Effective dynamics of a non-linear wave equation

Friday, December 2, 2011 -
2:00pm to 3:00pm
We consider the non-linear wave equation on the real line $i u_t-|D|u=|u|^2u$. Its resonant dynamics is given by the Szego equation, which is a completely integrable non-dispersive non-linear equation. We show that the solution of the wave equation can be approximated by that of the resonant dynamics for a long time. The proof uses the renormalization group method introduced by Chen, Goldenfeld, and Oono in the context of theoretical physics. As a consequence, we obtain growth of high Sobolev norms of certain solutions of the non-linear wave equation, since this phenomenon was already exhibited for the Szego equation.
Speaker: 
Oana Pocovnicu
Imperial College, London
Event Location: 
Fine Hall 314