On Eli Stein's square functions

Andreas Seeger
Conference in honor of Eli Stein
Princeton, May 17, 2011

- Joint work with

Sanghyuk Lee and Keith Rogers.

- Some connections to previous work with Yaryong Heo and Fedya Nazarov.

Classical Littlewood-Paley-Stein function:

$$
g(f)=\left(\int_{0}^{\infty}\left|t \frac{\partial}{\partial t}\left(P_{t} * f\right)\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

where $P_{t} * f(x)$ is the Poisson integral, or $\left(P_{t}\right)$ a general "nice" approximation of the identity.

Stein expanded Littlewood-Paley theory, using more singular kernels in place of P_{t}, to make it applicable to interesting geometrical and Fourier analytical questions.

- Example: Generalized spherical means

$$
\mathcal{A}_{t}^{\beta} f(x)=\frac{1}{\Gamma(\beta)} \int_{|y| \leq 1}\left(1-|y|^{2}\right)^{\beta-1} f(x-t y) d y
$$

also defined for $\beta \leq 0$ by analytic continuation;

$$
\widehat{\mathcal{A}_{t}^{\beta}} f(\xi)=C_{\beta, d}(t|\xi|)^{\frac{d-2}{2}+\beta} J_{\frac{d-2}{2}+\beta}(t|\xi|) \widehat{f}(\xi)
$$

$\beta=0$: spherical means.

Stein (1976) introduced the "Littlewood-Paley" function

$$
\mathcal{G}_{\beta} f=\left(\int_{0}^{\infty}\left|t \frac{\partial}{\partial t} \mathcal{A}_{t}^{\beta} f\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

to control $\sup _{t>0}\left|\mathcal{A}_{t}^{\beta-1 / 2+\varepsilon} f\right|$, in particular

$$
\sup _{t}\left|\int_{S^{d-1}} f(x-t y) d \sigma(y)\right| .
$$

- Sharp L^{p} bounds for variants of \mathcal{G}_{β} imply bounds for $e^{i t \sqrt{-\triangle}} f$ in $L^{p}\left(L^{2}(I)\right)$, with compact time interval I, for initial datum f in $L^{p_{-}}$ Sobolev spaces.
- There are known implications for classes of radial Fourier multipliers, via

$$
\begin{aligned}
m(\sqrt{-\Delta})= & \frac{1}{2 \pi} \int \widehat{m}(t) e^{i t \sqrt{-\Delta}} d t \quad \text { and } \\
\|m(\sqrt{-\Delta}) f\|_{p} \lesssim & \left(\int|\widehat{m}(t)|^{2}\left(1+|t|^{2}\right)^{\alpha} d t\right) \\
& \times\left\|\left(\int\left|\frac{e^{i t \sqrt{-\Delta}} f}{\left(1+t^{2}\right)^{\alpha / 2}}\right|^{2} d t\right)^{1 / 2}\right\|_{p}
\end{aligned}
$$

Bochner-Riesz means $\mathcal{R}_{t}^{\alpha} f$ of the Fourier integral

$$
\widehat{\mathcal{R}_{t}^{\alpha}} f=\left(1-\frac{|\xi|^{2}}{t^{2}}\right)_{+}^{\alpha} \widehat{f}(\xi) .
$$

Stein (1958) introduced

$$
G^{\alpha} f=\left(\int_{0}^{\infty}\left|t \frac{\partial}{\partial t} \mathcal{R}_{t}^{\alpha} f\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

to control $\sup _{t>0}\left|\mathcal{R}_{t}^{\alpha-1 / 2+\varepsilon} f\right|$ for $f \in L^{2}$ and (and then $f \in L^{p}$) to prove a.e. convergence for Riesz means of Fourier integrals and series.

Kaneko-Sunouchi (1985):

Uniform pointwise equivalence:

$$
G^{\alpha} f(x) \approx \mathcal{G}_{\beta} f(x), \quad \beta=\alpha-\frac{d-2}{2}
$$

by Plancherel's theorem (for the Mellin transform).

Connections to multipliers

Stein's proof of the Mikhlin-Hörmander multiplier theorem: If $\widehat{T f}=h \widehat{f}, \alpha>d / 2$, then there is the pointwise inequality

$$
g[T f](x) \leq \sup _{t>0}\|\phi h(t \cdot)\|_{L_{\alpha}^{2}\left(\mathbb{R}^{d}\right)} g^{*}[f](x)
$$

Similar philosophy for radial multipliers (Carbery, Gasper, Trebels, 1984): If $\widehat{T_{m} f}(\xi)=$ $m(|\xi|) \widehat{f}(\xi)$ then

$$
g\left(T_{m} f\right)(x) \leq \sup _{t>0}\|\phi m(t \cdot)\|_{L_{\alpha}^{2}(\mathbb{R})} G^{\alpha} f(x)
$$

based on

$$
u(|\xi|)=C(\alpha) \int_{|\xi|}^{\infty}\left(1-\frac{|\xi|}{t}\right)^{\alpha-1} t^{\alpha} u^{(\alpha)}(t) \frac{d t}{t} .
$$

These pointwise inequalities are quite effective. Q.: Are they effective to even yield sharp endpoint results, $\alpha=d|1 / 2-1 / p|$? Here $\alpha>1 / 2$.

Discuss

I. L^{p} inequalities for G_{α}
II. Weighted norm inequalities
III. Endpoint questions

I. L^{p} inequalities

- L^{2} inequality for $\alpha>1 / 2$, by Plancherel.
- Necessary conditions.

Write

$$
t \frac{d}{d t} \mathcal{R}_{t}^{\alpha} f=K_{t}^{\alpha} * f
$$

and, for suitable $\hat{\eta} \in \mathcal{S}$ vanishing near 0 and $t \sim 1$

$$
K_{t}^{\alpha} * \eta(x)=e^{i t|x|}|t x|^{-\frac{d-1}{2}-\alpha}+\text { better terms }
$$

($|x| \gg 1$). Thus

$$
\left(\int_{1}^{2}\left|K_{t}^{\alpha} * \eta\right|^{2} d t\right)^{1 / 2} \in L^{p} \text { iff } \alpha>d\left(\frac{1}{p}-\frac{1}{2}\right)+\frac{1}{2}
$$

Oscillation does not play any role here.

- Calderón-Zygmund theory and subsequent interpolation gives the necessary and sufficient

$$
\left\|G^{\alpha} f\right\|_{p} \lesssim\|f\|_{p,} \quad \alpha>d\left(\frac{1}{p}-\frac{1}{2}\right)+\frac{1}{2}
$$

for $1 \leq p<2$.
For $\alpha=d\left(\frac{1}{p}-\frac{1}{2}\right)+\frac{1}{2}, 1<p<2$, there is a weak type (p, p) endpoint result (following Fefferman).

- $\mathbf{p}>\mathbf{2}$: More subtle (tied to the Fourier restriction / Bochner-Riesz circle of questions).
- Necessary condition for $p>2, p^{\prime}<2$:

$$
\left\|\int_{1}^{2} b(t) K_{t}^{\alpha} * \eta d t\right\|_{p^{\prime}} \lesssim\|b\|_{L^{2}(\mathbb{R})}
$$

i.e.

$$
\int_{|x| \geq 1}\left|\frac{\widehat{b}(|x|)}{|x|^{\frac{d-1}{2}+\alpha}}\right|^{p^{\prime}} d x<\infty
$$

i.e. $\alpha>d\left(\frac{1}{p^{\prime}}-\frac{1}{2}\right)=d\left(\frac{1}{2}-\frac{1}{p}\right)$.

Conjecture: For $2 \leq p<\infty$,

$$
\left\|G^{\alpha} f\right\|_{p} \lesssim\|f\|_{p}, \quad \alpha>\max \left\{d\left(\frac{1}{2}-\frac{1}{p}\right), \frac{1}{2}\right\}
$$

Ok for radial functions.
Often a new result on Bochner-Riesz was followed by a new result on G^{α} :

Carbery (82): $d=2$.
Partial results by Christ (85) in higher dimensions, also S.(86).

Current result for $d \geq 2$ is:
Thm. [Lee-Rogers-S] For $p>2+4 / d$ the conjecture holds.

The p-range corresponds to the range for Tao's bilinear adjoint restriction theorem, i.e. an $L^{p / 2}$ bound for $\widehat{g_{1} d \sigma_{1}} \widehat{g_{2} d \sigma_{2}}$, with $d \sigma_{1}, d \sigma_{2}$ surface measure on 'transversal' portions of the sphere, and $g_{1}, g_{2} \in L^{2}\left(S^{d-1}\right)$.

- There are some "endpoint" L^{p} bounds. One of them takes the form

Thm.: Let $d \geq 2,2+4 / d<p<\infty, \gamma>0$.

$$
\begin{aligned}
\left\|\left(\int_{-1}^{1}\left|e^{i t(-\Delta)^{\gamma / 2}} f\right|^{2} d t\right)^{1 / 2}\right\|_{p} & \lesssim\|f\|_{L_{s}^{p}} \\
\frac{s}{\gamma} & =d\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2}
\end{aligned}
$$

- L_{s}^{p} can be replaced with $B_{s, p}^{p}$.
- The case $\gamma=1$ (wave eq.) is most closely related to Stein's square-function but is not exceptional.
- Situation changes for $L_{s}^{p} \rightarrow L^{p}\left(L^{r}\right)$ bounds for $r>2$, then the wave eq. is exceptional.
- The "endpoint" is not an endpoint result for G^{α} (more about this later).

II. Weighted L^{2} norm inequalities

L^{p} bounds are equivalent with

$$
\int\left[G^{\alpha} f\right]^{2} w \lesssim \int|f|^{2} W
$$

for all $w \in L^{(p / 2)^{\prime}}$ with $\|W\|_{(p / 2)^{\prime}} \lesssim\|w\|_{(p / 2)^{\prime}}$

Problems:

- Explicit description of the weight operator $w \mapsto W$.
- Can we choose $W=W w$ as a maximal operator, in particular is $w \mapsto W w$ bounded on L^{r} for $(p / 2)^{\prime} \leq r \leq \infty$?
- Stein's problem (open even for $d=2$): Can W be chosen as a variant of a Nikodym maximal function $\mathfrak{N}_{q} w, q<(p / 2)^{\prime}$?

$$
\mathfrak{N}_{q} w:=\sup _{\mathfrak{e} \geq 1} \mathfrak{e}^{1-d / q} \sup _{\theta \in S^{d-1}} M_{\theta, \mathfrak{e}} w
$$

\mathfrak{e} : eccentricity, θ direction.

We want for q near $(p / 2)^{\prime}$:

$$
\int\left[G^{\alpha} f\right]^{2} w \lesssim \int|f|^{2} \mathfrak{W}_{q} w, \quad \alpha>\frac{d}{2 q} \quad(*)
$$

with \mathfrak{W}_{q} bounded on $L^{r}, q<r \leq \infty$.

- $d \geq 2, q=2$: Carbery (85) constructed \mathfrak{W}_{2} (bounded in $L^{r}\left(\mathbb{R}^{2}\right), 2<r \leq 4$).
- $1<q \leq \frac{d+1}{2}$: Christ (85) observed that

$$
\mathfrak{W}_{q} w=M\left(|w|^{q}\right)^{1 / q} \quad \text { works. }
$$

- Carbery, S. (2000) constructed \mathfrak{W}_{2}, bounded in $L^{r}\left(\mathbb{R}^{2}\right), 2 \leq r \leq \infty$.

Thm. [LRS] Let $1 \leq q<\frac{d+2}{2}$. There is \mathfrak{W}_{q}, of weak type (q, q), bounded on $L^{r}, q<r \leq \infty$, such that ($*$) holds for all $\alpha>d / 2 q$.

Also various endpoint bounds for square functions generated by multipliers $\phi\left(\delta^{-1}(1-t|\xi|)\right)$.

Definition of a weight operator

$$
W=\left(M\left[M \mathfrak{N}^{n e g l} w+\sup _{l \in \mathbb{Z}} M W_{l} P_{l} w\right]^{1+\varepsilon}\right)^{\frac{1}{1+\varepsilon}}
$$

- Nonessential part

$$
\mathfrak{N}^{n e g l} w:=\sup _{\mathfrak{e} \geq 1} \mathfrak{e}^{-2\left(\frac{d}{q}-1\right)} \sup _{\theta \in S^{d-1}} M_{\theta, \mathfrak{e}} w
$$

- $P_{l} w:$ dyadic frequency cutoff to frequencies $\approx 2^{l}$.
- Essential part, reminiscent of "grand maximal function". Ignoring loge factors

$$
W_{l} w=\sup _{\mathfrak{e} \geq 2} \mathfrak{e}^{-2\left(\frac{d}{q}-1\right)} \sup _{\theta \in S^{d-1}}\left(M_{\theta, \mathfrak{e}}\left[\sup _{\Psi}|\Psi * w|^{q}\right]\right)^{1 / q}
$$

where $\sup _{\psi}$ is over L^{1} normalized Schwartz functions adapted to tubes with eccentricity \mathfrak{e}, width 2^{-l}, and direction θ.

- Significant improvement in the estimates when W_{l} acts on functions with cancellation.

Write $W_{l} w=\sup _{\mathfrak{e} \geq 2} e^{-2\left(\frac{d}{q}-1\right)} W_{l, \mathfrak{e}} w$ where

$$
W_{l, \mathfrak{e}} w=\left(\sup _{\theta} M_{\theta, \mathfrak{e}}\left[\sup _{\Psi}|\Psi * g|^{q}\right]\right)^{1 / q}
$$

(fixed width 2^{-l}, fixed eccentricity, Ψ associated to rectangle in direction θ and parameters $\mathfrak{e}, 2^{-l}$).

Then

$$
\left\|W_{l, \mathfrak{e}} w\right\|_{q+\varepsilon} \lesssim \mathfrak{e}^{(d-1) / q}\|w\|_{q+\varepsilon}
$$

but

$$
\left\|W_{l, \mathfrak{e}} P_{l} w\right\|_{q+\varepsilon} \lesssim \mathfrak{e}^{(d-2) / q}\|w\|_{q+\varepsilon}
$$

Note that $-2\left(\frac{d}{q}-1\right)+\frac{d-2}{q}<0$ for $q<\frac{d+2}{2}$.

- Reason for the gain: Overlapping properties of dual plates are better in the annulus supp $\left(\widehat{P_{l} w}\right)$ than in the ball.

Bilinear analogue of the weighted inequality

Let $\widehat{T_{t}^{\delta}} f=\phi\left(\delta^{-1}\left(1-|\xi|^{2} / t^{2}\right)\right) \widehat{f}$.
Let $\widehat{S_{1} f}, \widehat{S_{2} f}$ be supported in two narrow sectors, with transversal directions.

$$
\begin{aligned}
& \left|\iint T_{t}^{\delta} S_{1} f \overline{T_{t}^{\delta} S_{2} f} \frac{d t}{t} w(x) d x\right| \\
& \quad \lesssim \delta^{2-d / q} \int g[f]^{2}\left(M\left[w^{q}\right]\right)^{1 / q} d x
\end{aligned}
$$

with standard Littlewood-Paley square function $g(f)$

Uses Tao's theorem and requires $q<\frac{d+2}{2}$.

III. Endpoint bounds for G^{α}

- There are endpoint (weak type) results on Bochner-Riesz with critical index and certain generalizations (Christ, S., Tao). However endpoint bounds on G^{α} and the corresponding radial multiplier theorems involving L_{α}^{2} appeared to remain open.

For Bochner-Riesz multipliers there is a natural decomposition into orthogonal pieces (supported on thin annuli). Difficulty with endpoint bounds for G^{α} (or for $m(|\cdot|) \in L_{\alpha}^{2}$): Dyadic decompositions on the kernel side do not yield almost orthogonal operators on L^{2}.

Q: What are the endpoint estimates for G^{α} in the range $p>\frac{2 d}{d-1}, \alpha=d\left(\frac{1}{2}-\frac{1}{p}\right)$?

Thm. For $d \geq 2, p>2+4 /(d-1)$,

$$
\left\|G^{\alpha}[f]\right\|_{L^{p}} \lesssim\|f\|_{L^{p 2}}
$$

for $\alpha=d\left(\frac{1}{2}-\frac{1}{p}\right)$.

- Implies the sharp inequality

$$
\left\|\mathcal{F}^{-1}[m(|\cdot|) \widehat{f}]\right\|_{p} \lesssim \sup _{t}\|\phi m(t \cdot)\|_{L_{\frac{d}{2}-\frac{d}{p}}^{2}}\|f\|_{L^{p 2}}
$$

- Recall necessary conditions
(after dualization, now $p<2$).

If $b \in L^{2}([1,2])$ then

$$
\frac{\widehat{b}(|x|)}{(1+|x|)^{\frac{d}{p}-\frac{1}{2}}} \text { belongs to } L^{p, 2}
$$

but not necessarily to $L^{p, q}$ for $q<2$.

- Note: Stein's point of view gives exact endpoint bounds.

It is possible to show that (using dualization, atomic decompositions, etc.) it suffices to prove

$$
\begin{aligned}
& \left\|\int_{1}^{2} \mathcal{R}_{s}^{\alpha(p)-1} f(s, \cdot) d s\right\|_{L^{p, 2}} \lesssim\left\|\left(\int_{1}^{2}|f(s, \cdot)|^{2} d s\right)^{1 / 2}\right\|_{p} \\
& \text { for } 1<p<\frac{2(d+1)}{d+3}, \alpha(p)=d(1 / p-1 / 2)
\end{aligned}
$$

- This should follow "by real interpolation". But what is the object to interpolate?

By Plancherel and explicit formulas for $\mathcal{R}^{\alpha-1}$ the above is deduced from the case $q=2$ of

$$
\begin{aligned}
\| \sum_{j>1} 2^{-j d / p} \int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * F_{j}(& r, \cdot) d r \|_{L^{p q}} \\
& \lesssim\left\|\left\{F_{j}\right\}\right\|_{L^{p}\left(\ell^{q}(\mathcal{H})\right)}
\end{aligned}
$$

here $\widehat{\eta}$ is supported where $|\xi| \approx 1$, σ_{r} is surface measure on sphere of radius $r \gg 1$, and $\mathcal{H}=L^{2}\left(\frac{d r}{r}\right)$.

- For $p=q$ we can move the weight to the right hand side.

Thm. For $1 \leq p<\frac{2(d+1)}{d+3}$

$$
\begin{aligned}
\| \sum_{j>1} \int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}(r & (\cdot) d r \|_{L^{p}} \\
& \lesssim\left(\sum_{j} 2^{j d}\left\|g_{j}\right\|_{L^{p}(\mathcal{H})}^{p}\right)^{1 / p}
\end{aligned}
$$

Let μ_{d} be the measure " $2{ }^{j d} d x$ " on $\mathbb{N} \times \mathbb{R}^{d}$.

By real interpolation

$$
\begin{aligned}
\left\|\sum_{j>1} \int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}(r, \cdot) d r\right\|_{L^{p q}\left(\mathbb{R}^{d}\right)} & \\
& \lesssim\|\vec{g}\|_{L^{p q}\left(\mu_{d}, \mathcal{H}\right)}
\end{aligned}
$$

and we apply this with $g_{j}=2^{-j d / p} F_{j}$.
For $p \leq q \leq \infty$ this is followed by

$$
\left\|\left\{2^{-j d / p} F_{j}\right\}\right\|_{L^{p q}\left(2^{j d} d x, \mathcal{H}\right)} \lesssim\left\|\left\{F_{j}\right\}\right\|_{L^{p}\left(d x, \ell^{q}(\mathcal{H})\right)}
$$

which is easy to check for $q=p$ and for $q=\infty$.

Comment on the inequality $\left(1 \leq p<\frac{2(d+1)}{d+3}\right)$.

$$
\begin{align*}
& \left\|\sum_{j>1} \int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}(r, \cdot) d r\right\|_{L^{p}} \\
& \lesssim\left(\sum_{j} 2^{j d}\left\|\left(\int_{2^{j}}^{2^{j+1}}\left|g_{j}(r, \cdot)\right|^{2} \frac{d r}{r}\right)^{1 / 2}\right\|_{p}^{p}\right)^{1 / p} \tag{*}
\end{align*}
$$

(*) is weaker than the inequality

$$
\begin{align*}
& \left\|\sum_{j>1} \int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}(r, \cdot) d r\right\|_{L^{p}} \\
& \lesssim\left(\sum_{j} 2^{j d}\left\|\left(\int_{2^{j}}^{2^{j+1}}\left|g_{j}(r, \cdot)\right|^{p} \frac{d r}{r}\right)^{1 / p}\right\|_{p}^{p}\right)^{1 / p} \tag{**}
\end{align*}
$$

$(* *)$ is known only for $1 \leq p<\frac{2(d-1)}{d+1}$ (thus no result for $d=2,3$). [Heo-Nazarov-S.].

Rewrite as

$$
\begin{aligned}
& \left\|\int_{1}^{\infty} \eta * \sigma_{r} * g(r, \cdot) d r\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \\
& \\
& \lesssim\left(\int_{1}^{\infty}\|g(r, \cdot)\|_{p}^{p} r^{d-1} d r\right)^{1 / p} \quad(* *)
\end{aligned}
$$

- (**) is an endpoint version of Sogge's L^{p} wave equation problem (cf. previous work by Wolff). In [H-N-S] it was used to prove a simple characterization of all radial multipliers of $\mathcal{F} L^{p}, 1<p<\frac{2(d-1)}{d+1}$, namely (for $p \leq q \leq \infty$)

$$
\|m(\sqrt{-\Delta})\|_{L^{p} \rightarrow L^{p q}} \approx \sup _{t>0}\left\|\mathcal{F}^{-1}[\phi m(t|\cdot|)]\right\|_{L^{p q}}
$$

- Both (*) and (**) may be conjectured for $1 \leq p<\frac{2 d}{d+1}$.
- There are variable coefficient versions of $(* *)$, applicable to FIO's and wave equations on manifolds (joint with Sanghyuk Lee).
- Idea of proof (modifying an idea in [H-N-S])

Prove a "restricted" inequality. Let $E_{j} \subset \mathbb{Z}^{d}$ and consider

$$
g_{j}(r, x)=\sum_{z \in E_{j}} \psi(x-z) b_{j, z}(r)
$$

with $\left|b_{j, z}\right|_{\mathcal{H}} \leq 1$.
Let

$$
A^{j}=\int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}(r, \cdot) d r
$$

Need

$$
\left\|\sum_{j} A_{j}\right\|_{p}^{p} \lesssim \sum_{j} 2^{j d} \operatorname{card}\left(E_{j}\right)
$$

Decompose $E_{j}=\cup_{n>0} E_{j}^{n}$ so that each E_{j}^{n} is a subset of a union of cubes of sidelength 2^{j}, each containing $\approx 2^{n}$ points in E_{j}. Define the corresponding functions g_{j}^{n}.

- Let

$$
A_{j}^{n}=\int_{2^{j}}^{2^{j+1}} \eta * \sigma_{r} * g_{j}^{n}(r, \cdot) d r
$$

Need

$$
\left\|\sum_{j} A_{j}^{n}\right\|_{p}^{p} \lesssim 2^{-n \varepsilon(p)} \sum_{j} 2^{j d} \operatorname{card}\left(E_{j}\right)
$$

with $\varepsilon(p)>0$ for $p<\frac{2(d+1)}{d+3}$.

- $\operatorname{supp} \sum_{j} A_{j}^{n}$ is contained in a set of size \lesssim $2^{-n} \sum_{j} 2^{j d} \operatorname{card}\left(E_{j}\right)$.
- There is an estimate on L^{2} :

$$
\left\|\sum_{j} A_{j}^{n}\right\|_{2}^{2} \lesssim n 2^{n \frac{2}{d+1}} \sum_{j} 2^{j d} \operatorname{card}\left(E_{j}\right)
$$

Crucial orthogonality: For $C n \leq k<j-c_{1}$ the scalar products $\left\langle A_{j}^{n}, A_{k}^{n}\right\rangle$ gain by a factor of $2^{-k(d-1) / 2}$ over what is predicted from the estimates for $\left\|A_{j}^{n}\right\|_{2}\left\|A_{k}^{n}\right\|_{2}$.

