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Radon Transform

The Radon transform takes a function

f : Rd → C

and transforms it to a function

Rf : Gd → C

where Gd = Grassmann manifold of all affine hyperplanes π ⊂ Rd

by

R(π) =

∫
π
f .



A Radon Transform Inequality

I Identify Grassmann manifold Gd with {(r , θ) ∈ R× Sd−1};
(r , θ)↔ hyperplane with normal vector θ, at signed distance r
from 0. Essentially a two to one map.

I Equip Gd with measure dµ = dr dθ.

I R maps L1(Rd) to L1(Gd). (Trivial; Fubini)

I R maps Lp(Rd) to Lq(Gd) for

p =
d + 1

d
and q = d + 1.

([Oberlin-Stein 1981], [Calderón 1983], . . . )

I A one-parameter family of inequalities follows from these two.
No others are true.

I Therefore: most interesting inequality is L(d+1)/d → Ld+1.



Inverse Problems

Let A be the optimal constant in the inequality

‖Rf ‖d+1 ≤ A‖f ‖(d+1)/d .

What is the nature of those functions which extremize, or nearly
extremize, or extremize it to within a small factor?

In this talk I will

I First review results on various versions of this question,
obtained over several years.

I Then focus on a result obtained in recent weeks.



Symmetry

I The L(d+1)/d → Ld+1 inequality for R has an extraordinarily

large group of symmetries.

I Indeed,
‖R(f ◦ φ)‖d+1

‖f ◦ φ‖(d+1)/d
=
‖R(f )‖d+1

‖f ‖(d+1)/d

for any invertible affine transformation φ of Rd .

I This high degree of symmetry gives the inequality a special
interest.



The endpoint inequality is not particularly difficult to prove. One
proof (Calderón, Oberlin-Stein circa 1981) uses the L2 identity
R∗ ◦ R = (−∆)−(d−1)/4 together with Sobolev embedding, mixed
norm spaces, and interpolation.



Quasiextremals

A combinatorial proof ([C 2006, 2011]) leads naturally to this
conclusion:

Theorem. [C 2006/2011] If ‖R1E‖d+1 ≥ δ‖1E‖(d+1)/d then

there exists a convex set C

which is not large:
|C| = |E|,

but which contains a significant fraction of E :

|C ∩ E| ≥ cδC|E|.

Here c ,C are constants which depend only on the dimension d .



Extremizers Exist

I Theorem. There exists a function satisfying

‖Rf ‖d+1=A‖f ‖(d+1)/d .

I A natural way to prove this is by establishing
(Pre)compactness of extremizing sequences:
If

‖fn‖(d+1)/d = 1 and ‖Rfn‖d+1 → A.

then

Some subsequence converges in L(d+1)/d norm.
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Correction

Because the symmetry group is noncompact, it is not true that
arbitrary extremizing sequences are precompact.

Theorem. Suppose ‖fn‖(d+1)/d = 1 and ‖Rfn‖d+1 → A. Then

there exist invertible affine transformations φn ∈ G

such that some subsequence of {cn fn ◦ φn} converges, in L(d+1)/d

norm.

Corollary. (Near-extremizers.) If

‖Rf ‖d+1 ≥ (A− ε)‖f ‖(d+1)/d ,

then f is δ(ε)–close to some extremizer.
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Properties of Extremizers

I Extremizers are critical points of the functional

ΦR(f) =
‖Rf ‖d+1

‖f ‖(d+1)/d
.

I Critical points are characterized by a generalized
Euler-Lagrange equation:

f = λ
(
R∗(Rf)d

)d
.

I λ ∈ R is a Lagrange multiplier (a ratio of powers of norms of
Rf and f ).

I R∗ is the transpose of R — a similar operator.

I Theorem. [C-Xue 2010] All critical points of ΦR, and in
particular all extremizers, are C∞, and f (x)→ 0 as |x | → ∞.



Asymptotic Behavior of Critical Points at Infinity

Theorem. [C, May 2011]
Any critical point f of the functional ΦR admits an asymptotic
expansion of the form

f(x) =
∞∑

k=0

gk

( x

|x|
)
|x|−d−k as |x| → ∞

with each gk ∈ C∞(Sd−1).

I There do exist critical points which are not extremizers.

I There exist critical points which tend to zero faster, as
|x | → ∞, than extremizers do.
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Obstructions to Proving the Regularity Theorem

I The Euler-Lagrange equation is nonlinear, and nonlocal.

I Because the inequality has a scaling symmetry, the right-hand

side of the equation,
(
R∗(Rf )d

)d
, is in general no smoother

than f itself.

I Therefore one cannot prove the regularity theorem by a direct
“bootstrapping” argument.

I It is not true that arbitrary solutions of the Euler-Lagrange
equation are C∞; there are nonsmooth solutions in weak
L(d+1)/d .

I If time permits, I will briefly discuss the proof of this regularity
theorem at the end of today’s talk.
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Identification of Extremizers

I turn now to the main topic of today’s lecture, the identification
of extremizers.



Very few nontrivial inequalities have known extremizers

I Young’s convolution inequality (Beckner [1975]; Lieb [1976]):∫∫
Rd+d

f(x)g(y)h(x− y) dx dy ≤ Ap,q,r‖f‖p‖g‖q‖h‖r

if p−1 + q−1 + r−1 = 2. Extremizers are certain triples (f , g , h) of
(not necessarily radial) Gaussians e−Q(x).

I Hardy-Littlewood-Sobolev inequality (Lieb [1983]):∫∫
Rd+d

f(x)g(y)|x− y|−d+γ dx dy ≤ Ap,q,γ‖f‖p‖g‖q

if q = p and 2p−1 = 1 + γd−1. Extremizers

F(x) = (1 + |x|2)−d/p and F ◦ φ for all φ(x) = a + rx , 0 6= r ∈ R.
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More Inequalities With Known Extremizers

I Hausdorff-Young inequality (Babenko, Beckner).
Extremizers are Gaussians.

I Strichartz inequalities (Foschi): If

u(t, x) =

∫
Rd

f (ξ)e ix ·ξe it|ξ|
2
dξ

then
‖u‖q ≤ Ad‖f ‖2

for q = 2d+1
d−1 and d = 2 or d = 3. Extremizers are (complex,

radial) Gaussians.

I Hilbert transform (Pichorides).

I Extremizers and optimal constants have been identified for a
few other inequalities, by very interesting exploitation of
symmetries, by Beckner, in an ongoing series of papers.



Today’s Main Result

Theorem.

I The function
F(x) = (1 + |x|2)−d/2

is an extremizer for the Radon transform inequality.

I Each extremizer is of the form

c F ◦ φ

for some invertible affine transformation φ of Rd .

I That (1 + |x |2)−d/2 is an extremizer, had been conjectured by
Baernstein and Loss [1997].

I They proved this for dimension d = 3 (and treated the
2-plane transform for all d).
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Main Ideas

I Symmetry. Inequality has a very high degree of symmetry.

I Symmetrization.
Replacing f by its radially symmetric decreasing
rearrangement, never decreases the functional
ΦR(f ) = ‖Rf ‖d+1/‖f ‖(d+1)/d .

I Inverse symmetrization.
If symmetrizing f does not strictly increase ΦR(f ), then f
must be appropriately symmetric.

I Identifying symmetry.
One must be able to recognize functions with “ellipsoidal”
symmetry; f = F ◦ φ, where F is radial and φ is affine.

I Additional symmetry.
The inequality has additional symmetries, beyond the affine
group.
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Three Main Steps

I Proposition. Any extremizer is “ellipsoidal”, that is, of the
form F ◦ φ, for some radial function F and some affine φ.

I Proposition. A non-affine symmetry. If f is an extremizer,
then so is

|s|−d f(
u

s
,

1

s
)

with coordinates (u, s) ∈ Rd−1 × R1.
I Proposition. If

f is radial and |s|−d f (
u

s
,

1

s
) is “ellipsoidal”

then

f (x) = c(1 + r |x |2)−d/2 for some constants c , r .

I The general scheme is along the lines introduced by Lieb in
his work on the Hardy-Littlewood-Sobolev inequality.
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A Convolution Operator

Before we go on, I need to tell you about a different operator.

I T : L(d+1)/d(Rd)→ Ld+1(Rd):

Tf (x) = f ∗ σ(x) =

∫
f (x − y) dσ(y)

where σ is the “affine surface measure” dy′ on the parabola

yd = 1
2 |y
′|2 with y = (y′, yd) ∈ Rd−1 × R1.

I T is a canonical representative of the large class of operators
defined by convolution with generalized surface measures on
submanifolds.

All of the theorems about quasiextremals,
existence of extremizers, precompactness of extremizing
sequences, and regularity of critical points of ΦR, were
originally proved for T .
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A Third Operator

I R] : L(d+1)/d(Rd)→ Ld+1(Rd):

R]f (x) =

∫
Rd−1

f (y ′, xd + x ′ · y ′) dy ′.

I R] is essentially the Radon transform R, but with different
normalizations in two different respects.



A rose by any other name . . .

I Fact: For all functions f ,

‖Rf ‖d+1 = ‖Tf ‖d+1 = ‖R]f ‖d+1.

These identities rely on (nonaffine) changes of coordinates,
Jacobian factors, and the particular exponents p = d+1

d and
q = d + 1.

I The equivalence of T with R] is based on the quadratic skew
shifts

(x ′, xd) 7→ (x ′, xd ± 1
2 |x
′|2)

where (x ′, xd) ∈ Rd−1 × R1.

I R] is less famous, but is the bridge between T and R. The
proof of today’s theorem relies on a symmetry which was
discovered for R], rather than for R.
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Step 2: The Non-Affine Symmetry

I R] is a scaling limit (under a parabolic rescaling) of R. Yet a
casual glance suggests that R] enjoys a smaller symmetry
group than R. A search for the missing symmetries led to:

I Set

Jf (x ′′, s, t) = |s|−d f (s−1x ′′, s−1, s−1t)

Lf (x ′′, s, t) = f (x ′′, t, s)

I

L ◦ R] = R] ◦ J.

Thus J arises naturally, being dual to the affine symmetry L.

I The equivalence between R] and R involves a non-affine
change of variables.



I All theorems in this talk have versions for all three operators,
in particular, for the convolution operator T associated to the
paraboloid.

I Among the extremizers for T are all functions

c
(

1 + a|x ′|2 + b
∣∣∣ xd − 1

2 |x
′|2
∣∣∣)−d

with coordinates (x ′, xd) ∈ Rd−1 × R1.

We next discuss Step 1: Every extremizer has “ellipsoidal”
symmetry.



An Identity (Drury [1983,1984]; C [2011])

‖Rf ‖d+1
d+1 =

∫
(Rd−1)d+1

Inner integral (x ′0, · · · , x ′d)
d∏

j=0

dx ′j

where xj = (x ′j , tj) ∈ Rd−1 × R1, and the inner integral is

∫
Rd

∆d−1(x′1, · · · , x′d)−1 f(x′0, v(x′) · t)
d∏

j=1

f(x′j, tj) dtj

with t = (t1, · · · , td),
∆d−1 = volume of d − 1–simplex in Rd−1 with indicated vertices,
v(x ′) = v(x ′1, · · · , x ′d) = unique vector such that

(x ′0, v(x ′) · t) is coplanar with (x ′j , tj) for all j ∈ {1, · · · , d}.



Radial Nonincreasing Rearrangement

If f : Rd → [0,∞) is finite a.e. then there exists essentially unique
f ∗ : Rd → [0,∞) satisfying:

I Radial

I Nonincreasing: r > r ′ ⇒ f ∗(r) ≤ f ∗(r ′)

I Equimeasurable with f :∣∣{x : f ∗(x) > λ}
∣∣ =

∣∣{x : f (x) > λ}
∣∣

for all λ.



Rearrangement Inequalities

I Riesz [1930]; Sobolev [1936]∫∫
Rd×Rd

f (x)g(y)h(x + y) dx dy

≤
∫∫

Rd×Rd

f∗(x)g∗(y)h∗(x + y) dx dy .

I Brascamp-Lieb-Luttinger [1974]∫
Rm

∏
j

fj(Lj(x)) dx ≤
∫
Rm

∏
j

f∗j (Lj(x)) dx

for any linear mappings Lj : Rm → R1.



Rearrangement and the Radon Transform [C 1984]

I The inner integrals in the Drury/C identity are of the
Brascamp-Lieb-Luttinger form.

I Consequence: Let f ??(x ′, xd) be nondecreasing
rearrangement of f (x ′, xd) with respect to the xd variable
for each x ′. Then

‖Rf??‖d+1 ≥ ‖Rf‖d+1.

I Doing this repeatedly with respect to a dense set of directions
in Rd and extracting limit of a subsequence, one obtains for
the radial f ∗

‖Rf ∗‖d+1

‖f ∗‖(d+1)/d
≥ ‖Rf ‖d+1

‖f ‖(d+1)/d
.

(Justification: Brascamp-Lieb-Luttinger [1974]; Carlen-Loss [1990])



Consequence

Corollary. There exist radial extremizers for our Radon transform
inequality.

• Use previously known existence of extremizers for an equivalent
problem

OR

• Extremize within class of all radial functions.



Burchard’s Inverse Theorem [1996]

If ∫
Rm

m∏
j=0

fj(Lj(x)) dx =

∫
Rm

m∏
j=0

f ∗j (Lj(x)) dx

then there exist cj such that

fj(x) ≡ f∗j (x− cj)

and moreover {cj} are compatible in the sense that there exists
v ∈ Rm such that

cj = Lj(v) for all j ∈ {0, · · · ,m} —

provided that all level sets of all fj are null sets: For all λ,∣∣{x : fj(x)=λ}
∣∣ = 0.
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Scholium

I Burchard’s theorem, as stated, does not apply directly,
because it requires that level sets be null sets, which is not
obvious here.

I I believe that it is possible to refine the analysis of [C-Xue
2010] to show that all critical points of ΦR are real analytic.
This implies the null condition.

I Burchard proved a more fundamental inverse theorem,
characterizing cases of equality in Young’s inequality, when all
functions are characteristic functions of sets. When the
measures of these sets satisfy certain inequalities, the same
characterization of equality holds.

I A tedious direct argument supplements this inverse theorem,
allowing one to draw the desired conclusion in our application
to the Radon transform. I will spare you all these details.



Upshot for Radon Transform

I Proposition. If f is an extremizer for the Radon transform
inequality then for each unit vector v ∈ Rd , there exists a
skew reflection Rv in the direction v such that

f ≡ f ◦ Rv .

I By a skew reflection Rv I mean an affine involution such that
Rv (x)− x is parallel to v for every x .

I The discussion so far provides a skew reflection Rv for every
direction v , but no control over their relationship to one
another.

I Burchard faced this same point in extending the inverse
theorem to higher dimensions.
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By their fruits ye shall know them

How to recognize functions with ellipsoidal symmetry?

I Consider G = group of all affine symmetries of f . This
includes the group generated by all the skew reflections of the
preceding slide.

I G must be compact.

I

Group Theory!

Fact. Any compact subgroup of the affine group, is
conjugate (by an element of the affine group) to a
subgroup of the orthogonal group O(d).

I Therefore after an affine change of variables, any extremizer f
is invariant with respect to (orthogonal) reflection about every
codimension one subspace of Rd . Thus f has ellipsoidal
symmetry.
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Step 3

Proposition. If f is radial and |s|−d f (s−1u, s−1) is “ellipsoidal”
then f (x) = c(1 + r |x |2)−d/2 for some constants c, r .

Proof for R2 case:

I

s−2f (s−1t, s−1) = h((s − a)2 + λt2)

for some unknown function h and numbers a, λ. Writing
f (x) = g(|x |2), get

g(
t2 + 1

s2
) = s2h((s − a)2 + λt2).

Here g , h, a, λ are all unknown!

I The vector field V = (1 + t2)∂t + st∂s annihilates t2+1
s2

, and
therefore annihilates the left-hand side.

I Apply V to both sides.
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I Algebra ⇒

− h(ψ)

h′(ψ)
= (1 + t2) + s2 − sa.

where ψ = (s− a)2 + λt2.

I Left-hand side is a function of ψ alone, so

(1 + t2) + s2 − sa is a function of (s − a)2 + λt2.

I Since these have same coefficient of s2, they are equal.

I Therefore
h(ψ)

h′(ψ)
≡ −ψ.

I Solve ODE
d

dψ
log h(ψ) = − 1

ψ

to finish.



I Algebra ⇒

− h(ψ)

h′(ψ)
= (1 + t2) + s2 − sa.

where ψ = (s− a)2 + λt2.

I Left-hand side is a function of ψ alone, so

(1 + t2) + s2 − sa is a function of (s − a)2 + λt2.

I Since these have same coefficient of s2, they are equal.

I Therefore
h(ψ)

h′(ψ)
≡ −ψ.

I Solve ODE
d

dψ
log h(ψ) = − 1

ψ

to finish.



I Algebra ⇒

− h(ψ)

h′(ψ)
= (1 + t2) + s2 − sa.

where ψ = (s− a)2 + λt2.

I Left-hand side is a function of ψ alone, so

(1 + t2) + s2 − sa is a function of (s − a)2 + λt2.

I Since these have same coefficient of s2, they are equal.

I Therefore
h(ψ)

h′(ψ)
≡ −ψ.

I Solve ODE
d

dψ
log h(ψ) = − 1

ψ

to finish.



I Algebra ⇒

− h(ψ)

h′(ψ)
= (1 + t2) + s2 − sa.

where ψ = (s− a)2 + λt2.

I Left-hand side is a function of ψ alone, so

(1 + t2) + s2 − sa is a function of (s − a)2 + λt2.

I Since these have same coefficient of s2, they are equal.

I Therefore
h(ψ)

h′(ψ)
≡ −ψ.

I Solve ODE
d

dψ
log h(ψ) = − 1

ψ

to finish.



Solving the Euler-Lagrange equation: Broken Symmetry

I Define S(f ) =
(
T ∗(Tf )d

)d
.

I The equation f = λS(f ) has critical scaling, viewed as an
equation in the class Lp0 .

I But no individual function in Lp0 has critical scaling in any
sense; the choice of a particular function f breaks all
symmetry.

I The Euler-Lagrange equation has critical scaling only because
of its particular degree of nonlinearity. The linearization of S
about any Lp0 function is a better operator. Thus

Nonlinearity works to our advantage.



Lightning Synopsis

I Main point is to prove improved decay: Solutions satisfy
〈x〉δf ∈ L(d+1)/d for some uncontrollable δ = δ(f ) > 0.

I Then can trade decay for fraction of a derivative.

I Derivatives satisfy similar equations, so can iterate.

I To gain power decay: Reformulate as a fixed-point equation.
Solve this simultaneously in L(d+1)/d , and in a better space
which is preserved by the nonlinear operator S , by contraction
mapping principle.

I Use uniquenesss of solutions to conclude that known solution
equals one which belongs to the better space.

I Carrying this out requires inventing appropriate scale of
Banach spaces, and proving various inequalities for S within
this scale.
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Synopsis, continued

I The spaces used are Lpt with weights 〈x〉t .

I Interpolate between unweighted inequality for L(d+1)/d , and
weighted inequality for L∞.

I [C-Xue] had carried this out for the convolution operator T ,
without having observed the equivalent reformulation in terms
of an operator with radial symmetry. The weights used there
were powers of ( 1 + |x ′|+ |xd ± 1

2 |x
′| ); the proof of the L∞

inequality took 6 pages of small print.
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Great Leap Strategy

I Let the multilinear operator ~S be the “polarization” of S :
S(f ) = ~S(f , f , · · · , f ) where

~S{fi ,j : 1 ≤ i , j ≤ d} =
∏
i

T ∗
(∏

j

T (fi ,j)
)
.

I Goal: Prove if f ∈ Lp0 satisfies f = λS(f ), then 〈x〉δf ∈ Lp0 .
(δ = δ(f ) > 0.)

I GL strategy requires inventing a scale of Banach spaces Xt ,
for t ∈ [0, 1], with certain properties.

I The proof will give no control on δ; it depends on the
“profile” of f itself, not merely on λ and ‖f ‖p0 .



Properties required of the spaces Xt

The Banach spaces Xt must satisfy:

I X0 = Lp0.

I For t > 0, Xt ⊂ 〈x〉−δX0 for some δ = δ(t) > 0.

I s > t ⇒ Xs ⊂ Xt .

I If f ∈ Xs then t 7→ ‖f ‖Xt is continuous on [0, s].

I ~S : Xt ⊗ Xt ⊗ · · · ⊗ Xt → Xt for all t.

I Wealth sharing property. Let t > 0. If

fi ,j ∈ X0 ∀i , j
and at least one function fi ,j belongs to Xt ,

then
~S{fi ,j} belongs to Xτ for some τ(t) > 0.



Preparing to Leap

I For small ε > 0 split
f = gε + bε

where the good part gε ∈ X1, while the bad part is small:

‖bε‖p0 < ε.

I We have no control on ‖gε‖X1 .

I Rewrite equation as bε = L(gε, bε) + λS(bε), where the
“linear” part L(gε, bε) has degree d − 1 as a function of bε.

I By wealth sharing, L(gε, bε) ∈ Xs for some s > 0.

I By continuity of norms,

‖L(gε, bε)‖Xτ(ε) < 2ε

provided τ(ε) > 0 is chosen to be sufficiently small.
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The bad term is also good

I The bad part bε has small norm.

I The most nonlinear term, λS(bε), is homogeneous of degree
d2 > 1.

I Therefore this worst term is ≪ bε itself.



The Leap

I For small ε > 0, solve fixed-point equation for unknown hε:

hε = L(gε, bε) + λS(hε)

I Do this by contraction mapping principle, simultaneously in
X0 and in Xτ(ε). This works for all sufficiently small ε.

I Contraction mapping produces a unique solution. Since
Xτ(ε) ⊂ X0, the two solutions obtained in the two spaces must
agree.

I bε is the unique small solution in X0.

I Therefore for all sufficiently small ε, bε ∈ Xτ(ε). Then
f = bε + gε also ∈ Xτ(ε).



I The spaces Xt used in the proof are weighted spaces Lpt (wt)
where the weights wt are appropriate positive powers of 〈x〉.

I The endpoints are L(d+1)/d → Ld+1 with weight |x |0, and L∞

with weight 〈x〉d .

I The Radon transform maps these boundedly to Lqt with
corresponding power weights.

I The L∞ endpoint estimate is one line.

I [C-Xue] had carried this out for the convolution operator T ,
without having observed the equivalent reformulation in terms
of an operator with radial symmetry. The weights used there
were powers of ( 1 + |x ′|+ |xd ± 1

2 |x
′| ); the proof of the L∞
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