Joint functional calculus for commuting differential operators on nilpotent groups: Schwartz kernels and multipliers

Fulvio Ricci

Scuola Normale Superiore di Pisa

Analysis and Applications: A Conference in Honor of E. M. Stein Princeton University, May 15-21, 2011

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2
- $m(L, i^{-1}T)f = f * K_m$, with K_m a U_n -invariant distribution

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2
- $m(L, i^{-1}T)f = f * K_m$, with K_m a U_n -invariant distribution

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2
- $m(L, i^{-1}T)f = f * K_m$, with K_m a U_n -invariant distribution

Theorem

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2
- $m(L, i^{-1}T)f = f * K_m$, with K_m a U_n -invariant distribution

Theorem

 (i) If m is a smooth Marcinkiewicz multiplier, then K_m is a smooth, U_n-invariant, flag kernel on H_n, adapted to the flag

 $\{0\}\ \subset\ \{0\}\times\mathbb{R}\ \subset\ H_n\ .$

- Heisenberg group $H_n \cong \mathbb{C}^n \times \mathbb{R}$
- *L* the U_n-invariant sublaplacian, *T* = ∂_t derivative in the central direction
- multiplier operators $m(L, i^{-1}T)$, with *m* a bounded Borel function on \mathbb{R}^2
- $m(L, i^{-1}T)f = f * K_m$, with K_m a U_n -invariant distribution

Theorem

 (i) If m is a smooth Marcinkiewicz multiplier, then K_m is a smooth, U_n-invariant, flag kernel on H_n, adapted to the flag

$$\{0\} \subset \{0\} \times \mathbb{R} \subset H_n.$$

(ii) If K is a U_n -invariant smooth flag kernel on H_n , adapted to the above flag, then there exists a smooth Marcinkiewicz multiplier m such that $K = K_m$.

The Heisenberg fan

(ロ)、

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Theorem (Astengo, Di Blasio, R., 2007)

Theorem (Astengo, Di Blasio, R., 2007)

 (i) If m is a Schwartz function on ℝ², then K_m is a U_n-invariant Schwartz function on H_n.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem (Astengo, Di Blasio, R., 2007)

 (i) If m is a Schwartz function on ℝ², then K_m is a U_n-invariant Schwartz function on H_n.

(日) (日) (日) (日) (日) (日) (日)

(ii) If *F* is a U_n -invariant Schwartz function on H_n , then there exists a Schwartz function *m* on \mathbb{R}^2 such that $F = K_m$.

Theorem (Astengo, Di Blasio, R., 2007)

 (i) If m is a Schwartz function on ℝ², then K_m is a U_n-invariant Schwartz function on H_n.

(日) (日) (日) (日) (日) (日) (日)

(ii) If *F* is a U_n -invariant Schwartz function on H_n , then there exists a Schwartz function *m* on \mathbb{R}^2 such that $F = K_m$.

Theorem (Astengo, Di Blasio, R., 2007)

- (i) If m is a Schwartz function on ℝ², then K_m is a U_n-invariant Schwartz function on H_n.
- (ii) If *F* is a U_n -invariant Schwartz function on H_n , then there exists a Schwartz function *m* on \mathbb{R}^2 such that $F = K_m$.

 $\mathcal{S}(H_n)^{U_n}\cong \mathcal{S}(\operatorname{fan})$.

Related results: Geller, Benson-Ratcliff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• N nilpotent Lie group;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

(日) (日) (日) (日) (日) (日) (日)

The following are equivalent:

• $\mathbb{D}(N)^{K}$ is commutative under composition;

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^1(N)^K$ is commutative under convolution.

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^1(N)^K$ is commutative under convolution.

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^1(N)^K$ is commutative under convolution.

If these conditions are satisfied, we say that (N, K) is a *nilpotent Gelfand pair*.

- N nilpotent Lie group;
- *K* compact group of automorphisms of *N*;
- D(N)^K algebra of left-invariant and K-invariant differential operators on N;
- $L^1(N)^K$, $S(N)^K$ etc., spaces of *K*-invariant functions on *N*.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^1(N)^K$ is commutative under convolution.

If these conditions are satisfied, we say that (N, K) is a *nilpotent Gelfand pair*.

Example: (H_n, U_n) , $\mathbb{D}(H_n)^{U_n} = \mathbb{C}[L, T]$.

(日) (日) (日) (日) (日) (日) (日)

\$\mathcal{D}\$ = (D₁,..., D_d) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(N)^{\$\mathcal{K}\$};

- \$\mathcal{D}\$ = (\$D_1\$,...,\$D_d\$) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(\$N\$)^{\$\mathcal{K}\$};
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^d$ the joint L^2 -spectrum of (D_1, \ldots, D_d) .

- \$\mathcal{D}\$ = (\$D_1\$,...,\$D_d\$) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(\$N\$)^{\$\mathcal{K}\$};
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^d$ the joint L^2 -spectrum of (D_1, \ldots, D_d) .

- \$\mathcal{D}\$ = (\$D_1\$,...,\$D_d\$) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(\$N\$)^{\$\mathcal{K}\$};
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^d$ the joint L^2 -spectrum of (D_1, \ldots, D_d) .

Conjecture:

For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}(\Sigma_{\mathcal{D}})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- \$\mathcal{D}\$ = (\$D_1\$,...,\$D_d\$) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(\$N\$)^{\$\mathcal{K}\$};
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^d$ the joint L^2 -spectrum of (D_1, \ldots, D_d) .

Conjecture:

For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}(\Sigma_{\mathcal{D}})$.

This is a theorem when

 (N, K) is a Heisenberg pair, i.e., N = H_n (F. Astengo, B. Di Blasio, F. R.);

- \$\mathcal{D}\$ = (D₁,..., D_d) a d-tuple of formally self-adjoint differential operators generating \$\mathbb{D}\$(N)^{\$\mathcal{K}\$};
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^d$ the joint L^2 -spectrum of (D_1, \ldots, D_d) .

Conjecture:

For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}(\Sigma_{\mathcal{D}})$.

This is a theorem when

- (N, K) is a Heisenberg pair, i.e., N = H_n
 (F. Astengo, B. Di Blasio, F. R.);
- (N, K) satisfies Vinberg's condition
 (V. Fischer, F. R., O. Yakimova).

Spherical functions

The (bounded) *spherical functions* of (N, K) are the (bounded) eigenfunctions of all operators in $\mathbb{D}(N)^{K}$.

Given $\mathcal{D} = \{D_1, \dots, D_d\}$ as above, a bounded spherical function can be labeled by the *d*-tuple

$$\boldsymbol{\xi} = \boldsymbol{\xi}(\varphi) = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

of its eigenvalues relative to (D_1, \ldots, D_d) .

Spherical functions

The (bounded) *spherical functions* of (N, K) are the (bounded) eigenfunctions of all operators in $\mathbb{D}(N)^{K}$.

Given $\mathcal{D} = \{D_1, \dots, D_d\}$ as above, a bounded spherical function can be labeled by the *d*-tuple

$$\boldsymbol{\xi} = \boldsymbol{\xi}(\varphi) = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$$

of its eigenvalues relative to (D_1, \ldots, D_d) .

Then

$$\Sigma_{\mathcal{D}} = \left\{ \boldsymbol{\xi}(\varphi) : \varphi \text{ b.s.f.} \right\} \,,$$

as topological spaces (with the compact-open topology on the space of b.s.f.).

Spherical transform

• Given $F \in L^1(N)^K$, its spherical transform is

$$\mathcal{GF}(\boldsymbol{\xi}) = \int_{N} F(x) \varphi_{\boldsymbol{\xi}}(x^{-1}) \, dx \in C_0(\Sigma_{\mathcal{D}}) \; .$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Given $F \in L^1(N)^K$, its spherical transform is

$$\mathcal{GF}(\boldsymbol{\xi}) = \int_{N} F(x) \varphi_{\boldsymbol{\xi}}(x^{-1}) \, dx \in C_0(\Sigma_{\mathcal{D}})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

•
$$\mathcal{G}(F * G) = (\mathcal{G}F)(\mathcal{G}G)$$
.

• Given $F \in L^1(N)^K$, its spherical transform is

$$\mathcal{GF}(\boldsymbol{\xi}) = \int_{N} F(x) arphi_{\boldsymbol{\xi}}(x^{-1}) \, dx \in C_0(\Sigma_{\mathcal{D}}) \; .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\mathcal{G}(F * G) = (\mathcal{G}F)(\mathcal{G}G).$$

• the map $m \mapsto K_m$ coincides with \mathcal{G}^{-1} .

• Given $F \in L^1(N)^K$, its spherical transform is

$$\mathcal{GF}(\boldsymbol{\xi}) = \int_{N} F(x) arphi_{\boldsymbol{\xi}}(x^{-1}) \, dx \in C_0(\Sigma_{\mathcal{D}}) \; .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\mathcal{G}(F * G) = (\mathcal{G}F)(\mathcal{G}G).$$

• the map $m \mapsto K_m$ coincides with \mathcal{G}^{-1} .

• Given $F \in L^1(N)^K$, its spherical transform is

$$\mathcal{GF}(\boldsymbol{\xi}) = \int_{N} F(x) arphi_{\boldsymbol{\xi}}(x^{-1}) \, dx \in C_0(\Sigma_{\mathcal{D}}) \; .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\mathcal{G}(F * G) = (\mathcal{G}F)(\mathcal{G}G).$$

• the map $m \mapsto K_m$ coincides with \mathcal{G}^{-1} .

Paradigm for a proof

The implication

$$m \in \mathcal{S}(\Sigma_{\mathcal{D}}) \implies F = \mathcal{G}^{-1}m \in \mathcal{S}(N)^{K}$$

is always true.

It can be derived starting from a result of A. Hulanicki, stating that, if *D* is a positive Rockland operator on a homogeneous group, then m(D) is given by convolution with a Schwartz kernel for every $m \in C_c^{\infty}(\mathbb{R})$.

(ロ) (同) (三) (三) (三) (○) (○)

(The proof is in the Folland-Stein book.)

The other implication for the pair (H_n, U_n)

 Consider first U_n-invariant Schwartz functions with vanishing moments of any order in the central variable t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The other implication for the pair (H_n, U_n)

- Consider first U_n-invariant Schwartz functions with vanishing moments of any order in the central variable t.
- 2. Observe that, for such a function *F*, the spherical transform $\mathcal{G}F$ vanishes of infinite order on the horizontal half-line $\xi_T = 0$ in the Heisenberg fan (the singular set).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The other implication for the pair (H_n, U_n)

- Consider first U_n-invariant Schwartz functions with vanishing moments of any order in the central variable t.
- 2. Observe that, for such a function *F*, the spherical transform $\mathcal{G}F$ vanishes of infinite order on the horizontal half-line $\xi_T = 0$ in the Heisenberg fan (the singular set).
- 3. In this situation, extending $\mathcal{G}F$ to a function in $\mathcal{S}(\mathbb{R}^2)$ is very easy.

4. (D. Geller) For a general U_n -invariant Schwartz function F, show that $\mathcal{G}F$ admits Taylor expansions of any order at $(\xi_L, 0)$:

$$\mathcal{GF}(\xi_L,\xi_T) = \sum_{j=0}^k \frac{1}{j!} g_j(\xi_L) \xi_T^j + \xi_T^{k+1} \mathcal{GR}_k(\xi_L,\xi_T) ,$$

with $g_j \in S(\mathbb{R})$ and $R_k \in S(H_n)^{U_n}$. In other words

$$F(v,t) = \sum_{j=0}^{k} \frac{1}{j!} T^{j} G_{j} + T^{k+1} R_{k} ,$$

(日) (日) (日) (日) (日) (日) (日)

with $G_j \in \mathcal{S}(H_n)^{\cup_n}$ and $\mathcal{G}G_j(\xi_L, \xi_T) = i g_j(\xi_L)$.

4. (D. Geller) For a general U_n -invariant Schwartz function F, show that $\mathcal{G}F$ admits Taylor expansions of any order at $(\xi_L, 0)$:

$$\mathcal{GF}(\xi_L,\xi_T) = \sum_{j=0}^k \frac{1}{j!} g_j(\xi_L) \xi_T^j + \xi_T^{k+1} \mathcal{GR}_k(\xi_L,\xi_T) ,$$

with $g_j \in S(\mathbb{R})$ and $R_k \in S(H_n)^{U_n}$. In other words

$$F(v,t) = \sum_{j=0}^{k} \frac{1}{j!} T^{j} G_{j} + T^{k+1} R_{k} ,$$

with $G_j \in \mathcal{S}(H_n)^{\cup_n}$ and $\mathcal{G}G_j(\xi_L, \xi_T) = i g_j(\xi_L)$.

5. This gives a Schwartz jet $\{g_j\}_{j\in\mathbb{N}}$ on $\mathbb{R} \times \{0\}$ and the final extension of $\mathcal{G}F$ to \mathbb{R}^2 can be obtained via the Whitney extension theorem.

A second-level example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A second-level example

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Take $N = \mathbb{C}^n \times H_n$, $K = U_1 \times SU_n \times U_1$: $(e^{i\theta}, k, e^{i\varphi}) \cdot (z, v, t) = (e^{i\theta}k z, e^{i\varphi}k v, t)$, $(z, v \in \mathbb{C}^n, t \in \mathbb{R})$.

A second-level example

Take
$$N = \mathbb{C}^n \times H_n$$
, $K = U_1 \times SU_n \times U_1$:
 $(e^{i\theta}, k, e^{i\varphi}) \cdot (z, v, t) = (e^{i\theta}k z, e^{i\varphi}k v, t)$

 $(z, v \in \mathbb{C}^n, t \in \mathbb{R}).$

Fundamental invariants:

$$|z|^2$$
, $|\langle z, v \rangle|^2$, $|v|^2$, t .

This gives a system $\ensuremath{\mathcal{D}}$ of 4 differential operators, where

- $D_1 = \Delta_z$ is the Laplacian on \mathbb{C}^n ;
- *D*₂ is a 4-th order operator, mixing derivatives in Cⁿ with vector fields on *H_n*;
- D_3 is the sublaplacian on H_n ;
- $D_4 = \partial_t$ is the central derivative on H_n .

The regular set

For each point $\xi \in \Sigma_D$, the coordinate ξ_1 (the eigenvalue of the spherical function under the action of $D_1 = \Delta_z$) has a particular relevance.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The regular set

For each point $\xi \in \Sigma_D$, the coordinate ξ_1 (the eigenvalue of the spherical function under the action of $D_1 = \Delta_z$) has a particular relevance.

Assume that $\xi_1 \neq 0$. The following properties hold:

in a neighborhood V of ξ, Σ_D is diffeomorphic to the spectrum Σ'_D, associated to another pair,

$$(N',K') = (\mathbb{R} \times H_n, \mathrm{SU}_{n-1} \times \mathrm{U}_1);$$

(日) (日) (日) (日) (日) (日) (日)

The regular set

For each point $\xi \in \Sigma_D$, the coordinate ξ_1 (the eigenvalue of the spherical function under the action of $D_1 = \Delta_z$) has a particular relevance.

Assume that $\xi_1 \neq 0$. The following properties hold:

in a neighborhood V of ξ, Σ_D is diffeomorphic to the spectrum Σ'_D, associated to another pair,

$$(N', K') = (\mathbb{R} \times H_n, \mathrm{SU}_{n-1} \times \mathrm{U}_1);$$

• modulo this diffeomorphism, the spherical transform $\mathcal{G}F$ of $F \in \mathcal{S}(N)^{K}$ coincides on V with $\mathcal{G}'F'$, where

$$F'(s, v, t) = \int_{\mathbb{R}\times\mathbb{C}^{n-1}} F(s+iu, z_2, \ldots, z_n, v, t) \, du \, dz_1 \ldots dz_n \, .$$

The singular set

If $\boldsymbol{\xi} \in \Sigma_{\mathcal{D}}$ has $\xi_1 = 0$, the corresponding spherical function does not depend on $z \in \mathbb{C}^n$ and is in fact a spherical function for the pair $(N'', K'') = (H_n, U_n)$. Then also $\xi_2 = 0$, and

$$\boldsymbol{\Sigma}^{sing}_{\mathcal{D}} = \{\boldsymbol{\xi} \in \boldsymbol{\Sigma}_{\mathcal{D}} : \boldsymbol{\xi}_1 = \boldsymbol{\xi}_2 = \boldsymbol{0}\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a Heisenberg fan in the coordinate plane (ξ_3, ξ_4) .

The singular set

If $\xi \in \Sigma_{\mathcal{D}}$ has $\xi_1 = 0$, the corresponding spherical function does not depend on $z \in \mathbb{C}^n$ and is in fact a spherical function for the pair $(N'', K'') = (H_n, U_n)$. Then also $\xi_2 = 0$, and

$$\Sigma_{\mathcal{D}}^{sing} = \{ \boldsymbol{\xi} \in \Sigma_{\mathcal{D}} : \xi_1 = \xi_2 = 0 \}$$

is a Heisenberg fan in the coordinate plane (ξ_3, ξ_4) .

Given $F \in \mathcal{S}(N)^{K}$, the restriction of $\mathcal{G}F$ to $\Sigma_{\mathcal{D}}^{sing}$ coincides with $\mathcal{G}''F''$, where

$$F''(\mathbf{v},t) = \int_{\mathbb{C}^n} F(z,\mathbf{v},t) \, dz \; .$$

(日) (日) (日) (日) (日) (日) (日)

Taylor expansion

We know then that $\mathcal{G}F$ admits a Schwartz extension to the (ξ_3, ξ_4) coordinate plane. What we need now is a Schwartz jet $\{g_{j,k}\}_{j,k\in\mathbb{N}}$ on this plane, to describe the behaviour of $\mathcal{G}F$ if we move from $\Sigma_{\mathcal{D}}^{sing}$ in the (ξ_1, ξ_2) directions.

Taylor expansion

We know then that $\mathcal{G}F$ admits a Schwartz extension to the (ξ_3, ξ_4) coordinate plane. What we need now is a Schwartz jet $\{g_{j,k}\}_{j,k\in\mathbb{N}}$ on this plane, to describe the behaviour of $\mathcal{G}F$ if we move from $\Sigma_{\mathcal{D}}^{sing}$ in the (ξ_1, ξ_2) directions.

Proposition

There exist functions $G_{j,k} \in S(N)^K$, with $\mathcal{G}G_{j,k}$ depending only on (ξ_3, ξ_4) , such that, for every $p \in \mathbb{N}$,

$$F = \sum_{j+k \leq p} \frac{1}{j!k!} D_1^j D_2^k G_{j,k} + \sum_{|\alpha|=2p+2} \partial_z^{\alpha} R_{\alpha} ,$$

for appropriate $R_{\alpha} \in \mathcal{S}(N)$.

On the structure of nilpotent Gelfand pairs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let (N, K) be a nilpotent Gelfand pair.

On the structure of nilpotent Gelfand pairs

Let (N, K) be a nilpotent Gelfand pair.

 N is at most two-step (Benson-Jenkins-Ratcliff). Then n = v ⊕ 𝔅, where 𝔅 = [n, n] is abelian and v is a K-invariant complementary subspace.

(ロ) (同) (三) (三) (三) (三) (○) (○)

On the structure of nilpotent Gelfand pairs

Let (N, K) be a nilpotent Gelfand pair.

- N is at most two-step (Benson-Jenkins-Ratcliff). Then n = v ⊕ 𝔅, where 𝔅 = [n, n] is abelian and v is a K-invariant complementary subspace.
- Assume that v is irreducible under the action of K (Vinberg's condition). Then j is the center of n and decomposes as j ⊕ j0, where

- (i) $\tilde{\mathfrak{z}}$ consists of the *K*-fixed elements of \mathfrak{z} ;
- (ii) K acts irreducibly on \mathfrak{z}_0 .

• $\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for $v, v' \in \mathbb{C}^n$, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for $v, v' \in \mathbb{C}^n$, set $[v, v'] = v v'^* - v' v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for $v, v' \in \mathbb{C}^n$, set $[v, v'] = v v'^* - v' v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

The natural choice of \mathcal{D} consists of 2n free generators, obtained by symmetrization from:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

The natural choice of \mathcal{D} consists of 2n free generators, obtained by symmetrization from:

• $|v|^2$ (the sublaplacian);

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

The natural choice of \mathcal{D} consists of 2n free generators, obtained by symmetrization from:

• $|v|^2$ (the sublaplacian);

•
$$q_k(v,z) = v^*(z^k)v, k = 1, ..., n-1.$$

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

The natural choice of D consists of 2n free generators, obtained by symmetrization from:

(日) (日) (日) (日) (日) (日) (日)

- $|v|^2$ (the sublaplacian);
- $q_k(v,z) = v^*(z^k)v, k = 1, ..., n-1.$
- the coordinate function on §;

•
$$\mathfrak{n} = \mathbb{C}^n \oplus \mathfrak{u}_n = \mathfrak{v} \oplus \mathfrak{z};$$

• for
$$v, v' \in \mathbb{C}^n$$
, set $[v, v'] = vv'^* - v'v^* \in \mathfrak{u}_n$;

•
$$K = U_n, k \cdot (v, z) = (kv, kzk^*);$$

• then
$$\check{\mathfrak{z}} = i \mathbb{R}, \quad \mathfrak{z}_0 = \mathfrak{su}_n.$$

The natural choice of \mathcal{D} consists of 2n free generators, obtained by symmetrization from:

(日) (日) (日) (日) (日) (日) (日)

• $|v|^2$ (the sublaplacian);

•
$$q_k(v,z) = v^*(z^k)v, k = 1, ..., n-1.$$

the coordinate function on ³/₃;

•
$$p_k(z_0) = \operatorname{tr}(z_0^k), \, k = 2, \ldots, n, \, z_0 \in \mathfrak{z}_0;$$

Regular set and quotient pairs

(ロ) (同) (三) (三) (三) (三) (○) (○)

• To each point ξ of $\Sigma_{\mathcal{D}}$ we can associate a *K*-orbit in $\mathfrak{z}_0 = \mathfrak{su}_n$. Assume that this is not the trivial orbit, i.e. $(\xi_{n+2}, \ldots, \xi_{2n}) \neq (0, \ldots, 0)$.

Regular set and quotient pairs

- To each point ξ of Σ_D we can associate a *K*-orbit in ₃₀ = su_n.

 Assume that this is not the trivial orbit, i.e.

 (ξ_{n+2},...,ξ_{2n}) ≠ (0,...,0).
- The normal space _{3ξ} to this orbit can be used to define a quotient Lie algebra n_ξ = v ⊕ (ξ ⊕ 3ξ).

(日) (日) (日) (日) (日) (日) (日)

Regular set and quotient pairs

- To each point ξ of Σ_D we can associate a *K*-orbit in ₃₀ = su_n.

 Assume that this is not the trivial orbit, i.e.

 (ξ_{n+2},...,ξ_{2n}) ≠ (0,...,0).
- The normal space _{3ξ} to this orbit can be used to define a quotient Lie algebra n_ξ = v ⊕ (ξ ⊕ 3ξ).
- This Lie algebra is isomorphic to a product

 $(\mathbb{C}^{p_1} \oplus \mathfrak{u}_{p_1}) \oplus \cdots \oplus (\mathbb{C}^{p_k} \oplus \mathfrak{u}_{p_k}), \qquad p_1 + \cdots + p_k = n.$

Regular set and quotient pairs

- To each point ξ of Σ_D we can associate a *K*-orbit in $\mathfrak{z}_0 = \mathfrak{su}_n$. Assume that this is not the trivial orbit, i.e. $(\xi_{n+2}, \ldots, \xi_{2n}) \neq (0, \ldots, 0)$.
- The normal space _{3ξ} to this orbit can be used to define a quotient Lie algebra n_ξ = v ⊕ (ξ ⊕ 3ξ).
- This Lie algebra is isomorphic to a product

 $(\mathbb{C}^{p_1} \oplus \mathfrak{u}_{p_1}) \oplus \cdots \oplus (\mathbb{C}^{p_k} \oplus \mathfrak{u}_{p_k}), \qquad p_1 + \cdots + p_k = n.$

• The stabilizer K_{ξ} of the orbit is isomorphic to

$$U_{\rho_1} \oplus \cdots \oplus U_{\rho_k}$$
.

Regular set and quotient pairs

- To each point ξ of Σ_D we can associate a *K*-orbit in ₃₀ = su_n.

 Assume that this is not the trivial orbit, i.e.

 (ξ_{n+2},...,ξ_{2n}) ≠ (0,...,0).
- The normal space _{3ξ} to this orbit can be used to define a quotient Lie algebra n_ξ = v ⊕ (ξ ⊕ 3ξ).
- This Lie algebra is isomorphic to a product

 $(\mathbb{C}^{p_1} \oplus \mathfrak{u}_{p_1}) \oplus \cdots \oplus (\mathbb{C}^{p_k} \oplus \mathfrak{u}_{p_k}), \qquad p_1 + \cdots + p_k = n.$

• The stabilizer K_{ξ} of the orbit is isomorphic to

$$U_{\rho_1} \oplus \cdots \oplus U_{\rho_k}$$
.

• In the neighborhood of $\boldsymbol{\xi}, \Sigma_{\mathcal{D}}$ is diffeomorphic to

 $\Sigma_{\mathcal{D}_1} \times \cdots \times \Sigma_{\mathcal{D}_k}$.

The singular set

As before, Σ_{D}^{sing} is naturally identified with the spectrum of another quotient pair, (\check{N}, U_n) , where

$$\check{N} = \exp(\mathfrak{v} \oplus \check{\mathfrak{z}}) \cong H_n$$
 .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

The singular set

As before, Σ_{D}^{sing} is naturally identified with the spectrum of another quotient pair, (\check{N}, U_n) , where

$$\check{N}=\exp(\mathfrak{v}\oplus\mathfrak{z})\cong H_n$$
 .

So $\Sigma_{\mathcal{D}}^{\text{sing}}$ is again a Heisenberg fan, in the coordinate plane $(\xi_1, \xi_{n+1}) = (\xi_L, \xi_T)$. Again, we want a jet $\{g_{\alpha}(\xi_L, \xi_T)\}_{\alpha \in \mathbb{N}^{2n-2}}$ such that

$$\mathcal{GF}(oldsymbol{\xi})\sim\sum_lpharac{1}{lpha!}{\xi'}^lphaoldsymbol{g}_lpha(\xi_L,\xi_T) \ .$$

The inductive statement

Inductively, this reduces to proving the following:

If $F \in S(N)^{K}$ has vanishing moments in the \mathfrak{z}_{0} -variables up to order p, i.e.,

$$F = \sum_{|eta|=p} \partial^{eta}_{z_0} F_{eta} \; ,$$

then

$$F = \sum_{|\alpha|=p} D'^{lpha} G_{lpha} + \sum_{|\gamma|=p+1} \partial_{z_0}^{\gamma} F_{\gamma} ,$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $G_{\alpha} \in \mathcal{S}(N)^{K}$, $\mathcal{G}G_{\alpha}$ only depends on (ξ_{L}, ξ_{T}) .

Representation-theoretic formulation

$${\cal F} = \sum_{|eta|= p} \partial^eta_{z_0} {\cal F}_eta \; ,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Representation-theoretic formulation

$$F = \sum_{|eta|=p} \partial^{eta}_{z_0} F_{eta} \; ,$$

Identify F with the vector-valued function

$$\mathbf{F} = (F_{\beta})_{|\beta|=p} : \mathbf{N} \longrightarrow \mathcal{P}^{p}(\mathfrak{su}_{n}) .$$

Decompose

$$\mathcal{P}^{p}(\mathfrak{su}_{n})\cong\sum_{\mu\in E_{p}}\mathcal{V}_{\mu}\;,$$

with \mathcal{V}_{μ} irreducible under U_n. Then

$$\mathsf{F} = \sum_{\mu \in \mathcal{E}_{\mathcal{P}}} \mathsf{F}_{\mu}$$
 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For $m \in \mathbb{N}$, let $\mathcal{P}^m(\mathbb{C}^n)$ the space of holomorphic homogeneous polynomials of degree m on \mathbb{C}^n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For $m \in \mathbb{N}$, let $\mathcal{P}^m(\mathbb{C}^n)$ the space of holomorphic homogeneous polynomials of degree m on \mathbb{C}^n .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Equivalent condition:

For every m and $\mu \in E_p$, $\mathcal{P}^m(\mathbb{C}^n)$ is contained, as a representation space, with multiplicity at most one in $\mathcal{P}^m(\mathbb{C}^n) \otimes \mathcal{V}_{\mu}$.

Consequences

Assume that the conjecture is true for (N, K). The following one-to-one correspondences hold:

Consequences

Assume that the conjecture is true for (N, K). The following one-to-one correspondences hold:

• smooth *K*-invariant Calderón-Zygmund kernels on *N*

restrictions to $\Sigma_{\mathcal{D}}$ of smooth Mihlin-Hörmander multipliers on $\mathbb{R}^d;$

(日) (日) (日) (日) (日) (日) (日)

↥

Consequences

Assume that the conjecture is true for (N, K). The following one-to-one correspondences hold:

• smooth K-invariant Calderón-Zygmund kernels on N

restrictions to $\Sigma_{\mathcal{D}}$ of smooth Mihlin-Hörmander multipliers on \mathbb{R}^d ;

• smooth K-invariant flag kernels on N adapted to the flag $\{0\} \subset \mathfrak{z} \subset N$

restrictions to Σ_D of smooth flag multipliers on \mathbb{R}^d adapted to the flag $\{0\} \subset \mathbb{R}^k \subset \mathbb{R}^d$, where \mathbb{R}^k is the subspace spanned by the coordinates ξ_D with *D* containing only \mathfrak{z} -derivatives.

The fact that $\mathcal{G}:\mathcal{S}(N)^{K}\longrightarrow\mathcal{S}(\Sigma_{\mathcal{D}})$ is an isomorphism means that

given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}(\mathbb{R}^{d})$ with $\|g_{p}\|_{(p)} \leq C_{p}\|F\|_{(q)}$.

It does not say if the extension can be taken independent of p, or depending linearly on F.

(日) (日) (日) (日) (日) (日) (日)

The fact that $\mathcal{G}:\mathcal{S}(N)^{K}\longrightarrow\mathcal{S}(\Sigma_{\mathcal{D}})$ is an isomorphism means that

given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}(\mathbb{R}^{d})$ with $\|g_{p}\|_{(p)} \leq C_{p}\|F\|_{(q)}$.

It does not say if the extension can be taken independent of p, or depending linearly on F.

A natural question is the existence of a continuous linear extension operator $\mathcal{E} : \mathcal{S}(\Sigma_{\mathcal{D}}) \longrightarrow \mathcal{S}(\mathbb{R}^d)$, i.e., such that $(\mathcal{E}g)_{|_{\Sigma_{\mathcal{D}}}} = g$.

The fact that $\mathcal{G}:\mathcal{S}(N)^{K}\longrightarrow\mathcal{S}(\Sigma_{\mathcal{D}})$ is an isomorphism means that

given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}(\mathbb{R}^{d})$ with $\|g_{p}\|_{(p)} \leq C_{p}\|F\|_{(q)}$.

It does not say if the extension can be taken independent of p, or depending linearly on F.

A natural question is the existence of a continuous linear extension operator $\mathcal{E} : \mathcal{S}(\Sigma_{\mathcal{D}}) \longrightarrow \mathcal{S}(\mathbb{R}^d)$, i.e., such that $(\mathcal{E}g)_{|_{\Sigma_{\mathcal{D}}}} = g$.

Such an operator exists for abelian pairs. This is a direct consequence of a theorem of J. Mather.

The fact that $\mathcal{G}:\mathcal{S}(N)^{K}\longrightarrow\mathcal{S}(\Sigma_{\mathcal{D}})$ is an isomorphism means that

given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}(\mathbb{R}^{d})$ with $\|g_{p}\|_{(p)} \leq C_{p}\|F\|_{(q)}$.

It does not say if the extension can be taken independent of p, or depending linearly on F.

A natural question is the existence of a continuous linear extension operator $\mathcal{E} : \mathcal{S}(\Sigma_{\mathcal{D}}) \longrightarrow \mathcal{S}(\mathbb{R}^d)$, i.e., such that $(\mathcal{E}g)_{|_{\Sigma_{\mathcal{D}}}} = g$.

Such an operator exists for abelian pairs. This is a direct consequence of a theorem of J. Mather.

Such an operator exists for the Heisenberg fan. (C. Fefferman, F. R.)