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D. Müller, F. R., E. M. Stein (1995)

• Heisenberg group Hn ∼= Cn × R
• L the Un-invariant sublaplacian, T = ∂t derivative in the

central direction
• multiplier operators m(L, i−1T ), with m a bounded Borel

function on R2

• m(L, i−1T )f = f ∗ Km, with Km a Un-invariant distribution

Theorem

(i) If m is a smooth Marcinkiewicz multiplier, then Km is a
smooth, Un-invariant, flag kernel on Hn, adapted to the flag

{0} ⊂ {0} × R ⊂ Hn .

(ii) If K is a Un-invariant smooth flag kernel on Hn, adapted to
the above flag, then there exists a smooth Marcinkiewicz
multiplier m such that K = Km.
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Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)

(i) If m is a Schwartz function on R2, then Km is a Un-invariant
Schwartz function on Hn.

(ii) If F is a Un-invariant Schwartz function on Hn, then there
exists a Schwartz function m on R2 such that F = Km.

S(Hn)Un ∼= S(fan) .

Related results: Geller, Benson-Ratcliff
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Nilpotent Gelfand pairs

• N nilpotent Lie group;
• K compact group of automorphisms of N;
• D(N)K algebra of left-invariant and K -invariant differential

operators on N;
• L1(N)K ,S(N)K etc., spaces of K -invariant functions on N.

The following are equivalent:

• D(N)K is commutative under composition;
• L1(N)K is commutative under convolution.

If these conditions are satisfied, we say that (N,K ) is a
nilpotent Gelfand pair.

Example: (Hn,Un) , D(Hn)Un = C[L,T ].
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Spectral multipliers

• D = (D1, . . . ,Dd ) a d-tuple of formally self-adjoint
differential operators generating D(N)K ;

• ΣD ⊂ Rd the joint L2-spectrum of (D1, . . . ,Dd ).

Conjecture:

For every nilpotent Gelfand pair, S(N)K ∼= S(ΣD).

This is a theorem when

• (N,K ) is a Heisenberg pair, i.e., N = Hn

(F. Astengo, B. Di Blasio, F. R.);

• (N,K ) satisfies Vinberg’s condition
(V. Fischer, F. R., O. Yakimova).
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Spherical functions

The (bounded) spherical functions of (N,K ) are the (bounded)
eigenfunctions of all operators in D(N)K .

Given D = {D1, . . . ,Dd ) as above, a bounded spherical
function can be labeled by the d-tuple

ξ = ξ(ϕ) = (ξ1, . . . , ξd ) ∈ Rd

of its eigenvalues relative to (D1, . . . ,Dd ).

Then
ΣD =

{
ξ(ϕ) : ϕ b.s.f.

}
,

as topological spaces (with the compact-open topology on the
space of b.s.f.).
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Spherical transform

• Given F ∈ L1(N)K , its spherical transform is

GF (ξ) =

∫
N

F (x)ϕξ(x−1) dx ∈ C0(ΣD) .

• G(F ∗G) = (GF )(GG).

• the map m 7−→ Km coincides with G−1.
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Paradigm for a proof

The implication

m ∈ S(ΣD) =⇒ F = G−1m ∈ S(N)K

is always true.
It can be derived starting from a result of A. Hulanicki, stating
that, if D is a positive Rockland operator on a homogeneous
group, then m(D) is given by convolution with a Schwartz
kernel for every m ∈ C∞c (R).
(The proof is in the Folland-Stein book.)



The other implication for the pair (Hn,Un)

1. Consider first Un-invariant Schwartz functions with
vanishing moments of any order in the central variable t .

2. Observe that, for such a function F , the spherical
transform GF vanishes of infinite order on the horizontal
half-line ξT = 0 in the Heisenberg fan (the singular set).

3. In this situation, extending GF to a function in S(R2) is very
easy.
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4. (D. Geller) For a general Un-invariant Schwartz function F ,
show that GF admits Taylor expansions of any order at
(ξL,0):

GF (ξL, ξT ) =
k∑

j=0

1
j!

gj(ξL)ξj
T + ξk+1

T GRk (ξL, ξT ) ,

with gj ∈ S(R) and Rk ∈ S(Hn)Un . In other words

F (v , t) =
k∑

j=0

1
j!

T jGj + T k+1Rk ,

with Gj ∈ S(Hn)Un and GGj(ξL, ξT ) = i gj(ξL).

5. This gives a Schwartz jet {gj}j∈N on R× {0} and the final
extension of GF to R2 can be obtained via the Whitney
extension theorem.
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A second-level example

Take N = Cn × Hn, K = U1 × SUn × U1:

(eiθ, k ,eiϕ) · (z, v , t) = (eiθk z,eiϕk v , t) ,

(z, v ∈ Cn, t ∈ R).

Fundamental invariants:

|z|2 ,
∣∣〈z, v〉∣∣2 , |v |2 , t .

This gives a system D of 4 differential operators, where
• D1 = ∆z is the Laplacian on Cn;
• D2 is a 4-th order operator, mixing derivatives in Cn with

vector fields on Hn;
• D3 is the sublaplacian on Hn;
• D4 = ∂t is the central derivative on Hn.
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The regular set

For each point ξ ∈ ΣD, the coordinate ξ1 (the eigenvalue of the
spherical function under the action of D1 = ∆z) has a particular
relevance.

Assume that ξ1 6= 0. The following properties hold:

• in a neighborhood V of ξ, ΣD is diffeomorphic to the
spectrum Σ′D′ associated to another pair,

(N ′,K ′) = (R× Hn,SUn−1 × U1) ;

• modulo this diffeomorphism, the spherical transform GF of
F ∈ S(N)K coincides on V with G′F ′, where

F ′(s, v , t) =

∫
R×Cn−1

F (s + iu, z2, . . . , zn, v , t) du dz1 . . . dzn .
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• modulo this diffeomorphism, the spherical transform GF of
F ∈ S(N)K coincides on V with G′F ′, where

F ′(s, v , t) =

∫
R×Cn−1

F (s + iu, z2, . . . , zn, v , t) du dz1 . . . dzn .
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The singular set

If ξ ∈ ΣD has ξ1 = 0, the corresponding spherical function does
not depend on z ∈ Cn and is in fact a spherical function for the
pair (N ′′,K ′′) = (Hn,Un).
Then also ξ2 = 0, and

Σ
sing
D = {ξ ∈ ΣD : ξ1 = ξ2 = 0}

is a Heisenberg fan in the coordinate plane (ξ3, ξ4).

Given F ∈ S(N)K , the restriction of GF to Σ
sing
D coincides with

G′′F ′′, where

F ′′(v , t) =

∫
Cn

F (z, v , t) dz .
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Taylor expansion

We know then that GF admits a Schwartz extension to the
(ξ3, ξ4) coordinate plane.
What we need now is a Schwartz jet {gj,k}j,k∈N on this plane, to
describe the behaviour of GF if we move from Σ

sing
D in the

(ξ1, ξ2) directions.

Proposition
There exist functions Gj,k ∈ S(N)K , with GGj,k depending only
on (ξ3, ξ4), such that, for every p ∈ N,

F =
∑

j+k≤p

1
j!k !

Dj
1Dk

2Gj,k +
∑

|α|=2p+2

∂αz Rα ,

for appropriate Rα ∈ S(N).
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On the structure of nilpotent Gelfand pairs

Let (N,K ) be a nilpotent Gelfand pair.

• N is at most two-step (Benson-Jenkins-Ratcliff).
Then n = v⊕ z, where z = [n, n] is abelian and v is a
K -invariant complementary subspace.

• Assume that v is irreducible under the action of K
(Vinberg’s condition). Then z is the center of n and
decomposes as ž⊕ z0, where
(i) ž consists of the K -fixed elements of z;
(ii) K acts irreducibly on z0.
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The pair (Cn ⊕ un,Un)

• n = Cn ⊕ un = v⊕ z;

• for v , v ′ ∈ Cn, set [v , v ′] = vv ′∗ − v ′v∗ ∈ un;

• K = Un, k · (v , z) = (kv , kzk∗);

• then ž = i R, z0 = sun.

The natural choice of D consists of 2n free generators,
obtained by symmetrization from:

• |v |2 (the sublaplacian);

• qk (v , z) = v∗(zk )v , k = 1, . . . ,n − 1.

• the coordinate function on ž;

• pk (z0) = tr(zk
0 ), k = 2, . . . ,n, z0 ∈ z0;



The pair (Cn ⊕ un,Un)

• n = Cn ⊕ un = v⊕ z;

• for v , v ′ ∈ Cn, set [v , v ′] = vv ′∗ − v ′v∗ ∈ un;

• K = Un, k · (v , z) = (kv , kzk∗);
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• then ž = i R, z0 = sun.

The natural choice of D consists of 2n free generators,
obtained by symmetrization from:

• |v |2 (the sublaplacian);

• qk (v , z) = v∗(zk )v , k = 1, . . . ,n − 1.

• the coordinate function on ž;
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Regular set and quotient pairs
• To each point ξ of ΣD we can associate a K -orbit in
z0 = sun.
Assume that this is not the trivial orbit, i.e.
(ξn+2, . . . , ξ2n) 6= (0, . . . ,0).

• The normal space zξ to this orbit can be used to define a
quotient Lie algebra nξ = v⊕ (ž⊕ zξ).

• This Lie algebra is isomorphic to a product

(Cp1 ⊕ up1)⊕ · · · ⊕ (Cpk ⊕ upk ) , p1 + · · ·+ pk = n .

• The stabilizer Kξ of the orbit is isomorphic to

Up1 ⊕ · · · ⊕ Upk .

• In the neighborhood of ξ, ΣD is diffeomorphic to

ΣD1 × · · · × ΣDk .
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The singular set

As before, Σ
sing
D is naturally identified with the spectrum of

another quotient pair, (Ň,Un), where

Ň = exp(v⊕ ž) ∼= Hn .

So Σ
sing
D is again a Heisenberg fan, in the coordinate plane

(ξ1, ξn+1) = (ξL, ξT ).
Again, we want a jet

{
gα(ξL, ξT )

}
α∈N2n−2 such that

GF (ξ) ∼
∑
α

1
α!
ξ′
αgα(ξL, ξT ) .
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The inductive statement

Inductively, this reduces to proving the following:

If F ∈ S(N)K has vanishing moments in the z0-variables up to
order p, i.e.,

F =
∑
|β|=p

∂βz0
Fβ ,

then
F =

∑
|α|=p

D′αGα +
∑
|γ|=p+1

∂γz0
Fγ ,

where Gα ∈ S(N)K , GGα only depends on (ξL, ξT ).



Representation-theoretic formulation

F =
∑
|β|=p

∂βz0
Fβ ,

Identify F with the vector-valued function

F = (Fβ)|β|=p : N −→ Pp(sun) .

Decompose
Pp(sun) ∼=

∑
µ∈Ep

Vµ ,

with Vµ irreducible under Un. Then

F =
∑
µ∈Ep

Fµ .
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For m ∈ N, let Pm(Cn) the space of holomorphic homogeneous
polynomials of degree m on Cn.

Equivalent condition:
For every m and µ ∈ Ep, Pm(Cn) is contained, as a
representation space, with multiplicity at most one in
Pm(Cn)⊗ Vµ.
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Consequences
Assume that the conjecture is true for (N,K ). The following
one-to-one correspondences hold:

• smooth K -invariant Calderón-Zygmund kernels on N

l

restrictions to ΣD of smooth Mihlin-Hörmander multipliers
on Rd ;

• smooth K -invariant flag kernels on N adapted to the flag
{0} ⊂ z ⊂ N

l

restrictions to ΣD of smooth flag multipliers on Rd adapted
to the flag {0} ⊂ Rk ⊂ Rd , where Rk is the subspace
spanned by the coordinates ξD with D containing only
z-derivatives.
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Extension operators

The fact that G : S(N)K −→ S(ΣD) is an isomorphism means
that
given any p ∈ N, there is q ∈ N such that every F ∈ S(N)K

admits an extension gp ∈ S(Rd ) with ‖gp‖(p) ≤ Cp‖F‖(q).
It does not say if the extension can be taken independent of p,
or depending linearly on F .

A natural question is the existence of a continuous linear
extension operator E : S(ΣD) −→ S(Rd ), i.e., such that
(Eg)|ΣD

= g.

Such an operator exists for abelian pairs. This is a direct
consequence of a theorem of J. Mather.
Such an operator exists for the Heisenberg fan.
(C. Fefferman, F. R.)
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