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• Joint work with

Sanghyuk Lee and Keith Rogers.

• Some connections to previous work with

Yaryong Heo and Fedya Nazarov.
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Classical Littlewood-Paley-Stein function:

g(f) =
( ∫ ∞

0

∣∣∣t ∂
∂t

(Pt ∗ f)
∣∣∣∣2dtt

)1/2

where Pt ∗ f(x) is the Poisson integral, or (Pt)

a general “nice” approximation of the identity.

Stein expanded Littlewood-Paley theory, us-

ing more singular kernels in place of Pt, to

make it applicable to interesting geometrical

and Fourier analytical questions.

• Example: Generalized spherical means

Aβ
t f(x) =

1

Γ(β)

∫
|y|≤1

(1− |y|2)β−1f(x− ty) dy

also defined for β ≤ 0 by analytic continuation;

Âβ
t f(ξ) = Cβ,d (t|ξ|)

d−2
2 +βJd−2

2 +β
(t|ξ|)f̂(ξ)

β = 0 : spherical means.
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Stein (1976) introduced the “Littlewood-Paley”
function

Gβf =
( ∫ ∞

0

∣∣∣∣t ∂∂tAβ
tf

∣∣∣∣2dtt
)1/2

to control supt>0 |A
β−1/2+ε
t f |, in particular

sup
t

|
∫
Sd−1

f(x− ty)dσ(y)|.

• Sharp Lp bounds for variants of Gβ imply

bounds for eit
√
−∆f in Lp(L2(I)), with com-

pact time interval I, for initial datum f in Lp-
Sobolev spaces.

• There are known implications for classes of
radial Fourier multipliers, via

m(
√
−∆) =

1

2π

∫
m̂(t)eit

√
−∆dt and

∥m(
√
−∆)f∥p .

( ∫
|m̂(t)|2(1 + |t|2)αdt

)

×
∥∥∥∥( ∫ ∣∣∣∣ eit

√
−∆f

(1 + t2)α/2

∣∣∣∣2dt)1/2∥∥∥∥
p
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Bochner-Riesz means Rα
t f of the Fourier inte-

gral

R̂α
t f =

(
1−

|ξ|2

t2

)α
+
f̂(ξ).

Stein (1958) introduced

Gαf =
( ∫ ∞

0

∣∣∣∣t ∂∂tRα
tf

∣∣∣∣2dtt
)1/2

to control supt>0 |R
α−1/2+ε
t f | for f ∈ L2 and

(and then f ∈ Lp) to prove a.e. convergence

for Riesz means of Fourier integrals and series.

Kaneko-Sunouchi (1985):

Uniform pointwise equivalence:

Gαf(x) ≈ Gβf(x), β = α−
d− 2

2

by Plancherel’s theorem (for the Mellin trans-

form).
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Connections to multipliers

Stein’s proof of the Mikhlin-Hörmander multi-

plier theorem: If T̂ f = hf̂ , α > d/2, then there

is the pointwise inequality

g[Tf ](x) ≤ sup
t>0

∥ϕh(t·)∥L2
α(Rd)

g∗[f ](x)

Similar philosophy for radial multipliers (Car-

bery, Gasper, Trebels, 1984): If T̂mf(ξ) =

m(|ξ|)f̂(ξ) then

g(Tmf)(x) ≤ sup
t>0

∥ϕm(t·)∥L2
α(R)

Gαf(x)

based on

u(|ξ|) = C(α)
∫ ∞

|ξ|

(
1−

|ξ|
t

)α−1
tαu(α)(t)

dt

t
.

These pointwise inequalities are quite effective.

Q.: Are they effective to even yield sharp end-

point results, α = d|1/2− 1/p|? Here α > 1/2.
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Discuss

I. Lp inequalities for Gα

II. Weighted norm inequalities

III. Endpoint questions
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I. Lp inequalities

• L2 inequality for α > 1/2, by Plancherel.

• Necessary conditions.

Write

t
d

dt
Rα
t f = Kα

t ∗ f

and, for suitable η̂ ∈ S vanishing near 0 and

t ∼ 1

Kα
t ∗ η(x) = eit|x||tx|−

d−1
2 −α+better terms

(|x| ≫ 1). Thus( ∫ 2

1
|Kα

t ∗ η|2dt
)1/2

∈ Lp iff α > d(
1

p
−

1

2
) +

1

2

Oscillation does not play any role here.
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• Calderón-Zygmund theory and subsequent
interpolation gives the necessary and sufficient

∥Gαf∥p . ∥f∥p, α > d(
1

p
−

1

2
) +

1

2

for 1 ≤ p < 2.

For α = d(1p − 1
2) + 1

2, 1 < p < 2, there is
a weak type (p, p) endpoint result (following
Fefferman).

• p>2: More subtle (tied to the Fourier restric-
tion / Bochner-Riesz circle of questions).

• Necessary condition for p > 2, p′ < 2:∥∥∥∥ ∫ 2

1
b(t)Kα

t ∗ η dt
∥∥∥∥
p′
. ∥b∥L2(R)

i.e. ∫
|x|≥1

∣∣∣∣ b̂(|x|)

|x|
d−1
2 +α

∣∣∣∣p′dx <∞

i.e. α > d(1
p′ −

1
2) = d(12 − 1

p).
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Conjecture: For 2 ≤ p <∞,

∥Gαf∥p . ∥f∥p, α > max{d(
1

2
−

1

p
),

1

2
}

Ok for radial functions.

Often a new result on Bochner-Riesz was fol-
lowed by a new result on Gα:

Carbery (82): d = 2.

Partial results by Christ (85) in higher dimen-
sions, also S.(86).

Current result for d ≥ 2 is:

Thm. [Lee-Rogers-S] For p > 2 + 4/d the
conjecture holds.

The p-range corresponds to the range for Tao’s
bilinear adjoint restriction theorem, i.e. an
Lp/2 bound for ĝ1dσ1ĝ2dσ2, with dσ1, dσ2 sur-
face measure on ‘transversal’ portions of the
sphere, and g1, g2 ∈ L2(Sd−1).
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• There are some “endpoint” Lp bounds. One

of them takes the form

Thm.: Let d ≥ 2, 2 + 4/d < p < ∞, γ > 0.

=⇒∥∥∥∥( ∫ 1

−1

∣∣∣eit(−∆)γ/2f
∣∣∣2dt)1/2∥∥∥∥

p
. ∥f∥Lps,

s

γ
= d

(1
2
−

1

p
)−

1

2

• Lps can be replaced with B
p
s,p.

• The case γ = 1 (wave eq.) is most closely

related to Stein’s square-function but is not

exceptional.

• Situation changes for Lps → Lp(Lr) bounds

for r > 2, then the wave eq. is exceptional.

• The “endpoint” is not an endpoint result for

Gα (more about this later).
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II. Weighted L2 norm inequalities

Lp bounds are equivalent with∫
[Gαf ]2w .

∫
|f |2W

for all w ∈ L(p/2)′ with ∥W∥(p/2)′ . ∥w∥(p/2)′

Problems:

• Explicit description of the weight operator
w 7→W .

• Can we choose W = Ww as a maximal op-
erator, in particular is w 7→Ww bounded on Lr

for (p/2)′ ≤ r ≤ ∞?

• Stein’s problem (open even for d = 2): Can
W be chosen as a variant of a Nikodym maxi-
mal function Nqw, q < (p/2)′?

Nqw := sup
e≥1

e1−d/q sup
θ∈Sd−1

Mθ,ew

e: eccentricity, θ direction.
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We want for q near (p/2)′:∫
[Gαf ]2w .

∫
|f |2Wqw, α >

d

2q
(∗)

with Wq bounded on Lr, q < r ≤ ∞.

• d ≥ 2, q = 2: Carbery (85) constructed W2

(bounded in Lr(R2), 2 < r ≤ 4).

• 1 < q ≤ d+1
2 : Christ (85) observed that

Wqw =M(|w|q)1/q works.

• Carbery, S. (2000) constructed W2, bounded

in Lr(R2), 2 ≤ r ≤ ∞.

Thm. [LRS] Let 1 ≤ q < d+2
2 . There is Wq,

of weak type (q, q), bounded on Lr, q < r ≤ ∞,

such that (*) holds for all α > d/2q.

Also various endpoint bounds for square func-

tions generated by multipliers ϕ(δ−1(1− t|ξ|)).
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Definition of a weight operator

W =
(
M

[
MNneglw+ sup

l∈Z
MWlPlw

]1+ε) 1
1+ε

•Nonessential part

Nneglw := sup
e≥1

e
−2(dq−1)

sup
θ∈Sd−1

Mθ,ew

• Plw: dyadic frequency cutoff to frequencies

≈ 2l.

• Essential part, reminiscent of “grand maxi-

mal function”. Ignoring log e factors

Wlw = sup
e≥2

e
−2(dq−1)

sup
θ∈Sd−1

(
Mθ,e

[
sup
Ψ

|Ψ∗w|q
])1/q

where supΨ is over L1 normalized Schwartz

functions adapted to tubes with eccentricity e,

width 2−l, and direction θ.
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• Significant improvement in the estimates when
Wl acts on functions with cancellation.

Write Wlw = supe≥2 e
−2(dq−1)

Wl,ew where

Wl,ew =
(
sup
θ
Mθ,e

[
sup
Ψ

|Ψ ∗ g|q
])1/q

(fixed width 2−l, fixed eccentricity, Ψ associ-
ated to rectangle in direction θ and parameters
e, 2−l).

Then ∥∥∥Wl,ew
∥∥∥
q+ε

. e(d−1)/q ∥w∥q+ε
but ∥∥∥Wl,ePlw

∥∥∥
q+ε

. e(d−2)/q ∥w∥q+ε

Note that −2(dq − 1) + d−2
q < 0 for q < d+2

2 .

• Reason for the gain: Overlapping proper-
ties of dual plates are better in the annulus
supp (P̂lw) than in the ball.
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Bilinear analogue of the weighted inequality

Let T̂ δt f = ϕ(δ−1(1− |ξ|2/t2))f̂ .

Let Ŝ1f , Ŝ2f be supported in two narrow sec-

tors, with transversal directions.

∣∣∣∣ ∫ ∫
T δt S1f T

δ
t S2f

dt

t
w(x)dx

∣∣∣∣
. δ2−d/q

∫
g[f ]2(M [wq])1/q dx ,

with standard Littlewood-Paley square func-

tion g(f)

Uses Tao’s theorem and requires q < d+2
2 .
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III. Endpoint bounds for Gα

• There are endpoint (weak type) results on

Bochner-Riesz with critical index and certain

generalizations (Christ, S., Tao). However end-

point bounds on Gα and the corresponding ra-

dial multiplier theorems involving L2
α appeared

to remain open.

For Bochner-Riesz multipliers there is a natu-

ral decomposition into orthogonal pieces (sup-

ported on thin annuli). Difficulty with endpoint

bounds for Gα (or for m(| · |) ∈ L2
α): Dyadic de-

compositions on the kernel side do not yield

almost orthogonal operators on L2.

Q: What are the endpoint estimates for Gα in

the range p > 2d
d−1, α = d(12 − 1

p)?
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Thm. For d ≥ 2, p > 2+ 4/(d− 1),∥∥∥Gα[f ]∥∥∥
Lp

. ∥f∥Lp2,

for α = d(12 − 1
p).

• Implies the sharp inequality∥∥∥F−1[m(| · |)f̂ ]∥p . sup
t

∥ϕm(t·)∥L2
d
2−

d
p

∥f∥Lp2

• Recall necessary conditions

(after dualization, now p < 2).

If b ∈ L2([1,2]) then

b̂(|x|)

(1 + |x|)
d
p−

1
2

belongs to Lp,2

but not necessarily to Lp,q for q < 2.

• Note: Stein’s point of view gives exact end-

point bounds.
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It is possible to show that (using dualization,
atomic decompositions, etc.) it suffices to
prove∥∥∥∥ ∫ 2

1
Rα(p)−1
s f(s, ·)ds

∥∥∥∥
Lp,2

.
∥∥∥∥( ∫ 2

1
|f(s, ·)|2ds

)1/2∥∥∥∥
p

for 1 < p < 2(d+1)
d+3 , α(p) = d(1/p− 1/2).

• This should follow “by real interpolation”.
But what is the object to interpolate?

By Plancherel and explicit formulas for Rα−1

the above is deduced from the case q = 2 of∥∥∥∥ ∑
j>1

2−jd/p
∫ 2j+1

2j
η ∗ σr ∗ Fj(r, ·)dr

∥∥∥∥
Lpq

.
∥∥∥{Fj}∥∥∥Lp(ℓq(H))

here η̂ is supported where |ξ| ≈ 1,
σr is surface measure on sphere of radius r ≫ 1,
and H = L2(drr ).

• For p = q we can move the weight to the
right hand side.
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Thm. For 1 ≤ p < 2(d+1)
d+3∥∥∥∥ ∑

j>1

∫ 2j+1

2j
η ∗ σr ∗ gj(r, ·)dr

∥∥∥∥
Lp

.
(∑

j

2jd∥gj∥
p
Lp(H)

)1/p

Let µd be the measure “2jddx” on N× Rd.

By real interpolation∥∥∥∥ ∑
j>1

∫ 2j+1

2j
η ∗ σr ∗ gj(r, ·)dr

∥∥∥∥
Lpq(Rd)

.
∥∥∥g⃗∥∥∥

Lpq(µd,H)

and we apply this with gj = 2−jd/pFj.

For p ≤ q ≤ ∞ this is followed by∥∥∥{2−jd/pFj}∥∥∥Lpq(2jddx,H)
.

∥∥∥{Fj}∥∥∥Lp(dx,ℓq(H))

which is easy to check for q = p and for q = ∞.
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Comment on the inequality (1 ≤ p < 2(d+1)
d+3 ).

∥∥∥∥ ∑
j>1

∫ 2j+1

2j
η ∗ σr ∗ gj(r, ·)dr

∥∥∥∥
Lp

.
(∑

j

2jd
∥∥∥∥( ∫ 2j+1

2j
|gj(r, ·)|2

dr

r

)1/2∥∥∥∥p
p

)1/p
(∗)

(*) is weaker than the inequality∥∥∥∥ ∑
j>1

∫ 2j+1

2j
η ∗ σr ∗ gj(r, ·)dr

∥∥∥∥
Lp

.
(∑

j

2jd
∥∥∥∥( ∫ 2j+1

2j
|gj(r, ·)|p

dr

r

)1/p∥∥∥∥p
p

)1/p
(∗∗)

(**) is known only for 1 ≤ p < 2(d−1)
d+1 (thus no

result for d = 2,3). [Heo-Nazarov-S.].
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Rewrite as∥∥∥∥ ∫ ∞

1
η ∗ σr ∗ g(r, ·)dr

∥∥∥∥
Lp(Rd)

.
( ∫ ∞

1
∥g(r, ·)∥pp rd−1dr

)1/p
(∗∗)

• (**) is an endpoint version of Sogge’s Lp

wave equation problem (cf. previous work by

Wolff). In [H-N-S] it was used to prove a sim-

ple characterization of all radial multipliers of

FLp, 1 < p < 2(d−1)
d+1 , namely (for p ≤ q ≤ ∞)

∥m(
√
−∆)∥Lp→Lpq ≈ sup

t>0
∥F−1[ϕm(t| · |)]∥Lpq .

• Both (*) and (**) may be conjectured for

1 ≤ p < 2d
d+1.

• There are variable coefficient versions of (**),

applicable to FIO’s and wave equations on mani-

folds (joint with Sanghyuk Lee).
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• Idea of proof (modifying an idea in [H-N-S])

Prove a ”restricted” inequality. Let Ej ⊂ Zd

and consider

gj(r, x) =
∑
z∈Ej

ψ(x− z)bj,z(r)

with |bj,z|H ≤ 1.

Let

Aj =
∫ 2j+1

2j
η ∗ σr ∗ gj(r, ·)dr.

Need ∥∥∥∥∑
j

Aj

∥∥∥∥p
p
.

∑
j

2jdcard(Ej)

Decompose Ej = ∪n>0E
n
j so that each Enj is

a subset of a union of cubes of sidelength 2j,

each containing ≈ 2n points in Ej. Define the

corresponding functions gnj .
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• Let

Anj =
∫ 2j+1

2j
η ∗ σr ∗ gnj (r, ·)dr.

Need ∥∥∥∥∑
j

Anj

∥∥∥∥p
p
. 2−nε(p)

∑
j

2jdcard(Ej)

with ε(p) > 0 for p < 2(d+1)
d+3 .

• supp
∑
j A

n
j is contained in a set of size .

2−n
∑
j 2

jdcard(Ej).

• There is an estimate on L2:∥∥∥∥∑
j

Anj

∥∥∥∥2
2
. n2n

2
d+1

∑
j

2jdcard(Ej)

Crucial orthogonality: For Cn ≤ k < j − c1
the scalar products ⟨Anj , A

n
k⟩ gain by a factor

of 2−k(d−1)/2 over what is predicted from the

estimates for ∥Anj ∥2∥A
n
k∥2.
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