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e Heisenberg group H, =~ C" x R

e [ the Up-invariant sublaplacian, T = 9 derivative in the
central direction

 multiplier operators m(L,i~'T), with m a bounded Borel
function on R?

o m(L,i7"T)f = f x Kp, with Kp, a Up-invariant distribution

Theorem
(i) If mis a smooth Marcinkiewicz multiplier, then Kn, is a
smooth, Un-invariant, flag kernel on Hy,, adapted to the flag
{0} € {0} xR C H,.

(i) If K is a Up-invariant smooth flag kernel on H,, adapted to
the above flag, then there exists a smooth Marcinkiewicz
multiplier m such that K = K.
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The Heisenberg fan
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Schwartz kernels and multipliers

Theorem (Astengo, Di Blasio, R., 2007)

(i) Ifmis a Schwartz function on R2, then Ky, is a U,-invariant
Schwartz function on H,.

(iiy If F is a Up-invariant Schwartz function on Hy,, then there
exists a Schwartz function m on R? such that F = K.

S(Hn)Y" = S(fan) .

Related results: Geller, Benson-Ratcliff
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Nilpotent Gelfand pairs

N nilpotent Lie group;
K compact group of automorphisms of N;

o D(N)K algebra of left-invariant and K-invariant differential
operators on N,

o L'(N)KX S(N)K etc., spaces of K-invariant functions on N.

The following are equivalent:
o D(N)X is commutative under composition;
o L'(N)X is commutative under convolution.

If these conditions are satisfied, we say that (N, K) is a
nilpotent Gelfand pair.

Example: (Hn,Up),  D(Hp)Y =CIL, T].
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e D= (Dy,...,Dy) a d-tuple of formally self-adjoint
differential operators generating D(N)X;

e Yp C RY the joint L?-spectrum of (Dy, ..., Dy).

Conjecture:
For every nilpotent Gelfand pair, S(N)X = S(Xp).

This is a theorem when
e (N,K) is a Heisenberg pair, i.e., N = Hy
(F. Astengo, B. Di Blasio, F. R.);
e (N, K) satisfies Vinberg’s condition
(V. Fischer, F. R., O. Yakimova).
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Spherical functions

The (bounded) spherical functions of (N, K) are the (bounded)
eigenfunctions of all operators in D(N)X.

Given D = {Dy, ..., Dy) as above, a bounded spherical
function can be labeled by the d-tuple

E=¢€(p) = (&1,...,&9) €R?

of its eigenvalues relative to (Dy, ..., Dy).

Then
Yo = {&(p) @ bsf},

as topological spaces (with the compact-open topology on the
space of b.s.f.).
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Paradigm for a proof

The implication
meS(Ip) = F=G¢""mesSN)K

is always true.

It can be derived starting from a result of A. Hulanicki, stating
that, if D is a positive Rockland operator on a homogeneous
group, then m(D) is given by convolution with a Schwartz
kernel for every m € C°(R).

(The proof is in the Folland-Stein book.)



The other implication for the pair (H,,, Up)

1. Consider first Up,-invariant Schwartz functions with
vanishing moments of any order in the central variable t.



The other implication for the pair (H,,, Up)

1. Consider first Up,-invariant Schwartz functions with
vanishing moments of any order in the central variable t.

2. Observe that, for such a function F, the spherical
transform G F vanishes of infinite order on the horizontal
half-line £ = 0 in the Heisenberg fan (the singular set).



The other implication for the pair (H,,, Up)

. Consider first Up-invariant Schwartz functions with
vanishing moments of any order in the central variable t.

. Observe that, for such a function F, the spherical
transform G F vanishes of infinite order on the horizontal
half-line £ = 0 in the Heisenberg fan (the singular set).

. In this situation, extending GF to a function in S(R?) is very
easy.



4. (D. Geller) For a general U,-invariant Schwartz function F,
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(&,0):
K4 '
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4. (D. Geller) For a general U,-invariant Schwartz function F,
show that GF admits Taylor expansions of any order at

(&,0):
k
1 .
GF(&L,&7) =Y = i(€0)er + &5 GR(éL,€7)
- 0j!
/:

with g; € S(R) and Ry € S(Hp)U". In other words

k
F(v,t) = Z;ITij + THRy
j=0 "

with G; € S(Hn)Y" and GG;j(&,¢7) = i gj(&L).

5. This gives a Schwartz jet {g;}jen on R x {0} and the final
extension of GF to R? can be obtained via the Whitney
extension theorem.
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A second-level example

Take N = C" x Hp, K = Uy x SU, x Uq:
(e k,e%) . (z,v,t) = (ekz,e%kv,1),

(z,veC" teR).

Fundamental invariants:
2
z2, [(z,v)]", v, t.

This gives a system D of 4 differential operators, where

e D; = A; is the Laplacian on C";

e D, is a 4-th order operator, mixing derivatives in C” with
vector fields on Hp;

e Ds is the sublaplacian on Hp;

e D, = 0 is the central derivative on H,.
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The regular set

For each point ¢ € ¥p, the coordinate &; (the eigenvalue of the
spherical function under the action of Dy = A;) has a particular

relevance.

Assume that £; # 0. The following properties hold:

¢ in a neighborhood V of &, ¥p is diffeomorphic to the
spectrum X/, associated to another pair,

(N',K') = (R x Hn, SUp_1 x Uy) ;

e modulo this diffeomorphism, the spherical transform GF of
F € S(N)X coincides on V with G’'F’, where

F'(s,v,t) = / F(s+iu,zo,...,2n,v,t)dudz; ...dz, .
RxCn—1
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The singular set

If £ € Lp has & = 0, the corresponding spherical function does
not depend on z € C" and is in fact a spherical function for the

pair (N", K") = (Hn, Up).
Then also & = 0, and

Y9 _{eeTp & =& =0}

is a Heisenberg fan in the coordinate plane (&3, &4).

Given F € S(N)X, the restriction of GF to =59 coincides with
G"F", where

F'(v,t)y= [ F(z,v,t)dz.
(Cn
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Taylor expansion

We know then that GF admits a Schwartz extension to the
(&3, &4) coordinate plane.
What we need now is a Schwartz jet {gj « }; ken On this plane, to

describe the behaviour of GF if we move from £5" in the
(&1, &) directions.

Proposition

There exist functions Gj x € S (N)K, with GG; x depending only
on (&3,&4), such that, for every p € N,

1 .
F=> mngGj,k+ Y. %R,
j*k<p® la|=2p+2

for appropriate R,, € S(N).
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On the structure of nilpotent Gelfand pairs

Let (N, K) be a nilpotent Gelfand pair.

e N is at most two-step (Benson-Jenkins-Ratcliff).
Thenn = v @ 3, where 3 = [n,n] is abelian and v is a
K-invariant complementary subspace.

e Assume that v is irreducible under the action of K
(Vinberg’s condition). Then 3 is the center of n and
decomposes as j @ 30, Where
(i) 3 consists of the K-fixed elements of 3;

(i) K acts irreducibly on 3q.
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The pair (C" @ up, Up)

n=C"ou,=093;

for v,v' € C", set [v, V] = vv/* — V/v* € up;
K =Up, k- (v, z) = (kv, kzk*);

e then 3=IiR, j39=sup.

The natural choice of D consists of 2n free generators,
obtained by symmetrization from:

e |v|? (the sublaplacian);
© q(v.2) =V (Z)W, k=1,....n—1.
e the coordinate function on j;

o pr(z0) =tr(2K), k=2,...,n, 2 € 30;
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Regular set and quotient pairs

To each point &£ of £p we can associate a K-orbit in
30 = SUn.
Assume that this is not the trivial orbit, i.e.

(&nt2, .- s &2n) # (0,...,0).

The normal space 3¢ to this orbit can be used to define a
quotient Lie algebra ng = v & (§ & 3¢).

This Lie algebra is isomorphic to a product
(CProu )@ o (C*oup), pr+-+pe=n.
The stabilizer K¢ of the orbit is isomorphic to
Up, @---®Up, .
In the neighborhood of &, ¥ is diffeomorphic to

Yp, XX Ep, .

1
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The singular set

As before, 5" is naturally identified with the spectrum of
another quotient pair, (N, U,), where

N =exp(v ®3) = H, .

So Z%”g is again a Heisenberg fan, in the coordinate plane

(&1,€n41) = (&L, €7)-

Again, we want a jet {ga(vafT)}aeNZn—z such that

1 0
GF(&) ~ > € gu(€L,€7) -



The inductive statement

Inductively, this reduces to proving the following:

If F € S(N)X has vanishing moments in the 3o-variables up to

order p, i.e.,
F=Y 0.Fs,
181=p
then
F=)Y D%Ga+ Y 04F,,
le|=p Iv[=p+1

where G, € S(N)K, GG, only depends on (¢.,£7).
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Representation-theoretic formulation

F = ZafoFﬁ,

181=p
Identify F with the vector-valued function
F= (Fﬁ)|/3|:p N — Pp(sun) .

Decompose

P(sup) Z Vi,

nekp

with V), irreducible under U,. Then

F=> F,..

neEp



For m € N, let P™(C") the space of holomorphic homogeneous
polynomials of degree m on C".



For m € N, let P™(C") the space of holomorphic homogeneous
polynomials of degree m on C".

Equivalent condition:

For every m and 1. € Ep, P™(C") is contained, as a
representation space, with multiplicity at most one in
PT(C™) @ V..
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Consequences
Assume that the conjecture is true for (N, K). The following
one-to-one correspondences hold:
e smooth K-invariant Calderén-Zygmund kernels on N

0

restrictions to Xp of smooth Mihlin-Hormander multipliers
on RY;

e smooth K-invariant flag kernels on N adapted to the flag
{0} Cc3CN
!

restrictions to ¥p of smooth flag multipliers on R? adapted
to the flag {0} c R¥ c RY, where R is the subspace
spanned by the coordinates £p with D containing only
3-derivatives.
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that

given any p € N, there is q € N such that every F € S(N)X
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Extension operators

The fact that G : S(N)X — S(Zp) is an isomorphism means
that

given any p € N, there is q € N such that every F € S(N)X
admits an extension gp € S(RY) with ||gpll(p) < CollFll(q)-

It does not say if the extension can be taken independent of p,
or depending linearly on F.

A natural question is the existence of a continuous linear
extension operator £ : S(Xp) — S(RY), i.e., such that
(€9)s, =9

Such an operator exists for abelian pairs. This is a direct
consequence of a theorem of J. Mather.

Such an operator exists for the Heisenberg fan.
(C. Fefferman, F. R.)



