# Knot traces and concordance

A conjecture of Akbulut and Kirby from 1978 states that the concordance class of a knot is determined by its 0-surgery. In 2015, Yasui disproved this conjecture by providing pairs of knots which have the same 0-surgeries yet which can be distinguished in (smooth) concordance by an invariant associated to the four-dimensional traces of such a surgery. In this talk, I will discuss joint work with Lisa Piccirillo in which we construct many pairs of knots which have diffeomorphic 0-surgery traces yet some of which can be distinguished in smooth concordance by the Heegaard Floer d-invariants of their double branched covers. If time permits, I will also discuss the applicability of this work to the existence of interesting invertible satellite maps on the smooth concordance group.