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Introduction: Three inter-related problems

S = smooth, finite type hypersurface in R
3,

dµ := ρdσ, dσ := surface measure on S, 0 ≤ ρ ∈ C∞
0

(S)

A

Sharp uniform decay estimates for d̂µ(ξ) :=
∫

S e−iξxdµ(x), ξ ∈ R
3 ?

B

Lp(R3) - boundedness of the maximal operatorMf (x) := supt>0 |At f (x)|,
where At f (x) :=

∫
S f (x − ty)dµ(y).

C

For which p’s do we have a Fourier restriction estimate

( ∫

S
|f̂ (x)|2 dµ(x)

)1/2

≤ C‖f ‖Lp(R3), f ∈ S(R3) ?
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Short History of these problems

(A) Estimation of oscillatory integrals:

B. Riemann (1854): appear implicitly in his work
Best understood: Convex hypersurfaces of finite line type:

B. Randol (1969)
I. Svensson(1971) H. Schulz (1991)
J. Bruna, A. Nagel, S. Wainger (1988)

Non-convex case:

A.N. Varchenko (1976) :
∫

eiλφ(x1,x2)a(x1, x2) dx , φ analytic

V.N. Karpushkin (1984):
∫

eiλ(φ(x1,x2)+r(x1,x2))a(x1, x2) dx , φ analytic

(C) The Fourier-restriction problem: E.M. Stein (1967).
E.M. Stein and P.A. Tomas (1975) :

( ∫

Sn−1

|f̂ (x)|2 dµ(x)
)1/2

≤ C‖f ‖Lp(Rn)

iff p′ ≥ 2( 2

n−1
+ 1).
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(B) Maximal functions associated to hypersurfaces in R
n :

E.M. Stein (1976) spheres in R
n, n ≥ 3 (p > n/(n − 1)).

J. Bourgain (1986) circle in R
2, (p > 2).

A. Iosevich (’94); Marletta(’94): finite type curves
C. Sogge, E.M: Stein (’85): partial results if K = 0 somewhere
Best understood case: convex hypersurfaces of finite line type

Contributions e.g. by: M. Cowling and G. Mauceri (’86/87),

A. Nagel, A. Seeger, S. Wainger (’93),
A. Iosevich, E. Sawyer, A, Seeger (’99)
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Representation of S as a graph of φ

S ⊂ R
3 smooth, finite type hypersurface; x0 ∈ S :

By localization near x0 and application of Euclidean motion of R
3 we may

assume: x0 = (0, 0, 0), and

S = {(x1, x2, φ(x1, x2)) : (x1, x2) ∈ Ω},

where φ ∈ C∞(Ω) s.t. φ(0, 0) = 0, ∇φ(0, 0) = 0. If

φ(x1, x2) ∼
∞∑

j,k=0

cjkx
j
1
xk

2

is the Taylor series of φ, define the Taylor support of φ at (0, 0) by

T (φ) := {(j , k) ∈ N
2 : cjk 6= 0}.

NOTICE: T (φ) 6= ∅, since φ is of finite type at the origin!
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1 Newton polyhedron:

N (φ) := conv
⋃

(j,k)∈T (φ)

(j , k) + R
2

+

2 Newton distance : d = d(φ) is given by the coordinate d of the point
(d , d) at which the bisectrix t1 = t2 intersects the boundary of the
Newton polyhedron.

3 Principal face π(φ) : The face of minimal dimension containing the
point (d , d).

4 Principal part of φ :

φpr (x1, x2) :=
∑

(j,k)∈π(φ)

cjkx
j
1
xk

2
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Figure 1

Nd(φ)

1/κ1

1/κ2

N (φ)

d(φ)

d(φ)

π(φ)

Figure: Newton polyhedron
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Adapted coordinates

Height of φ :
h(φ) := sup{dx},

where the supremum is taken over all local analytic (resp. smooth)
coordinate systems x at the origin, and where dx is the Newton distance of
φ when expressed in the coordinates x .

NOTICE: The height is invariant under local smooth changes of
coordinates at the origin!

A coordinate system x is said to be adapted to φ if h(φ) = dx .

Example. Let
φ(x1, x2) := (x2 − xm

1 )n + x ℓ1 .

If ℓ > mn, the coordinates are not adapted. Adapted coordinates are then
y1 := x1, y2 := x2 − xm

1
, in which φ is given by

φa(y) = yn
2 + y ℓ1 .
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Example 1

N (φa)

N (φ)

d(φ)

h(φ)

N (φ)

mn l

m

Figure: φ(x1, x2) := (x2 − xm
1

)n + x ℓ
1

(ℓ > mn)
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Edges and homogeneities

Let κ = (κ1, κ2) with, say, κ2 ≥ κ1 > 0, be a given weight, with
corresponding dilations

δr (x1, x2) := (rκ1x1, r
κ2x2), r > 0.

F on R
2 is κ-homogeneous of degree a, (short: mixed homogeneous ) if

F (δr x) = raF (x) ∀r > 0, x ∈ R
2.

Choose a so that Lκ := {(t1, t2) ∈ R
2 : κ1t1 + κ2t2 = a} is the supporting

line to the Newton polyhedron N (φ) of φ. The κ-principal part of φ

φκ(x1, x2) :=
∑

(j,k)∈Lκ

cjkx
j
1
xk

2

is κ-homogeneous of degree a.

φ(x1, x2) = φκ(x1, x2) + terms of higher κ-degree.

NOTICE: If the principal face π(φ) is an edge, then there is a unique
weight κ = κpr so that π(φ) lies on the line κ1t1 + κ2t2 = 1.
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Adaptedness

Let P ∈ R[x1, x2] be a κ- homogeneous polynomial with ∇P(0, 0) = 0, let

m(P) := ord S1P

be the maximal order of vanishing of P along the unit circle S1 centered
at the origin.

Theorem (Varchenko; Phong, J. Sturm, Stein (analytic φ); I.,M.)

There always exist adapted smooth coordinates y , of the form

y1 = x1, y2 = x2 − ψ(x1).

Theorem (Condition for non-adaptedness)

The coordinates x are not adapted to φ if and only if the principal face

π(φ) of the Newton polyhedron N (φ) is a compact edge, and

m(φpr ) > d(φ). Moreover, the latter implies that κ2

κ1
∈ N, where κ := κpr .
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A. Decay of the Fourier transform of the surface measure

Varchenko’s exponent ν(φ) ∈ {0, 1} : If there exists an adapted local
coordinate system y near the origin such that the principal face π(φa) of
φ, when expressed by the function φa in the new coordinates (i.e.
φ(x) = φa(y)), is a vertex, and if h(φ) ≥ 2, then we put ν(φ) := 1;
otherwise, we put ν(φ) := 0.

Theorem

Let S = graph(φ) be as before. Then there exists a neighborhood U ⊂ S

of x0 = 0 such that for every ρ ∈ C∞
0

(U) the following estimate holds true

for every ξ ∈ R
3 :

|d̂µ(ξ)| ≤ C ‖ρ‖C3(S) (log(2 + |ξ|))ν(φ)(1 + |ξ|)−1/h(φ) (3.1)

Remarks:
1 In the analytic setting, this is due to V.N. Karpushkin.
2 For φ smooth, M. Greenblatt had obtained such estimates for ξ

normal to S at 0.
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Sharpness

Let N be a unit normal to S at x0 = 0, and put

J(λ) := d̂µ(λN) =

∫∫
e±iλφ(x1,x2)a(x1, x2) dx1dx2, λ > 0.

Proposition

If in an adapted coordinates system the principal face π(φa) is a compact
set (i.e. a compact edge or a vertex), then the following limit

lim
λ→+∞

λ1/h(φ)

log λν(Φ)
J(λ) = C · a(0, 0),

exists, where C is a non-zero constant depending on φ only.
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Remarks:

1 This improves on a result by M. Greenblatt, who proved that this
limit exists for some sequence of λk →∞.

2 If the principal face π(φa) is unbounded, then the estimate in the
theorem may fail to be sharp, if φ is non-analytic, as the following
example by A. Iosevich and E. Sawyer shows: If

Φ(x1, x2) := x2

2 + e−1/|x1|
α

,

then

|J(λ)| ≍
1

λ1/2 log λ1/α
as λ→ +∞.

Here, ν(φ) = 0.
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B. Sharp estimates for the maximal operator M

Translations do not commute with dilations.
=⇒ Euclidean motions are no admissible coordinate changes for the
study of the maximal operatorsM.

Transversality Assumption:

The affine tangent plane x + TxS to S through x does not pass through
the origin in R

3 for every x ∈ S. Equivalently, x /∈ Tx S for every x ∈ S, so
that 0 /∈ S, and x is transversal to S for every point x ∈ S.

=⇒ If x0 ∈ S, then there is a linear change of coordinates in R
3 so that in

the new coordinates x0 = 0, and S is locally given by

S = graph(1 + φ) (φ(0, 0) = 0,∇φ(0, 0) = 0).

Put
h(x0,S) := h(φ)

This notion is invariant under affine linear changes of coordinates in the
ambient space R

3!
D. Müller harmonic analysis and hypersurfaces
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Maximal estimates

Let S ⊂ R
3be a hypersurface as before, and x0 ∈ S. Recall that

At f (x) :=

∫

S
f (x − ty)ρ(y) dσ(y), t > 0,

Mf (x) := sup
t>0

|At f (x)|.

Theorem (Boundedness ofM for p > 2)

(i) Assume that p > 2. If the measure ρdσ is supported in a sufficiently

small neighborhood of x0, thenM is bounded on Lp(R3) whenever

p > h(x0,S).

(ii) IfM is bounded on Lp(R3) for some p > 1, and if ρ(x0) > 0, then

p ≥ h(x0,S). Moreover, if S is analytic at x0, then p > h(x0,S).

D. Müller harmonic analysis and hypersurfaces
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Order of contact with hyperplanes

H affine hyperplane: dH(x) := dist (H, x).

Theorem (Iosevich-Sawyer)

If the maximal operatorM is bounded on Lp(Rn), where p > 1, then

∫

S
dH(x)−1/p ρ(x) dσ(x) <∞ (4.2)

for every affine hyperplane H in R
n which does not pass through the origin.

Conjecture (Iosevich-Sawyer)

For p > 2 condition (4.2) is necessary and sufficient for the boundedness
ofM on Lp.

D. Müller harmonic analysis and hypersurfaces
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Theorem

Assume that S ⊂ R
3 is as before, and ρ is supported in a sufficiently small

neighborhood of x0. If S is analytic, then the conjecture of

Iosevich-Sawyer holds true, and if S is only of finite type, then it is true,

with the possible exception of the exponent p = h(x0,S).

D. Müller harmonic analysis and hypersurfaces
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Oscillation, order of contact and sublevel estimates

Given x0 ∈ S, call

1 uniform oscillation index βu(x0) : the supremum over all β s.t.

|ρ̂dσ(ξ)| ≤ Cβ (1 + |ξ|)−β ∀ξ ∈ R
n (4.3)

for all ρ supported in a sufficiently small neighborhood of x0.

2 uniform contact index γu(x0) : the supremum over all γ s.t.

∫

S
dH(x)−γ ρ(x) dσ(x) <∞ (4.4)

for every affine hyperplane H and ρ as before.

3 If we restrict directions to the normal to S in x0, respectively H to
the affine tangent plane in x0, we introduce accordingly the oscillation
index β(x0) and the contact index γ(x0).
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Combining our results with results by Phong, Stein and Sturm, we get

Theorem

Let x0 ∈ S ⊂ R
3 be a fixed point. Then

βu(x0,S) = β(x0,S) = γu(x0,S) = γ(x0,S) = 1/h(x0,S).

Note: The contact order estimates are essentially equivalent to certain
sublevel estimates (Tschebychev!)
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The case p ≤ 2

If p ≤ 2, then neither the notion of height nor that of contact index
will determine the range of exponents p for which the maximal
operatorM is Lp-bounded.

We have a conjecture for this case, which for certain surfaces relates
to fundamental open problems in Fourier analysis, such as the
conjectured reverse square function estimate for the cone
multiplier

Work in progress!
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C. Fourier restriction: Adapted coordinates

We may assume that

S = {(x1, x2, φ(x1, x2)) : (x1, x2) ∈ Ω}, x0 = 0.

Theorem

Assume that the coordinates (x1, x2) are adapted to φ, where φ is smooth

of finite type. If the support of ρ ≥ 0 is contained in a sufficiently small

neighborhood of 0, then

( ∫

S
|f̂ |2 ρdσ

)1/2

≤ Cp‖f ‖Lp(R3), f ∈ S(R3), (5.1)

for every p ≥ 1 such that p′ ≥ 2h(φ) + 2.

Remarks:

1 Knapp type examples show that our result is sharp.
2 A. Magyar had obtained partial results in the analytic case before.
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On the proof

1 For p′ > 2h(φ) + 2, this follows directly from our Fourier decay
estimate (3.1) and

Theorem (Greenleaf ’81 - the case n = 3)

Assume that d̂µ(ξ) . |ξ|−1/h. Then the restriction estimate

( ∫

S
|f̂ |2 dµ

)1/2

≤ Cp‖f ‖Lp(R3)

holds for every p ≥ 1 such that p′ ≥ 2h + 2.

2 The endpoint p′ = 2h(φ) + 2 can be obtained by Littlewood-Paley
theory.
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C. Fourier restriction: Non-adapted coordinates

Then π(φ) is a compact edge, lying on a unique line

L := {(t1, t2) ∈ R
2 : κ1t1 + κ2t2 = 1}.

Moreover,

m := κ2/κ1 ∈ N, (and m ≥ 2), (5.2)

and m(φpr ) > d(φ), so that there is (exactly) one real root x2 = b1xm
1

of
φpr of multiplicity bigger than h(φ), the principal root. Changing
coordinates

y1 := x1, y2 := x2 − b1xm
1 ,

we arrive at a ”better” coordinate system y . By iterating this procedure,
we arrive at Varchenko’s algorithm for constructing an adapted coordinate
system (in higher dimension, adapted coordinates may not exist!).
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In the end, one can find a change of coordinates

y1 := x1, y2 := x2 − ψ(x1) (5.3)

leading to adapted coordinates y for φ, where the principal root jet ψ has
a Taylor approximation

ψ(x1) = b1xm
1 + O(xm+1

1
).

In the adapted coordinates y , φ is given by

φa(y) := φ(y1, y2 + ψ(y1)).

D. Müller harmonic analysis and hypersurfaces
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Newton polyhedron N (φa)

γn

(A0,B0)

(A1,B1)

(A2,B2)

N (φa)

γ1

(An,Bn)

γ2

1/κ2

2

1/κ2

1

Figure: Edges and weights
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m-Height

Consider the line parallel to the bi-sectrix

∆(m) := {(t, t + m + 1) : t ∈ R}.

For any edge γℓ ⊂ Lℓ := {(t1, t2) ∈ R
2 : κℓ

1
t1 + κℓ

2
t2 = 1} define hℓ by

∆(m) ∩ Lℓ = {(hℓ −m, hℓ + 1)},

i.e.

hℓ =
1 + mκℓ

1
− κℓ

2

κℓ
1
+ κℓ

2

, (5.4)

and define the m-height of φ by

h(m)(φ) := max(d , max
ℓ:aℓ>m

hℓ).

Remarks:
1 For L in place of Lℓ, one has m = κ2/κ1 and d = 1/(κ1 + κ2), so

that one gets d in place of hℓ in (5.4)
2 Since m < aℓ, we have hℓ < 1/(κℓ

1
+ κℓ

2
), hence h(m)(φ) < h(φ).
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m-height h(m)(φ)

h(m)(φ) + 1

d + 1

∆(m)

π(φ)

m + 1

1/κ2

1/κ1

N (φa)

L

Figure: m-height
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Theorem

Assume that there is no linear coordinate system adapted to φ, where φ is

smooth of finite type. Then there exists a neighborhood U ⊂ S of x0 = 0
such that for every non-negative density ρ ∈ C∞

0
(U),

( ∫

S
|f̂ |2 ρdσ

)1/2

≤ Cp‖f ‖Lp(R3), f ∈ S(R3), (5.5)

for every p ≥ 1 such that p′ > p′c := 2h(m)(φ) + 2.

Remarks:

1 The condition p′ > 2p′c + 2 is weaker than the condition
p′ > 2h(φ) + 2, which would follow from Greenleaf’s result!

2 Again, Knapp type examples show that our result is sharp, except
possibly for the endpoint.

3 If φ analytic, presumably true also at endpoint p = pc .
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Example 2

φ(x1, x2) := (x2 − xm
1 )n, n,m ≥ 2.

The coordinates (x1, x2) are not adapted. Adapted coordinates are
y1 := x1, y2 := x2 − xm

1
, in which φ is given by

φa(y1, y2) = yn
2 .

Here

κ1 =
1

mn
, κ2 =

1

n
,

d := d(φ) =
1

κ1 + κ2

=
nm

m + 1
,

and

p′c =

{
2d + 2, if n ≤ m + 1,

2n, if n > m + 1 .
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Example 2

N (φ)

N (φ)N (φ)

mn

h(φ) = n

d(φ)

N (φa)

Figure: φ(x1, x2) := (x2 − xm
1

)n (n,m ≥ 2)
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BASIC INGREDIENCES OF PROOFS (Maximal Estimate)

I Puiseux expansion of roots and Newton polyhedra. Assume φ
analytic:

φ(x1, x2) = U(x1, x2)x
ν1

1
x
ν2

2

∏

r

(
x2 − r(x1)

)
, U(0, 0) 6= 0;

roots r(x1) admit a Puiseux series expansion

r(x1) = c
α1

l1
x

al1

1
+ c

α1α2

l1l2
x

a
α1

l
1

l
2

1
+ · · ·+ c

α1···αp

l1···lp
x

a
α1···αp−1

l1···lp

1
+ · · · ;

◮ exponents a
α1···αp−1

l1···lp
> 0 are all multiples of a fixed rational;

◮ c
α1···αp

l1···lp
∈ C \ {0}.

◮

a1 < · · · < aℓ < · · · < an

the distinct leading exponents of all the roots r .

Phong and Stein: Group the roots into clusters [ℓ] consisting of all
roots with leading exponent aℓ. Each cluster [ℓ] is associated to an
edge γℓ of N (φ).

D. Müller harmonic analysis and hypersurfaces



Intro Newton Decay M Restriction Proofs Roots Adapted oscillatory integrals

The ("easy") case when the coordinates are adapted to φ
(e.g. if φ convex)

Decomposition
φ = φpr + error,

where φpr is κ-homogeneous (if φ is convex and finite line type, φpr

is just the Schulz polynomial!). We can then basically reduce to
assuming φpr = φκ.

Dyadic decomposition and re-scaling of dyadic pieces using
dilations δr associated to the weight κ.

Control of multiplicity of roots on dyadic pieces: ∀x0 with
|x0| ∼ 1 there is a direction e such that

∂m
e φpr (x0

1 , x
0

2 ) 6= 0 for some 2 ≤ m ≤ h(φ).

This leads to the right control of oscillatory integrals (van der
Corput!) or maximal operators , e.g. by reduction to curves:
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II Decomposition of S into families of curves, e.g. fan
decomposition:

Figure: Fan Decomposition
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The case when the coordinates are not adapted to φ

III Domain decomposition (no damping technics!)

γ1, γ2, . . . , edges of N (φa) above principal edge, with associated
weights κℓ.

Decompose Ω into κℓ-homogeneous domains Dℓ containing the cluster of
non-trivial roots of φa

κℓ
associated to γℓ (these roots have multiplicity

bounded by 1/(κℓ
1

+ κℓ
2
) < h(φ), since they are away from the principal

root jet) and the ”transition domains” Eℓ between these domains, which
have no homogeneous structure.

For the domains Dℓ, one can argue somewhat similarly as in the
adapted case, but we also need control on multiplicities of roots of
∂2φ

a
pr

and ∂2

2
φa

pr
.

For the transition domains Eℓ, use bi-dyadic decomposition into
rectangles, re-scale, and again reduce, e.g., to maximal averages
along curves.
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Clusters of roots

Dl

El

principal root jet

Figure: Clusters of roots
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What is left?

A small, κa-homogenous (in the adapted coordinates) neighborhood
of the principal root jet ψ which can no longer be dealt with by
maximal averages along curves.

In this domain, in adapted coordinates, the total multiplicity of all
roots is controlled by the homogeneous dimension 1/(κa

1
+ κa

2
) of the

principal edge.

Main Problem: If ∂j
2
φa

pr
(y0) = 0, j = 1, . . . , h.

To overcome this, e.g. forM we apply a further domain
decomposition by means of a stopping time argument into
homogeneous domains D′ℓ and transition domains E ′ℓ, oriented at the
level sets of ∂2φ

a, which again are chopped up into dyadic resp.
bi-dyadic pieces.

After re-scaling, the contributions of these pieces can eventually be
estimated by oscillatory integral technics in 2 variables.

D. Müller harmonic analysis and hypersurfaces



Intro Newton Decay M Restriction Proofs Roots Adapted oscillatory integrals

Oscillatory integrals with small parameters δ, σ

Problem: Oscillatory integrals with small parameters

We need uniform estimates of oscillatory integrals of the form

J(ξ) =

∫∫

R2

ei(ξ1y1+ξ2ψ(y1)+ξ2y2+ξ3φ
a(y))η(y) dy ,

where φa and ψ depend on small parameters and where the interplay
between these functions is crucial.
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Degenerate Airy type

Most difficult situation: Oscillatory integrals of degenerate Airy type

J(λ, σ, δ) :=

∫

R2

eiλF (x ,σ,δ)ψ(x , δ) dx ,

with F (x1, x2, σ, δ) := f1(x1, δ) + σf2(x1, x2, δ).

Example (The following φ leads to such oscillatory integrals)

φ(x1, x2) := (x2 − xm
1 )ℓ + x2xn−m

1
,

where n/ℓ > m ≥ 2. Here, ψ(x1) := xm
1
,

φa(y1, y2) = yn
1 + y ℓ2 + y2yn−m

1
,

and
φa

pr
(y1, y2) = yn

1 + y ℓ2 .
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Theorem

Assume that

|∂1f1(0, 0)| + |∂2

1 f1(0, 0)| + |∂3

1 f1(0, 0)| 6= 0

and ∂1∂2f2(0, 0, 0) 6= 0, and that there is some m ≥ 2 such that

∂l
2f2(0, 0, 0) = 0 for l = 1, . . . ,m − 1

and ∂m
2

f2(0, 0, 0) 6= 0.
Then there exist a neighborhood U ⊂ R

2 of the origin and constants

ε, ε′ > 0 such that for any ψ which is compactly supported in U

|J(λ, σ, δ)| ≤
C‖ψ(·, δ)‖C3

λ
1

2
+ε|σ|(lm+cmε),

uniformly for |σ|+ |δ| < ε′, where lm := 1

6
and cm := 1 for m < 6, and

lm := m−3

2(2m−3) and cm := 2 for m ≥ 6.
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THANKS FOR YOUR ATTENTION!
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