# Compactification of the configuration space for constant curvature conical metrics

Wednesday, October 4, 2017 -

3:00pm to 4:00pm

In this joint work with Rafe Mazzeo, we would like to understand the deformation theory of constant curvature metrics with prescribed conical singularities on a compact Riemann surface. We construct a resolution of the configuration space, and prove a new regularity result that the family of constant curvature conical metrics has a nice compactification as the cone points coalesce. This is one key ingredient to understand the full moduli space of such metrics with positive curvature and cone angles bigger than $2\pi$.

Speaker:

Xuwen Zhu

Stanford University

Event Location:

Fine Hall 314