# Joint functional calculus for commuting differential operators on nilpotent groups: Schwartz kernels and multipliers 

Fulvio Ricci

Scuola Normale Superiore di Pisa

Analysis and Applications: A Conference in Honor of E. M. Stein Princeton University, May 15-21, 2011
D. Müller, F. R., E. M. Stein (1995)
D. Müller, F. R., E. M. Stein (1995)

- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
D. Müller, F. R., E. M. Stein (1995)
- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
D. Müller, F. R., E. M. Stein (1995)
- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
D. Müller, F. R., E. M. Stein (1995)
- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
- $m\left(L, i^{-1} T\right) f=f * K_{m}$, with $K_{m}$ a $\cup_{n}$-invariant distribution
D. Müller, F. R., E. M. Stein (1995)
- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
- $m\left(L, i^{-1} T\right) f=f * K_{m}$, with $K_{m}$ a $\cup_{n}$-invariant distribution
D. Müller, F. R., E. M. Stein (1995)
- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
- $m\left(L, i^{-1} T\right) f=f * K_{m}$, with $K_{m}$ a $\cup_{n}$-invariant distribution

Theorem

## D. Müller, F. R., E. M. Stein (1995)

- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
- $m\left(L, i^{-1} T\right) f=f * K_{m}$, with $K_{m}$ a $\cup_{n}$-invariant distribution

Theorem
(i) If $m$ is a smooth Marcinkiewicz multiplier, then $K_{m}$ is a smooth, $U_{n}$-invariant, flag kernel on $H_{n}$, adapted to the flag

$$
\{0\} \subset\{0\} \times \mathbb{R} \subset H_{n} .
$$

## D. Müller, F. R., E. M. Stein (1995)

- Heisenberg group $H_{n} \cong \mathbb{C}^{n} \times \mathbb{R}$
- $L$ the $U_{n}$-invariant sublaplacian, $T=\partial_{t}$ derivative in the central direction
- multiplier operators $m\left(L, i^{-1} T\right)$, with $m$ a bounded Borel function on $\mathbb{R}^{2}$
- $m\left(L, i^{-1} T\right) f=f * K_{m}$, with $K_{m}$ a $\cup_{n}$-invariant distribution

Theorem
(i) If $m$ is a smooth Marcinkiewicz multiplier, then $K_{m}$ is a smooth, $U_{n}$-invariant, flag kernel on $H_{n}$, adapted to the flag

$$
\{0\} \subset\{0\} \times \mathbb{R} \subset H_{n}
$$

(ii) If $K$ is a $U_{n}$-invariant smooth flag kernel on $H_{n}$, adapted to the above flag, then there exists a smooth Marcinkiewicz multiplier $m$ such that $K=K_{m}$.

## The Heisenberg fan



## Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)

## Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)
(i) If $m$ is a Schwartz function on $\mathbb{R}^{2}$, then $K_{m}$ is a $U_{n}$-invariant Schwartz function on $H_{n}$.

## Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)
(i) If $m$ is a Schwartz function on $\mathbb{R}^{2}$, then $K_{m}$ is a $U_{n}$-invariant Schwartz function on $H_{n}$.
(ii) If $F$ is a $U_{n}$-invariant Schwartz function on $H_{n}$, then there exists a Schwartz function $m$ on $\mathbb{R}^{2}$ such that $F=K_{m}$.

## Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)
(i) If $m$ is a Schwartz function on $\mathbb{R}^{2}$, then $K_{m}$ is a $U_{n}$-invariant Schwartz function on $H_{n}$.
(ii) If $F$ is a $U_{n}$-invariant Schwartz function on $H_{n}$, then there exists a Schwartz function $m$ on $\mathbb{R}^{2}$ such that $F=K_{m}$.

## Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)
(i) If $m$ is a Schwartz function on $\mathbb{R}^{2}$, then $K_{m}$ is a $U_{n}$-invariant Schwartz function on $H_{n}$.
(ii) If $F$ is a $U_{n}$-invariant Schwartz function on $H_{n}$, then there exists a Schwartz function $m$ on $\mathbb{R}^{2}$ such that $F=K_{m}$.

$$
\mathcal{S}\left(H_{n}\right)^{U_{n}} \cong \mathcal{S}(\operatorname{fan})
$$

Related results: Geller, Benson-Ratcliff

## Nilpotent Gelfand pairs

## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^{1}(N)^{K}$ is commutative under convolution.


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^{1}(N)^{K}$ is commutative under convolution.


## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^{1}(N)^{K}$ is commutative under convolution.

If these conditions are satisfied, we say that $(N, K)$ is a nilpotent Gelfand pair.

## Nilpotent Gelfand pairs

- $N$ nilpotent Lie group;
- K compact group of automorphisms of $N$;
- $\mathbb{D}(N)^{K}$ algebra of left-invariant and $K$-invariant differential operators on $N$;
- $L^{1}(N)^{K}, \mathcal{S}(N)^{K}$ etc., spaces of $K$-invariant functions on $N$.

The following are equivalent:

- $\mathbb{D}(N)^{K}$ is commutative under composition;
- $L^{1}(N)^{K}$ is commutative under convolution.

If these conditions are satisfied, we say that $(N, K)$ is a nilpotent Gelfand pair.
Example:
$\left(H_{n}, U_{n}\right)$,
$\mathbb{D}\left(H_{n}\right)^{U_{n}}=\mathbb{C}[L, T]$.

## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;


## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^{d}$ the joint $L^{2}$-spectrum of $\left(D_{1}, \ldots, D_{d}\right)$.


## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^{d}$ the joint $L^{2}$-spectrum of $\left(D_{1}, \ldots, D_{d}\right)$.


## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^{d}$ the joint $L^{2}$-spectrum of $\left(D_{1}, \ldots, D_{d}\right)$.

Conjecture:
For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$.

## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^{d}$ the joint $L^{2}$-spectrum of $\left(D_{1}, \ldots, D_{d}\right)$.

Conjecture:
For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$.
This is a theorem when

- $(N, K)$ is a Heisenberg pair, i.e., $N=H_{n}$ (F. Astengo, B. Di Blasio, F. R.);


## Spectral multipliers

- $\mathcal{D}=\left(D_{1}, \ldots, D_{d}\right)$ a $d$-tuple of formally self-adjoint differential operators generating $\mathbb{D}(N)^{K}$;
- $\Sigma_{\mathcal{D}} \subset \mathbb{R}^{d}$ the joint $L^{2}$-spectrum of $\left(D_{1}, \ldots, D_{d}\right)$.

Conjecture:
For every nilpotent Gelfand pair, $\mathcal{S}(N)^{K} \cong \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$.
This is a theorem when

- $(N, K)$ is a Heisenberg pair, i.e., $N=H_{n}$ (F. Astengo, B. Di Blasio, F. R.);
- ( $N, K$ ) satisfies Vinberg's condition
(V. Fischer, F. R., O. Yakimova).


## Spherical functions

The (bounded) spherical functions of ( $N, K$ ) are the (bounded) eigenfunctions of all operators in $\mathbb{D}(N)^{K}$.

Given $\mathcal{D}=\left\{D_{1}, \ldots, D_{d}\right)$ as above, a bounded spherical function can be labeled by the $d$-tuple

$$
\boldsymbol{\xi}=\boldsymbol{\xi}(\varphi)=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}
$$

of its eigenvalues relative to $\left(D_{1}, \ldots, D_{d}\right)$.

## Spherical functions

The (bounded) spherical functions of ( $N, K$ ) are the (bounded) eigenfunctions of all operators in $\mathbb{D}(N)^{K}$.

Given $\mathcal{D}=\left\{D_{1}, \ldots, D_{d}\right)$ as above, a bounded spherical function can be labeled by the $d$-tuple

$$
\boldsymbol{\xi}=\boldsymbol{\xi}(\varphi)=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}
$$

of its eigenvalues relative to $\left(D_{1}, \ldots, D_{d}\right)$.
Then

$$
\Sigma_{\mathcal{D}}=\{\boldsymbol{\xi}(\varphi): \varphi \text { b.s.f. }\}
$$

as topological spaces (with the compact-open topology on the space of b.s.f.).

## Spherical transform

- Given $F \in L^{1}(N)^{K}$, its spherical transform is

$$
\mathcal{G} F(\xi)=\int_{N} F(x) \varphi_{\xi}\left(x^{-1}\right) d x \in C_{0}\left(\Sigma_{\mathcal{D}}\right)
$$

## Spherical transform

- Given $F \in L^{1}(N)^{K}$, its spherical transform is

$$
\mathcal{G} F(\xi)=\int_{N} F(x) \varphi_{\xi}\left(x^{-1}\right) d x \in C_{0}\left(\Sigma_{\mathcal{D}}\right)
$$

- $\mathcal{G}(F * G)=(\mathcal{G} F)(\mathcal{G} G)$.


## Spherical transform

- Given $F \in L^{1}(N)^{K}$, its spherical transform is

$$
\mathcal{G} F(\xi)=\int_{N} F(x) \varphi_{\xi}\left(x^{-1}\right) d x \in C_{0}\left(\Sigma_{\mathcal{D}}\right) .
$$

- $\mathcal{G}(F * G)=(\mathcal{G} F)(\mathcal{G} G)$.
- the map $m \longmapsto K_{m}$ coincides with $\mathcal{G}^{-1}$.


## Spherical transform

- Given $F \in L^{1}(N)^{K}$, its spherical transform is

$$
\mathcal{G} F(\xi)=\int_{N} F(x) \varphi_{\xi}\left(x^{-1}\right) d x \in C_{0}\left(\Sigma_{\mathcal{D}}\right) .
$$

- $\mathcal{G}(F * G)=(\mathcal{G} F)(\mathcal{G} G)$.
- the map $m \longmapsto K_{m}$ coincides with $\mathcal{G}^{-1}$.


## Spherical transform

- Given $F \in L^{1}(N)^{K}$, its spherical transform is

$$
\mathcal{G} F(\xi)=\int_{N} F(x) \varphi_{\xi}\left(x^{-1}\right) d x \in C_{0}\left(\Sigma_{\mathcal{D}}\right) .
$$

- $\mathcal{G}(F * G)=(\mathcal{G} F)(\mathcal{G} G)$.
- the map $m \longmapsto K_{m}$ coincides with $\mathcal{G}^{-1}$.


## Paradigm for a proof

The implication

$$
m \in \mathcal{S}\left(\Sigma_{\mathcal{D}}\right) \Longrightarrow F=\mathcal{G}^{-1} m \in \mathcal{S}(N)^{K}
$$

is always true.
It can be derived starting from a result of A. Hulanicki, stating that, if $D$ is a positive Rockland operator on a homogeneous group, then $m(D)$ is given by convolution with a Schwartz kernel for every $m \in C_{c}^{\infty}(\mathbb{R})$.
(The proof is in the Folland-Stein book.)

## The other implication for the pair $\left(H_{n}, \mathrm{U}_{n}\right)$

1. Consider first $U_{n}$-invariant Schwartz functions with vanishing moments of any order in the central variable $t$.

## The other implication for the pair $\left(H_{n}, \mathrm{U}_{n}\right)$

1. Consider first $U_{n}$-invariant Schwartz functions with vanishing moments of any order in the central variable $t$.
2. Observe that, for such a function $F$, the spherical transform $\mathcal{G F}$ vanishes of infinite order on the horizontal half-line $\xi_{T}=0$ in the Heisenberg fan (the singular set).

## The other implication for the pair $\left(H_{n}, \mathrm{U}_{n}\right)$

1. Consider first $U_{n}$-invariant Schwartz functions with vanishing moments of any order in the central variable $t$.
2. Observe that, for such a function $F$, the spherical transform $\mathcal{G F}$ vanishes of infinite order on the horizontal half-line $\xi_{T}=0$ in the Heisenberg fan (the singular set).
3. In this situation, extending $\mathcal{G} F$ to a function in $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is very easy.
4. (D. Geller) For a general $U_{n}$-invariant Schwartz function $F$, show that $\mathcal{G F}$ admits Taylor expansions of any order at $\left(\xi_{L}, 0\right)$ :

$$
\mathcal{G} F\left(\xi_{L}, \xi_{T}\right)=\sum_{j=0}^{k} \frac{1}{j!} g_{j}\left(\xi_{L}\right) \xi_{T}^{j}+\xi_{T}^{k+1} \mathcal{G} R_{k}\left(\xi_{L}, \xi_{T}\right)
$$

with $g_{j} \in \mathcal{S}(\mathbb{R})$ and $R_{k} \in \mathcal{S}\left(H_{n}\right)^{U_{n}}$. In other words

$$
F(v, t)=\sum_{j=0}^{k} \frac{1}{j!} T^{j} G_{j}+T^{k+1} R_{k}
$$

with $G_{j} \in \mathcal{S}\left(H_{n}\right)^{U_{n}}$ and $\mathcal{G} G_{j}\left(\xi_{L}, \xi_{T}\right)=i g_{j}\left(\xi_{L}\right)$.
4. (D. Geller) For a general $U_{n}$-invariant Schwartz function $F$, show that $\mathcal{G F}$ admits Taylor expansions of any order at $\left(\xi_{L}, 0\right)$ :

$$
\mathcal{G} F\left(\xi_{L}, \xi_{T}\right)=\sum_{j=0}^{k} \frac{1}{j!} g_{j}\left(\xi_{L}\right) \xi_{T}^{j}+\xi_{T}^{k+1} \mathcal{G} R_{k}\left(\xi_{L}, \xi_{T}\right)
$$

with $g_{j} \in \mathcal{S}(\mathbb{R})$ and $R_{k} \in \mathcal{S}\left(H_{n}\right)^{U_{n}}$. In other words

$$
F(v, t)=\sum_{j=0}^{k} \frac{1}{j!} T^{j} G_{j}+T^{k+1} R_{k}
$$

with $G_{j} \in \mathcal{S}\left(H_{n}\right)^{U_{n}}$ and $\mathcal{G} G_{j}\left(\xi_{L}, \xi_{T}\right)=i g_{j}\left(\xi_{L}\right)$.
5. This gives a Schwartz jet $\left\{g_{j}\right\}_{j \in \mathbb{N}}$ on $\mathbb{R} \times\{0\}$ and the final extension of $\mathcal{G F}$ to $\mathbb{R}^{2}$ can be obtained via the Whitney extension theorem.

## A second-level example

## A second-level example

Take $N=\mathbb{C}^{n} \times H_{n}, K=\mathrm{U}_{1} \times \mathrm{SU}_{n} \times \mathrm{U}_{1}$ :

$$
\left(e^{i \theta}, k, e^{i \varphi}\right) \cdot(z, v, t)=\left(e^{i \theta} k z, e^{i \varphi} k v, t\right),
$$

$\left(z, v \in \mathbb{C}^{n}, t \in \mathbb{R}\right)$.

## A second-level example

Take $N=\mathbb{C}^{n} \times H_{n}, K=\mathrm{U}_{1} \times \mathrm{SU}_{n} \times \mathrm{U}_{1}$ :

$$
\left(e^{i \theta}, k, e^{i \varphi}\right) \cdot(z, v, t)=\left(e^{i \theta} k z, e^{i \varphi} k v, t\right),
$$

$\left(z, v \in \mathbb{C}^{n}, t \in \mathbb{R}\right)$.
Fundamental invariants:

$$
|z|^{2}, \quad|\langle z, v\rangle|^{2}, \quad|v|^{2}, \quad t
$$

This gives a system $\mathcal{D}$ of 4 differential operators, where

- $D_{1}=\Delta_{z}$ is the Laplacian on $\mathbb{C}^{n}$;
- $D_{2}$ is a 4-th order operator, mixing derivatives in $\mathbb{C}^{n}$ with vector fields on $H_{n}$;
- $D_{3}$ is the sublaplacian on $H_{n}$;
- $D_{4}=\partial_{t}$ is the central derivative on $H_{n}$.


## The regular set

For each point $\xi \in \Sigma_{\mathcal{D}}$, the coordinate $\xi_{1}$ (the eigenvalue of the spherical function under the action of $D_{1}=\Delta_{z}$ ) has a particular relevance.

## The regular set

For each point $\xi \in \Sigma_{\mathcal{D}}$, the coordinate $\xi_{1}$ (the eigenvalue of the spherical function under the action of $D_{1}=\Delta_{z}$ ) has a particular relevance.

Assume that $\xi_{1} \neq 0$. The following properties hold:

- in a neighborhood $V$ of $\xi, \Sigma_{\mathcal{D}}$ is diffeomorphic to the spectrum $\Sigma_{\mathcal{D}^{\prime}}^{\prime}$ associated to another pair,

$$
\left(N^{\prime}, K^{\prime}\right)=\left(\mathbb{R} \times H_{n}, \mathrm{SU}_{n-1} \times \mathrm{U}_{1}\right) ;
$$

## The regular set

For each point $\xi \in \Sigma_{\mathcal{D}}$, the coordinate $\xi_{1}$ (the eigenvalue of the spherical function under the action of $D_{1}=\Delta_{z}$ ) has a particular relevance.

Assume that $\xi_{1} \neq 0$. The following properties hold:

- in a neighborhood $V$ of $\xi, \Sigma_{\mathcal{D}}$ is diffeomorphic to the spectrum $\Sigma_{\mathcal{D}^{\prime}}^{\prime}$ associated to another pair,

$$
\left(N^{\prime}, K^{\prime}\right)=\left(\mathbb{R} \times H_{n}, \mathrm{SU}_{n-1} \times \mathrm{U}_{1}\right) ;
$$

- modulo this diffeomorphism, the spherical transform $\mathcal{G F}$ of $F \in \mathcal{S}(N)^{K}$ coincides on $V$ with $\mathcal{G}^{\prime} F^{\prime}$, where

$$
F^{\prime}(s, v, t)=\int_{\mathbb{R} \times \mathbb{C}^{n-1}} F\left(s+i u, z_{2}, \ldots, z_{n}, v, t\right) d u d z_{1} \ldots d z_{n}
$$

## The singular set

If $\boldsymbol{\xi} \in \Sigma_{\mathcal{D}}$ has $\xi_{1}=0$, the corresponding spherical function does not depend on $z \in \mathbb{C}^{n}$ and is in fact a spherical function for the pair $\left(N^{\prime \prime}, K^{\prime \prime}\right)=\left(H_{n}, \mathrm{U}_{n}\right)$.
Then also $\xi_{2}=0$, and

$$
\Sigma_{\mathcal{D}}^{\text {sing }}=\left\{\boldsymbol{\xi} \in \Sigma_{\mathcal{D}}: \xi_{1}=\xi_{2}=0\right\}
$$

is a Heisenberg fan in the coordinate plane $\left(\xi_{3}, \xi_{4}\right)$.

## The singular set

If $\boldsymbol{\xi} \in \Sigma_{\mathcal{D}}$ has $\xi_{1}=0$, the corresponding spherical function does not depend on $z \in \mathbb{C}^{n}$ and is in fact a spherical function for the pair $\left(N^{\prime \prime}, K^{\prime \prime}\right)=\left(H_{n}, \mathrm{U}_{n}\right)$.
Then also $\xi_{2}=0$, and

$$
\Sigma_{\mathcal{D}}^{\text {sing }}=\left\{\boldsymbol{\xi} \in \Sigma_{\mathcal{D}}: \xi_{1}=\xi_{2}=0\right\}
$$

is a Heisenberg fan in the coordinate plane $\left(\xi_{3}, \xi_{4}\right)$.
Given $F \in \mathcal{S}(N)^{K}$, the restriction of $\mathcal{G} F$ to $\Sigma_{\mathcal{D}}^{\text {sing }}$ coincides with $\mathcal{G}^{\prime \prime} F^{\prime \prime}$, where

$$
F^{\prime \prime}(v, t)=\int_{\mathbb{C}^{n}} F(z, v, t) d z
$$

## Taylor expansion

We know then that $\mathcal{G} F$ admits a Schwartz extension to the $\left(\xi_{3}, \xi_{4}\right)$ coordinate plane.
What we need now is a Schwartz jet $\left\{g_{j, k}\right\}_{j, k \in \mathbb{N}}$ on this plane, to describe the behaviour of $\mathcal{G} F$ if we move from $\Sigma_{\mathcal{D}}^{\text {sing }}$ in the $\left(\xi_{1}, \xi_{2}\right)$ directions.

## Taylor expansion

We know then that $\mathcal{G} F$ admits a Schwartz extension to the $\left(\xi_{3}, \xi_{4}\right)$ coordinate plane.
What we need now is a Schwartz jet $\left\{g_{j, k}\right\}_{j, k \in \mathbb{N}}$ on this plane, to describe the behaviour of $\mathcal{G F}$ if we move from $\Sigma_{\mathcal{D}}^{\text {sing }}$ in the $\left(\xi_{1}, \xi_{2}\right)$ directions.

## Proposition

There exist functions $G_{j, k} \in \mathcal{S}(N)^{K}$, with $\mathcal{G} G_{j, k}$ depending only on $\left(\xi_{3}, \xi_{4}\right)$, such that, for every $p \in \mathbb{N}$,

$$
F=\sum_{j+k \leq p} \frac{1}{j!k!} D_{1}^{j} D_{2}^{k} G_{j, k}+\sum_{|\alpha|=2 p+2} \partial_{z}^{\alpha} R_{\alpha}
$$

for appropriate $R_{\alpha} \in \mathcal{S}(N)$.


## On the structure of nilpotent Gelfand pairs

Let $(N, K)$ be a nilpotent Gelfand pair.

## On the structure of nilpotent Gelfand pairs

Let $(N, K)$ be a nilpotent Gelfand pair.

- $N$ is at most two-step (Benson-Jenkins-Ratcliff). Then $\mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$, where $\mathfrak{z}=[\mathfrak{n}, \mathfrak{n}]$ is abelian and $\mathfrak{v}$ is a $K$-invariant complementary subspace.


## On the structure of nilpotent Gelfand pairs

Let $(N, K)$ be a nilpotent Gelfand pair.

- $N$ is at most two-step (Benson-Jenkins-Ratcliff). Then $\mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$, where $\mathfrak{z}=[\mathfrak{n}, \mathfrak{n}]$ is abelian and $\mathfrak{v}$ is a $K$-invariant complementary subspace.
- Assume that $\mathfrak{v}$ is irreducible under the action of $K$ (Vinberg's condition). Then $\mathfrak{z}$ is the center of $\mathfrak{n}$ and decomposes as $\check{\mathfrak{z}} \oplus \mathfrak{z} 0$, where
(i) $\check{\mathfrak{z}}$ consists of the $K$-fixed elements of $\mathfrak{z}$;
(ii) $K$ acts irreducibly on $\mathfrak{z o}$.


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z} ;$


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z}$;
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z} ;$
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z}$;
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \mathfrak{z} 0=\mathfrak{s u}{ }_{n}$.


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z}$;
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \mathfrak{z} 0=\mathfrak{s u}{ }_{n}$.


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z}$;
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \mathfrak{z}_{0}=\mathfrak{s u}{ }_{n}$.

The natural choice of $\mathcal{D}$ consists of $2 n$ free generators, obtained by symmetrization from:

## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z}$;
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \quad \mathfrak{z} 0=\mathfrak{s u}_{n}$.

The natural choice of $\mathcal{D}$ consists of $2 n$ free generators, obtained by symmetrization from:

- $|v|^{2}$ (the sublaplacian);


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z} ;$
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \quad \mathfrak{z} 0=\mathfrak{s u}_{n}$.

The natural choice of $\mathcal{D}$ consists of $2 n$ free generators, obtained by symmetrization from:

- $|v|^{2}$ (the sublaplacian);
- $q_{k}(v, z)=v^{*}\left(z^{k}\right) v, k=1, \ldots, n-1$.


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z} ;$
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=i \mathbb{R}, \quad \mathfrak{z} 0=\mathfrak{s u}{ }_{n}$.

The natural choice of $\mathcal{D}$ consists of $2 n$ free generators, obtained by symmetrization from:

- $|v|^{2}$ (the sublaplacian);
- $q_{k}(v, z)=v^{*}\left(z^{k}\right) v, k=1, \ldots, n-1$.
- the coordinate function on $\mathfrak{z}$;


## The pair $\left(\mathbb{C}^{n} \oplus \mathfrak{u}_{n}, \mathrm{U}_{n}\right)$

- $\mathfrak{n}=\mathbb{C}^{n} \oplus \mathfrak{u}_{n}=\mathfrak{v} \oplus \mathfrak{z} ;$
- for $v, v^{\prime} \in \mathbb{C}^{n}$, set $\left[v, v^{\prime}\right]=v v^{\prime *}-v^{\prime} v^{*} \in \mathfrak{u}_{n}$;
- $K=U_{n}, k \cdot(v, z)=\left(k v, k z k^{*}\right) ;$
- then $\check{\mathfrak{z}}=\boldsymbol{i} \mathbb{R}, \quad \mathfrak{z}_{0}=\mathfrak{s u}_{n}$.

The natural choice of $\mathcal{D}$ consists of $2 n$ free generators, obtained by symmetrization from:

- $|v|^{2}$ (the sublaplacian);
- $q_{k}(v, z)=v^{*}\left(z^{k}\right) v, k=1, \ldots, n-1$.
- the coordinate function on $\mathfrak{z}$;
- $p_{k}\left(z_{0}\right)=\operatorname{tr}\left(z_{0}^{k}\right), k=2, \ldots, n, z_{0} \in \mathfrak{z}_{0} ;$


## Regular set and quotient pairs

- To each point $\boldsymbol{\xi}$ of $\Sigma_{\mathcal{D}}$ we can associate a $K$-orbit in $\mathfrak{z} 0=\mathfrak{s u}_{n}$.
Assume that this is not the trivial orbit, i.e.

$$
\left(\xi_{n+2}, \ldots, \xi_{2 n}\right) \neq(0, \ldots, 0)
$$

## Regular set and quotient pairs

- To each point $\boldsymbol{\xi}$ of $\Sigma_{\mathcal{D}}$ we can associate a $K$-orbit in $\mathfrak{z o}=\mathfrak{s u} n$.
Assume that this is not the trivial orbit, i.e.

$$
\left(\xi_{n+2}, \ldots, \xi_{2 n}\right) \neq(0, \ldots, 0)
$$

- The normal space $\mathfrak{z \xi}$ to this orbit can be used to define a quotient Lie algebra $\mathfrak{n}_{\xi}=\mathfrak{v} \oplus(\check{\mathfrak{z}} \oplus \mathfrak{z} \xi)$.


## Regular set and quotient pairs

- To each point $\boldsymbol{\xi}$ of $\Sigma_{\mathcal{D}}$ we can associate a $K$-orbit in $\mathfrak{z o}=\mathfrak{s u} n$.
Assume that this is not the trivial orbit, i.e.

$$
\left(\xi_{n+2}, \ldots, \xi_{2 n}\right) \neq(0, \ldots, 0)
$$

- The normal space $\mathfrak{z \xi}$ to this orbit can be used to define a quotient Lie algebra $\mathfrak{n}_{\xi}=\mathfrak{v} \oplus(\check{\mathfrak{z}} \oplus \mathfrak{z} \xi)$.
- This Lie algebra is isomorphic to a product

$$
\left(\mathbb{C}^{p_{1}} \oplus \mathfrak{u}_{p_{1}}\right) \oplus \cdots \oplus\left(\mathbb{C}^{p_{k}} \oplus \mathfrak{u}_{p_{k}}\right), \quad p_{1}+\cdots+p_{k}=n
$$

## Regular set and quotient pairs

- To each point $\boldsymbol{\xi}$ of $\Sigma_{\mathcal{D}}$ we can associate a $K$-orbit in $\mathfrak{z o}=\mathfrak{s u}{ }_{n}$.
Assume that this is not the trivial orbit, i.e.

$$
\left(\xi_{n+2}, \ldots, \xi_{2 n}\right) \neq(0, \ldots, 0)
$$

- The normal space $\mathfrak{z \xi}$ to this orbit can be used to define a quotient Lie algebra $\mathfrak{n}_{\xi}=\mathfrak{v} \oplus(\check{\mathfrak{z}} \oplus \mathfrak{z} \xi)$.
- This Lie algebra is isomorphic to a product

$$
\left(\mathbb{C}^{p_{1}} \oplus \mathfrak{u}_{p_{1}}\right) \oplus \cdots \oplus\left(\mathbb{C}^{p_{k}} \oplus \mathfrak{u}_{p_{k}}\right), \quad p_{1}+\cdots+p_{k}=n
$$

- The stabilizer $K_{\xi}$ of the orbit is isomorphic to

$$
\mathrm{U}_{p_{1}} \oplus \cdots \oplus \mathrm{U}_{p_{k}} .
$$

## Regular set and quotient pairs

- To each point $\boldsymbol{\xi}$ of $\Sigma_{\mathcal{D}}$ we can associate a $K$-orbit in $\mathfrak{z o}=\mathfrak{s u}{ }_{n}$.
Assume that this is not the trivial orbit, i.e.

$$
\left(\xi_{n+2}, \ldots, \xi_{2 n}\right) \neq(0, \ldots, 0)
$$

- The normal space $\mathfrak{z \xi}$ to this orbit can be used to define a quotient Lie algebra $\mathfrak{n}_{\xi}=\mathfrak{v} \oplus(\check{\mathfrak{z}} \oplus \mathfrak{z} \xi)$.
- This Lie algebra is isomorphic to a product

$$
\left(\mathbb{C}^{p_{1}} \oplus \mathfrak{u}_{p_{1}}\right) \oplus \cdots \oplus\left(\mathbb{C}^{p_{k}} \oplus \mathfrak{u}_{p_{k}}\right), \quad p_{1}+\cdots+p_{k}=n .
$$

- The stabilizer $K_{\xi}$ of the orbit is isomorphic to

$$
\mathrm{U}_{p_{1}} \oplus \cdots \oplus \mathrm{U}_{p_{k}} .
$$

- In the neighborhood of $\boldsymbol{\xi}, \Sigma_{\mathcal{D}}$ is diffeomorphic to

$$
\Sigma_{\mathcal{D}_{1}} \times \cdots \times \Sigma_{\mathcal{D}_{k}} .
$$



## The singular set

As before, $\Sigma_{\mathcal{D}}^{\text {sing }}$ is naturally identified with the spectrum of another quotient pair, $\left(\stackrel{N}{N}, U_{n}\right)$, where

$$
\check{N}=\exp (\mathfrak{v} \oplus \check{\mathfrak{z}}) \cong H_{n} .
$$

## The singular set

As before, $\Sigma_{\mathcal{D}}^{\text {sing }}$ is naturally identified with the spectrum of another quotient pair, ( $\left(\stackrel{N}{ }, U_{n}\right)$, where

$$
\check{N}=\exp (\mathfrak{v} \oplus \check{\mathfrak{z}}) \cong H_{n} .
$$

So $\Sigma_{\mathcal{D}}^{\text {sing }}$ is again a Heisenberg fan, in the coordinate plane $\left(\xi_{1}, \xi_{n+1}\right)=\left(\xi_{L}, \xi_{T}\right)$.
Again, we want a jet $\left\{g_{\alpha}\left(\xi_{L}, \xi_{T}\right)\right\}_{\alpha \in \mathbb{N}^{2 n-2}}$ such that

$$
\mathcal{G} F(\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \xi^{\prime \alpha} g_{\alpha}\left(\xi_{L}, \xi_{T}\right) .
$$

## The inductive statement

Inductively, this reduces to proving the following:
If $F \in \mathcal{S}(N)^{K}$ has vanishing moments in the ${ }_{30}$-variables up to order p, i.e.,

$$
F=\sum_{|\beta|=p} \partial_{z_{0}}^{\beta} F_{\beta},
$$

then

$$
F=\sum_{|\alpha|=p} D^{\prime \alpha} G_{\alpha}+\sum_{|\gamma|=p+1} \partial_{z_{0}}^{\gamma} F_{\gamma},
$$

where $\boldsymbol{G}_{\alpha} \in \mathcal{S}(N)^{K}, \mathcal{G} \boldsymbol{G}_{\alpha}$ only depends on $\left(\xi_{L}, \xi_{T}\right)$.

## Representation-theoretic formulation

$$
F=\sum_{|\beta|=p} \partial_{z_{0}}^{\beta} F_{\beta}
$$

## Representation-theoretic formulation

$$
F=\sum_{|\beta|=p} \partial_{z_{0}}^{\beta} F_{\beta},
$$

Identify $F$ with the vector-valued function

$$
\mathbf{F}=\left(F_{\beta}\right)_{|\beta|=p}: N \longrightarrow \mathcal{P}^{p}\left(\mathfrak{s u}_{n}\right) .
$$

Decompose

$$
\mathcal{P}^{p}\left(\mathfrak{s u}_{n}\right) \cong \sum_{\mu \in E_{p}} \mathcal{V}_{\mu}
$$

with $\mathcal{V}_{\mu}$ irreducible under $U_{n}$. Then

$$
\mathbf{F}=\sum_{\mu \in E_{p}} \mathbf{F}_{\mu}
$$

For $m \in \mathbb{N}$, let $\mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$ the space of holomorphic homogeneous polynomials of degree $m$ on $\mathbb{C}^{n}$.

For $m \in \mathbb{N}$, let $\mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$ the space of holomorphic homogeneous polynomials of degree $m$ on $\mathbb{C}^{n}$.

## Equivalent condition:

For every $m$ and $\mu \in E_{p}, \mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$ is contained, as a representation space, with multiplicity at most one in $\mathcal{P}^{m}\left(\mathbb{C}^{n}\right) \otimes \mathcal{V}_{\mu}$.

## Consequences

Assume that the conjecture is true for ( $N, K$ ). The following one-to-one correspondences hold:

## Consequences

Assume that the conjecture is true for $(N, K)$. The following one-to-one correspondences hold:

- smooth $K$-invariant Calderón-Zygmund kernels on $N$

$$
\mathfrak{\imath}
$$

restrictions to $\Sigma_{\mathcal{D}}$ of smooth Mihlin-Hörmander multipliers on $\mathbb{R}^{d}$;

## Consequences

Assume that the conjecture is true for $(N, K)$. The following one-to-one correspondences hold:

- smooth $K$-invariant Calderón-Zygmund kernels on $N$

$$
\downarrow
$$

restrictions to $\Sigma_{\mathcal{D}}$ of smooth Mihlin-Hörmander multipliers on $\mathbb{R}^{d}$;

- smooth $K$-invariant flag kernels on $N$ adapted to the flag $\{0\} \subset \mathfrak{z} \subset N$

$$
\downarrow
$$

restrictions to $\Sigma_{\mathcal{D}}$ of smooth flag multipliers on $\mathbb{R}^{d}$ adapted to the flag $\{0\} \subset \mathbb{R}^{k} \subset \mathbb{R}^{d}$, where $\mathbb{R}^{k}$ is the subspace spanned by the coordinates $\xi_{D}$ with $D$ containing only $\mathfrak{z}$-derivatives.

## Extension operators

The fact that $\mathcal{G}: \mathcal{S}(N)^{K} \longrightarrow \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$ is an isomorphism means that
given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\left\|g_{p}\right\|_{(p)} \leq C_{p}\|F\|_{(q)}$. It does not say if the extension can be taken independent of $p$, or depending linearly on $F$.

## Extension operators

The fact that $\mathcal{G}: \mathcal{S}(N)^{K} \longrightarrow \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$ is an isomorphism means that
given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\left\|g_{p}\right\|_{(p)} \leq C_{p}\|F\|_{(q)}$. It does not say if the extension can be taken independent of $p$, or depending linearly on $F$.
A natural question is the existence of a continuous linear extension operator $\mathcal{E}: \mathcal{S}\left(\Sigma_{\mathcal{D}}\right) \longrightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$, i.e., such that $(\mathcal{E} g)_{\left.\right|_{\Sigma_{\mathcal{D}}}}=g$.

## Extension operators

The fact that $\mathcal{G}: \mathcal{S}(N)^{K} \longrightarrow \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$ is an isomorphism means that
given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\left\|g_{p}\right\|_{(p)} \leq C_{p}\|F\|_{(q)}$. It does not say if the extension can be taken independent of $p$, or depending linearly on $F$.
A natural question is the existence of a continuous linear extension operator $\mathcal{E}: \mathcal{S}\left(\Sigma_{\mathcal{D}}\right) \longrightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$, i.e., such that $(\mathcal{E} g)_{\left.\right|_{\Sigma_{\mathcal{D}}}}=g$.
Such an operator exists for abelian pairs. This is a direct consequence of a theorem of J . Mather.

## Extension operators

The fact that $\mathcal{G}: \mathcal{S}(N)^{K} \longrightarrow \mathcal{S}\left(\Sigma_{\mathcal{D}}\right)$ is an isomorphism means that
given any $p \in \mathbb{N}$, there is $q \in \mathbb{N}$ such that every $F \in \mathcal{S}(N)^{K}$ admits an extension $g_{p} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\left\|g_{p}\right\|_{(p)} \leq C_{p}\|F\|_{(q)}$. It does not say if the extension can be taken independent of $p$, or depending linearly on $F$.

A natural question is the existence of a continuous linear extension operator $\mathcal{E}: \mathcal{S}\left(\Sigma_{\mathcal{D}}\right) \longrightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$, i.e., such that $(\mathcal{E} g)_{\left.\right|_{\mathcal{D}_{\mathcal{D}}}}=g$.
Such an operator exists for abelian pairs. This is a direct consequence of a theorem of J. Mather.
Such an operator exists for the Heisenberg fan.
(C. Fefferman, F. R.)

