)

[w12, w23]

where the latter row comes from collecting the terms involving a1 , and clearly these terms

sum to zero.

(3) [tα
1w12 + tα

1w13 + a2w23, t
β
1 w12 + t

β
1 w13 + a2w23] . This is for the t2 = t3 facet. This corresponds

to the map C′
2[S

1 × Dn−1] → C′
3[S

1 × Dn−1] that doubles the second point, i.e. (p1, p2) 7−→

(p1, p2, ǫ+p2) . This map sends w12 to w12 + w13 + a2w23 , t1 to t1 and t2 to t2t3 . Thus

[tα
1w12, t

β
1 w12] 7−→ [tα

1w12 + tα
1w13 + a2w23, t

β
1 w12 + t

β
1 w13 + a2w23] . Like the previous case, this

simplifies to

=
(

−tα
1t

α−β
3 + (−1)nt

β
1 t

β−α
3

)

[w12, w23] + [tα
1w13, t

β
1 w13]+

a2

(

t
β
1 − t

β
1 + (−1)n−1tα

1 + (−1)ntα
1

)

[w12, w23].

Again, the terms with a2 cancel.

(4) [tα
1w12, t

β
1 w12] . This is for the t3 = 1 facet. This corresponds to the inclusion C′

2[S
1 × Dn−1] →

C′
3[S

1 × Dn−1] that maps (p1, p2) to (p1, p2, (1, 0)) , thus it sends w12 7−→ w12 and t1 7−→ t1 ,

t2 7−→ t2 , thus it acts trivially on [tα
1w12, t

β
1 w12] .

Thus our invariant via closure 1
m ev3(m f ) of π2n−6Emb(I, S1 × Dn−1) takes values in

Q ⊗ π2n−3C′
3[S

1 × Dn−1]/R

where R is the subgroup generated by the above four inclusions. Notice (1) kills the summand

corresponding to the w23 brackets, and (4) kills the summands corresponding to the w12 brackets.

Using relation (1) and (4) we can simplify (2) and (3) into relations between w13 brackets and

brackets of the form [w12, w23] , giving us the Proposition 3.5.

Proposition 3.5 (Closure Argument) Given an element of [ f ] ∈ π2n−6Emb(I, S1 × Dn−1) such

that ev2( f ) : S2n−6 → T2Emb(I, S1 × Dn−1) is null, we form the closure of the evaluation map

ev3( f ) : S2n−6 → T3Emb(I, S1 × Dn−1) which is a based map of the form

ev3( f ) : S2n−3 → C′
3[S

1 × Dn−1].

The homotopy-class of this map, as a function of the homotopy-class [ f ] is well-defined modulo a

subgroup we call R . R is generated by the torsion subgroup of π2n−3C′
3[S

1 × Dn−1] together with

the elements
(

t
α−β
1 t

−β
3 − tα

1 t
α−β
3 + (−1)n

(

t
β
1 t

β−α
3 − t

β−α
1 t−α

3

))

[w12, w23] ∀α, β ∈ Z,

[tα
2w23, t

β
2 w23] ∀α, β,

[tα
1w12, t

β
1 w12] ∀α, β,

[tα
1w13, t

β
1 w13] +

(

t
α−β
1 t

−β
3 + (−1)n−1t

β−α
1 t−α

3

)

[w12, w23] ∀α, β.
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Since π2n−6T2Emb(I, S1 × Dn−1) is torsion, there is a homomorphism, called the closure operator

π2n−6Emb(I, S1 ×Dn−1) → Q[t±1
1 , t±1

3 ]/〈t
α−β
1 t

−β
3 − tα

1t
α−β
3 = (−1)n−1

(

t
β
1 t

β−α
3 − t

β−α
1 t−α

3

)

∀α, β ∈ Z〉

given by mapping f 7−→ 1
m ev3(m f ) .

Proof The relations are given in the comments preceding the Proposition. Relations (1) and

(4) kill [tα
2w23, t

β
2 w23] and [tα

1w12, t
β
1 w12] respectively. Using Relations (1) and (4) we can simplify

relations (2) and (3) to 3-term relations, both expressing [tα
1w13, t

β
1 w13] in the Z[t±1 , t±2 ]-linear span

of [w12, w23] . Comparing the two gives the relation
(

t
α−β
1 t

−β
3 − tα

1t
α−β
3 + (−1)n

(

t
β
1 t

β−α
3 − t

β−α
1 t−α

3

))

[w12, w23] = 0.

To compute the W3 invariant, we first consider the homotopy-class of the map on the 2nd stage,

ev2(δk) . In our family, depicted in Figure 10, there are (k − 1) green dots where double-points are

available. The first (k − 2) produce identical double-point data and they are depicted in Figure 12.
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Figure 12: Scanning through the first (k − 2) green dots.

In Figure 12 we have depicted the pre-image of the cohorizontal manifolds for the 2nd -stage map,

expressed as a map of the form Dn−3 × Dn−3 × C′
2[I] → C′

2[S
1 × Dn−1] . While C′

2[I] is technically

a hexagon, the cohorizontal manifold is disjoint from the boundary so for the purpose of expo-

sition we have collapsed C′
2[I] down to a triangle ∆2 . The cohorizontal manifolds are spheres of

dimension n − 3, having a natural surgery ‘product’ decomposition Sn−3 ≡ Dn−3 × ∂I ∪ Sn−4 × I .
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In the figure, this surgery decomposition is represented by the solid colored arcs on the left side

of the figure, depicting a copy of Dn−3 , together with the pair of similarly-coloured points on

the right side of the figure – for the Dn−3 × ∂I portion. For the I × Sn−4 portion, the spherical

boundary is depicted by a pair of large gray dots on the left-side of the picture, while the black

intervals on the right-side of the picture describe an interval I . The Sn−4 × I factors occur during

the ‘end homotopy’ in the construction of our family (depicted in the top-right portion of Figure

2), while the Dn−3 × ∂I portion come from the double-points that persist when varying the arcs in

the opposite cuff, i.e. depicted in the bottom-right portion of Figure 2.

We deduce Figure 12 from Figure 10. The key idea is there are only cohorizontal points (i.e.

double points) for small families where the scanning arc passes through the k − 1 green dots.

These correspond to the centres of the copies of Dn−3 in the Dn−3 × Dn−3 -family corresponding to

grabbing the two strands of the embedding in the red or blue cylinder respectively, and sweeping

them around the barbell and over the respective red or blue cuff. Thus the double-points occur

when the two strands in the coloured cylinders over or undercross the strands running through

the bar or the embedded barbell. The numbers decorating features of the lower left (and right)

part of Figure 10 marks the rough parameter-times where cohorizontal points occur. We use this

numbering system in Figure 12, i.e. coordinate (2, 4) has a red dot decorating it, meaning it records

the cohorizontal points from the first k − 2 green dots, where the strand decorated by 2 sweeps

around the point on the embedding decorated by 4.

(1,5) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(3,5) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(1,11) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(3,11) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(7,11) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(9,11) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(5,7) (−1)n−1t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(5,9) (−1)nt1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(2,4) (−1)nt1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(2,6) (−1)n−1t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(2,10) (−1)nt1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(2,12) (−1)n−1t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(8,10) (−1)n−1t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(8,12) (−1)nt1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(4,8) +t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(6,8) −t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

Figure 13: Normal orientations for the cohorizontal manifolds in the first (k − 2) green dots.

Notice that the spheres in Figure 12 are unlinked and trivially framed, meaning the 2nd -stage map

is null homotopic. Given that the spheres are essentially linearly embedded, you could think about

how the spanning disc for one sphere intersects the others, and some of these intersections are non-

trivial. That said, they are avoidable. Figure 12 also has some sign information recorded. This

describes the orientations inherited by the spheres. For example, take one of the ‘red’ spheres. In

its surgery decomposition, it consists of the red copy of Dn−3 × ∂I together with a copy of Sn−4 × I .

The sign information in the figure indicates the orientation of the Dn−3 × ∂I components. Since

the Dn−3 × ∂I components are parallel to the blue Dn−3 coordinate axis, the sign is a reference

to the orientation of the normal bundle of that portion of the manifold, given in reference to the

standard orientation of ∆2 × Dn−3 × Dn−3 using the coordinates (r1, · · · , rn−3, b1, · · · , bn−3, t1, t2)
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in that order, i.e. and we use the orientation form

dt1 ∧ dt2 ∧ dr1 ∧ · · · ∧ drn−3 ∧ db1 ∧ · · · ∧ dbn−3

With these conventions, the normal orientations for the first 1 ≤ l < k − 1 terms are given in

Figure 13. We abbreviate the 1-forms dx simply by the symbol x . For the last green dot, we have

a somewhat different 2nd -stage diagram given in Figure 14.

In Figure 13 the point (1, 5) and (3, 5) are labelled in blue, with signs + and − respectively. In

Figure 12 they are connected by an arc decorated with the monomial t1−k . This means that they

are part of the preimage of the t1−kCo2
1 manifold. The plus sign indicates the normal orientation

of this manifold is +r1 ∧ · · · ∧ rn−3 , i.e. agreeing with the orientation induced by the natural

ordering of the coordinates listed in the order (t1, t2, r1, · · · , rn−3, b1, · · · , bn−3) . Similarly, the disc

corresponding to the red dot at (4, 8) is labelled in the preimage of tk−2Co2
1 with orientation

described in the Figure 13 table.
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Figure 14: Scanning through the last green dot.
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(2,6) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(2,12) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(4,6) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(4,12) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(8,12) −t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(10,12) +t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(6,8) (−1)n−1t1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(6,10) (−1)nt1 ∧ t2 ∧ b1 ∧ · · · ∧ bn−3

(3,5) (−1)nt1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(3,7) (−1)n−1t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(3,11) (−1)nt1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(9,11) (−1)n−1t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(1,3) +t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(1,9) −t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(5,9) +t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

(7,9) −t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3

Figure 15: Normal orientations for the cohorizontal manifolds in the last green dot.

We construct the 3rd -stage map cohorizontal manifolds from the 2nd -stage map, the idea being

that whichever cohorizontal manifold one is considering, it will be constant in one of the three

parameters of C′
3[I] , given that the cohorizontal condition is a constraint on only two of the three

coordinates of C′
3[I] . Attaching the null-homotopies described for the 2nd -stage map allows us to

close-off the cohorizontal manifolds, getting a collection of disjoint spheres in a neighbourhood

of Dn−3 × Dn−3 × C′
3[I] . We emphasize ‘neighbourhood’ since the null-homotopy attachments are

external to Dn−3 × Dn−3 × C′
3[I] . In Figures 16 and 17 we suppress the Dn−3 × Dn−3 factors, since

it would only be a repetition of Figure 12. In our diagrams we display the t1 and t3 coordinates,

with t2 being out of the page. Thus our diagram depicts collections of spheres diffeomorphic to

Sn−2 . We simplify our sketch of C′
3[I] to be a simple tetrahedron ∆3 . If one looks at the diagram,

one sees a collection of disjoint circles in a neighbourhood of ∆3 , some linking, and others not.

As with Figures 12 and 14, these diagrams are in ‘product form’, i.e. these spheres have the form

Dn−3 × S1 ∪ Sn−4 × D2 , where the circle and D2 factors live in the neighbourhood of ∆3 , and the

Dn−3 factor comes from one of the factors in the parametrization of our family. Thus our figures

only depict the {0} × S1 portions of our spheres, but fortunately for us, this is precisely where our

double-points occur.

The above kind of geometry occurs in the study of standard linking pairs. While this is an elemen-

tary geometric observation, the first author learned about this phenomenon from Haefliger [10].

For example, if we take a standard linking pair in Sn−1 with i + j = n , i.e.

Sn−1 ≡ ∂Dn ≡ ∂(Di × Dj) = Si−1 × Dj ∪ Di × Sj−1

we can go one step further and think of Dn × {0} as the equator in Dn+1 , giving

Sn ≡ ∂Dn+1 ≡ Si × Dj ∪ Di+1 × Sj−1 or Si−1 × Dj+1 ∪ Di × Sj.

i.e. one can think of a (Si−1, Sj−1) standard linking pair in Sn−1 as equatorial in a (Si, Sj−1)

standard linking pair in Sn , or the reverse, in a (Si−1, Sj) standard linking pair in Sn . This is

a single step in an inductive suspension process that can generate all standard linking pairs of

spheres, from linking pairs of the form (S0, S0) in S1 .
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Figure 16: Cohorizontal manifolds for first k − 2 green dots, in Dn−3 × Dn−3 × C′
3[I]
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Figures 16 and 17 are depicting standard linking pairs of the form (Sn−2, Sn−2) where we are

inducting up from the base case of disjoint linking circles in ∆3 , where for one circle we suspend

up using the Dn−3 × {0} factor, and for the other circle we suspend up using the {0} × Dn−3

factor.

In Figure 16 we break up the cohorizontal manifolds into their constituent parts, depending on

which cuff the points are being mapped to (via colour) and the translate of the relevant cohorizon-

tal manifold. In the top-left part of Figure 16 ( lk(tαCo1
2, tβ−αCo3

1)) there is only the one linking pair,

with monomial t2−k
1 t1

3 . To compute the signs, we count the signed overcrossings of tαCo1
2 − tα−βCo1

3

over tβ−αCo3
1 − tβCo3

2 . The normal orientation of the arc parallel to the t3 -axis through (6, 8, 8) is

−t1 ∧ t2 ∧ r1 ∧ · · · ∧ rn−3 . The normal orientation to the arc parallel to the t2 -axis through (5, 5, 7)
is (−1)n−1t1 ∧ t3 ∧ b1 ∧ · · · ∧ bn−3 . Repeating for all six sub-diagrams of Figure 16, we get the sum

of all these terms for the first k − 2 green dots as

(k − 2)
(

t−1
1 t1−k

3 + (−1)nt1−k
1 t−1

3 − t2−k
1 t1

3 + (−1)n−1t1
1t2−k

3

)

.

If we repeat for Figure 17, the sum of the terms for the last green dot gives

(−1)n−1t2−k
1 t1−k

3 − t1−k
1 t2−k

3 − t2−k
1 t3 +(−1)nt1−k

1 t−1
3 +(−1)ntk−1

1 t1
3 + t1tk−1

3 + t−1
1 t1−k

3 +(−1)n−1t1t2−k
3 .

Putting this together with the first k − 2 green dots, we have

W3(δk) = (k − 1)
(

t−1
1 t1−k

3 + (−1)nt1−k
1 t−1

3 − t2−k
1 t1

3 + (−1)n−1t1t2−k
3

)

+

t1tk−1
3 + (−1)ntk−1

1 t3 − t1−k
1 t2−k

3 + (−1)n−1t2−k
1 t1−k

3

which completes the proof of Theorem 3.1.

Recall the hexagon relation.

tα
1 t

β
3 + (−1)nt

−β
1 t−α

3 = t
α−β
1 tα

3 + (−1)nt−α
1 t

β−α
3 (1)

= t
−β
1 t

α−β
3 + (−1)nt

β−α
1 t

β
3 (2)

= t−α
1 t
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β
1 tα

3 (3)

= t
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1 t−α

3 + (−1)ntα
1 t
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3 (4)
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1 t
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1 t

−β
3 (5)
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Figure 17: Cohorizontal manifolds for the last green dot, in Dn−3 × Dn−3 × C′
3[I]
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Plugging in k = 3 in the above formula for W3(δ3) gives

W3(δ3) =

{

0 if n even

4t−2
1 t−1

3 + 4t−1
1 t−2

3 − 2t−1
1 t3 − 2t1t−1

3 if n odd.

4 Homeomorphisms of S1 × Dn−1

In this section we give a proof of Theorem 1.1.

Proof of Theorem 1.1: We supply an argument that a quotient of the W3 invariant is definable

out of πn−4Homeo(S1 × Dn−1) . This will suffice to show πn−4Homeo(S1 × Dn−1) is not finitely-

generated for all n ≥ 4.

Let Embτ(I, S1 × Dn−1) denote the space of topological embeddings of I = [0, 1] in S1 × Dn−1 .

We require these embeddings send 0 to (1,−∗) and 1 to (1, ∗) where ∗ ∈ ∂Dn−1 is a choice

of basepoint. We similarly require that the embedding send the interior of I to the interior of

S1 × Dn−1 . This last condition does not affect the homotopy-type of the space it does make some

technical arguments easier to read. We give this embedding space the compact-open topology.

We let ∆k denote the standard simplex,

∆k = {(t1, t2, · · · , tk) ∈ Rk : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1}.

A topological embedding f : I → X induces a map

f∗ : ∆k → (S1 × Dn−1)k

defined by f∗(t1, · · · , tk) = ( f (t1), · · · , f (tk)) . We list its properties. Given a set A = {i1, · · · , ij} ⊂

{1, 2, · · · , k} , the A-diagonal of Xk denotes the subspace of Xk where xi1 = xi2 = · · · = xij
. Call

the subspace of ∆k satisfying t1 = 0 the initial facet of ∆k , and the subspace satisfying tk = 1 the

terminal facet of ∆k . The subset of (S1 × Dn−1)k satisfying p1 = (1,−∗) we call the initial facet,

and pk = (1, ∗) the terminal facet of (S1 × Dn−1)k .

(a) The induced map f∗ sends A-diagonals to A-diagonals, moreover the pre-images of A-

diagonals are A-diagonals.

(b) f∗ sends the initial facet of ∆k to the initial facet of (S1 × Dn−1)k , similarly the terminal

facets.

(c) If we lift f∗ to a map of universal covers ∆k → (R1 × Dn−1)k then two covering translates of

points of the image agree if and only if the covering translates are identical, i.e. pi = t.pj is

possible if and only if t = 0 ∈ π1(S
1 × Dn−1)k and pi = pj .

Given a manifold M define

Cτ
k (M) = {(p1, · · · , pk) ∈ M̃k : pi /∈ (π1M \ {0}).pj ∀i, j}

where M̃ is the universal cover of M . This definition can be interpreted as saying that any two

listed points pi, pj ∈ M̃ either have disjoint π1M-orbits, or when the orbits intersect we have

pi = pj . We call Cτ
k (M) the principal configuration space of k points in the universal cover of M .
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Thus item (c) above states the lift of f∗ : ∆k → (S1 × Dn−1)k to the universal cover is a map of the

form ∆k → Cτ
k (S

1 × Dn−1) . Items (a) and (b) should be thought of as a relative mapping space

condition.

As a space, Cτ
k (M) is the orbit configuration space of the universal cover of M union the {i, j}-

diagonals, i.e. thinking of Cτ
k (M) as a subspace of (M̃)k it is the union of Ck(M̃) with the {i, j}-

diagonals for all i 6= j . See for example Fred Cohen’s work on orbit configuration spaces [4].

For our purposes we need to know π2n−1C̃τ
2 (S

1 × Dn−1) and enough of π2n−3C̃3(S1 × Dn−1)⊗ Q ,

which is the content of the next proposition.

Proposition 4.1 The homotopy group πn−1C̃2(S1 × Dn−1) is freely generated by the elements ta
2w12 with

a ∈ Z \ {0} .

The kernel of the map

π2n−3C̃3(S
1 × Dn−1)⊗ Q → π2n−3Cτ

3 (S
1 × Dn−1)⊗ Q

trivially intersects the Q -span of elements of the form [ta
j wij, tb

j wjk] for a, b ∈ Z \ {0} , a 6= b and

{i, j, k} = {1, 2, 3} .

Proof Concerning πn−1C̃2(S1 × Dn−1) , the forgetful map C̃2(S1 × Dn−1) → R × Dn−1 is a locally-

trivial fiber bundle with fiber diffeomorphic to the complement of the non-trivial covering trans-

lates of a point, which has the homotopy-type of a wedge of spheres, the generators in dimension

(n − 1) being our ta
2w12 classes with a 6= 0.

Concerning π2n−1C̃2(S1 × Dn−1) we consider the collinear manifolds Col1
α,β and Col3

α,β as being

subsets of Cτ
3 (S

1 × Dn−1) via the inclusion Cτ
3 (S

1 × Dn−1) → (R × Dn−1)3 . The manifolds Col1
α,β

and Col3
α,β are disjoint and closed in Cτ

3 (S
1 × Dn−1) provided α 6= 0 6= β and α 6= β .

If we pull-back the pair Col1
α,β and Col3

α,β via the map [ta
2w12, tb

2w23] we get a disjoint oriented

manifold pair with linking number ±1 provided α = −a and β = −b , otherwise we get zero. Thus

the set of brackets of the form [ta
2w12, tb

2w23] are linearly independent in π2n−3Cτ
3 (S

1 × Dn−1)⊗ Q

provided a 6= b and a 6= 0 6= b .

In the smooth category, given a diffeomorphism of S1 × Dn−1 we consider the induced scanning

map of the disc {1} × Dn−1 , this gave us an element of Ωn−2Emb(I, S1 × Dn−1) . We follow

that same outline for homeomorphisms, using the map Homeo(S1 × Dn−1) → Ωn−2Embτ(I, S1 ×
Dn−1) .

In the smooth case, the induced map on the second stage was torsion. In the topological case, the

‘second stage’ we take as the map

Embτ(I, S1 × Dn−1) → Map(∆2, Cτ
2 (S

1 × Dn−1))

with the associated boundary conditions, i.e. this is a stratum-preserving mapping space, as

described in conditions (a) and (b). Notice that the forgetful map Cτ
k (S

1 × Dn−1) → Cτ
k−1(S

1 ×
Dn−1) is in general not a fibration, but in the case k = 2 it is, with the fiber having the homotopy-

type of R × Dn−1 \ (Z \ {0}).p where p ∈ int(R × Dn−1) , i.e. this has the homotopy-type of a
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wedge of spheres. Thus given an element of πn−4Homeo(S1 × Dn−1) the induced element of the

second stage, is a stratum-preserving map of the form

Sn−4 × Dn−2 × ∆2 → Cτ
2 (S

1 × Dn−1).

The restriction of this map to the boundary facets of ∆2 give canonically null-homotopic maps,

thus we can cap-off the above map to construct a map S2n−4 → Cτ
2 (S

1 × Dn−1) . Given that

π2n−4Sn−1 is torsion when n ≥ 4, our map is torsion. Like in the smooth case, some multiple of

the 3rd -stage map

Sn−4 × Dn−2 × ∆3 → Cτ
3 (S

1 × Dn−1)

is null on the boundary. Will attach a choice of null-homotopy, and as in the smooth case the

induced element of

π2n−3Cτ
3 (S

1 × Dn−1)

is well-defined up to an error terms coming from a subgroup R′ . The subgroup R′ is the image of

R under the induced map from the forgetful map

π2n−3C3(S
1 × Dn−1) → π2n−3Cτ(S1 × Dn−1).

So we have a commutative diagram

πn−4Diff(S1 × Dn−1)⊗ Q

��

W3 // π2n−3C3(S1 × Dn−1)⊗ Q/R

��

πn−4Homeo(S1 × Dn−1)⊗ Q
W ′

3 // π2n−3Cτ
3 (S

1 × Dn−1)⊗ Q/R′

.

Due to Proposition 4.1, our elements δk satisfy

W ′
3(δk) = (k − 1)

(

t−1
1 t1−k

3 + (−1)nt1−k
1 t−1

3 − t2−k
1 t1

3 + (−1)n−1t1t2−k
3

)

+

t1tk−1
3 + (−1)ntk−1

1 t3 − t1−k
1 t2−k

3 + (−1)n−1t2−k
1 t1−k

3

which are non-trivial and linearly independent for k ≥ 4. The key observation is that these

elements lie in the 12-element orbits of the dihedral group of the hexagon, and these orbits do

not belong to the kernel of the map π2n−3C̃3(S1 × Dn−1)⊗ Q → π2n−3Cτ
3 (S

1 × Dn−1)⊗ Q/R′ by

Proposition 4.1, completing the proof of Theorem 1.1.

Sander Kupers has informed us one can further prove that the kernel of the map π2n−6Emb(I, S1 ×
Dn−1) → π2n−6Embτ(I, S1 ×Dn−1) is the image of the inclusion π2n−6Emb(I, Dn) → π2n−6Emb(I, S1 ×

Dn−1) . This is the subgroup given by embeddings disjoint from {−1} × Dn−1 . This result (un-

published) would give an alternative proof of Theorem 1.1. One can also obtain Theorem 1.1 in

dimensions different from n = 4, 5 and 7 using smoothing theory [15]. More generally, its known

that the homotopy groups of B(Homeo(M)) and B(Diff(M)) are finitely generated whenever

π1M is finite and M has even dimension, different from 4 [3].
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5 Automorphisms of complete finite volume hyperbolic manifolds

Farrell and Jones [6] proved that provided N is a compact hyperbolic manifold of dimension

greater than or equal to 11, then π0Diff(N) and π0Homeo(N) are not finitely generated. In

particular, Diff(N) and Homeo(N) do not have the homotopy-type of compact manifolds. The

purpose of this section is to reduce 11 to 4. By [8], it is known that the diffeomorphism group of a

complete finite volume hyperbolic 3-manifold has the homotopy-type of its isometry group, i.e. it

has the homotopy-type of a discrete, finite set. Thus the results of this section are optimal. While

the Smale Conjecture for hyperbolic 3-manifolds is stated for closed manifolds in the introduction

to [8], it follows for complete manifolds by Lemma 7.2 and Theorem 7.3 of [8].

The proof of Farrell and Jones is constrained by two important dimension restrictions: 1) we do

not yet know the optimal range for pseudo-isotopy stability. Indeed, we still depend on the initial

result of Igusa [13]. 2) Farrell and Jones also depend on the work of Hatcher and Wagoner [12]

which begins in dimension 6.

While Farrell and Jones compute the mapping class group of N in the smooth and topological

cases, we restrict to πn−4Diff(N) and πn−4Homeo(N) . In a future paper [2] we anticipate extend-

ing these arguments to the level of mapping class groups.

Theorem 5.1 If N is a complete finite volume hyperbolic manifold of dimension n ≥ 4 then both

πn−4Diff(N) and πn−4Homeo(N)

are not finitely generated.

Proof We give the proof for n = 4 and N orientable. In a neighbourhood N(γ) of an embedded

closed geodesic γ , implant the barbell δk to obtain the diffeomorphism fk ∈ Diff0(N) . Let f̂k be

the lift of fk to the covering space N̂γ of N corresponding to the subgroup of π1N generated

by γ . This covering space admits a canonical compactification Nγ , for example, using normal

coordinates about the geodesic. Alternatively view Nγ as the Z quotient of H4 ∪ S3
∞ by the

loxodromic element corresponding to γ . We identify Nγ with S1 × D3 . Since fk is homotopically

trivial via a compactly supported homotopy, points of N̂ are moved distances uniformly bounded

above. It follows that f̂k extends to a homeomorphism f ∗k such that f ∗k |∂Nγ = id.

Now the preimage of γ in N̂ consists of a single geodesic γ̂ that maps 1-1 to γ and infinitely

many others that map ∞ to 1. By [1] or using Proposition 2.5, it follows that if γi is one such

lift, then f̂k|N(γi) is isotopic to id via an isotopy that moves points uniformly bounded distance,

independent of i . Here N(γi) is the corresponding lift of N(γ) . The point here is that δk is

isotopically trivial when lifted to some finite sheeted cover. Thus by an isotopy of f ∗k which moves

points uniformly bounded hyperbolic distance, we can assume that f ∗k |Nγ is supported in N(γ̂) ,

where we abuse notation by calling the isotoped map f ∗k . I.e. f ∗k is the standard δk implantation

in a neighborhood of the core geodesic of Nγ .

Finally apply our W ′
3 -invariant to the resulting homeomorphism f ∗k of S1 × D3 to conclude that

the fk ’s, k ≥ 4, freely generate an infinite rank abelian subgroup of π0(Diff0(N)) .
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The proof of Theorem 5.1 can be elaborated to construct a homomorphism πn−4Homeo(N)⊗Q to

an infinite direct sum of copies of Q when n > 4, in particular one copy of π2n−3Cτ
3 (S

1 × Dn−1)⊗
Q/R′ for each embedded orientable geodesic in N . The n = 4 case is somewhat distinct, as the

target group is a semi-direct product of the group of hyperbolic isometries of N and an infinite

direct-sum of copies of Q . This follows from Mostow Rigidity and the finiteness of the isometry

groups of closed hyperbolic manifolds. The idea for the homomorphism is to find an infinite set

γi of distinct embedded geodesics and consider the diffeomorphisms fi,k obtained by implanting

δk in N(γi) . Again these diffeomorphisms generate a free abelian subgroup of π0(Diff0(N)) ,

provided k ≥ 4. The key point is that when lifting to N̂γi
all the preimages of each γj , j 6= i

are non compact, so when extending to Nγi
only the f j,k ’s with j = i survive up to isotopy and

these are distinguished by W ′
3 . I.e. our invariant of πn−4Homeo(N) ⊗ Q will be W ′

3( fi,k) , in the

summand corresponding to γi .
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