BOUNDED *L*² **CURVATURE CONJECTURE**

Sergiu Klainerman

Princeton University

May 17, 2011

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED NONLINEAR PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED NONLINEAR PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED NONLINEAR PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED **NONLINEAR PDE**

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED **NONLINEAR PDE**

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED **NONLINEAR PDE**

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV . BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

• I. INTRODUCTION

- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV . BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

 $\operatorname{Ric}(\mathbf{g}) = 0.$

Initial data sets: $(\Sigma_0, g, k) + constraints.$

Classical WP Theorem: $g \in H^s_{loc}(\Sigma_0), k \in H^{s-1}_{loc}(\Sigma_0), [s > 5/2]$ \Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $(\Sigma_0, g, k) \hookrightarrow (\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_0 in \mathcal{M} . Wave coordinates: $\Box_{\mathbf{g}} x^{\alpha} = 0 \Rightarrow$

$$\mathbf{g}^{lphaeta}\,\partial_lpha\partial_eta\,\mathbf{g}_{\mu
u}=\mathcal{F}_{\mu
u}(\mathbf{g},\partial\mathbf{g})$$

Model equation

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

 $\operatorname{Ric}(\mathbf{g}) = 0.$

Initial data sets: (Σ_0, g, k) +constraints.

Classical WP Theorem: $g \in H^s_{loc}(\Sigma_0), k \in H^{s-4}_{loc}(\Sigma_0), [s > 5/2]$ \Rightarrow unique space-time (\mathcal{M}, g) and $(\Sigma_0, g, k) \hookrightarrow (\mathcal{M}, g)$ such that (g, k) are the first and second fundamental forms of Σ_0 in \mathcal{M} . Wave coordinates: $\Box_g x^{\alpha} = 0 \Rightarrow$

$$\mathbf{g}^{lphaeta}\,\partial_lpha\partial_eta\,\mathbf{g}_{\mu
u}= extsf{F}_{\mu
u}(\mathbf{g},\partial\mathbf{g})$$

Model equation

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

 $\operatorname{Ric}(\mathbf{g}) = 0.$

Initial data sets: (Σ_0, g, k) +constraints.

Classical WP Theorem: $g \in H^s_{loc}(\Sigma_0), k \in H^{s-1}_{loc}(\Sigma_0), [s > 5/2]$ \Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $(\Sigma_0, g, k) \hookrightarrow (\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_0 in \mathcal{M} . Wave coordinates: $\Box_{\mathbf{g}} \times^n = 0 \Rightarrow$

$$\mathbf{g}^{lphaeta}\,\partial_lpha\partial_eta\,\mathbf{g}_{\mu
u}=\mathcal{F}_{\mu
u}(\mathbf{g},\partial\mathbf{g})$$

Model equation

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

 $\operatorname{Ric}(\mathbf{g}) = 0.$

Initial data sets: (Σ_0, g, k) +constraints.

Classical WP Theorem: $g \in H^s_{loc}(\Sigma_0)$, $k \in H^{s-1}_{loc}(\Sigma_0)$, s > 5/2 \Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $(\Sigma_0, g, k) \hookrightarrow (\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_0 in \mathcal{M} . Wave coordinates: $\Box_{\mathbf{g}} x^{\alpha} = 0 \Rightarrow$

$$\mathbf{g}^{lphaeta}\,\partial_lpha\partial_eta\,\mathbf{g}_{\mu
u}=\mathcal{F}_{\mu
u}(\mathbf{g},\partial\mathbf{g})$$

Model equation

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

 $\operatorname{Ric}(\mathbf{g}) = 0.$

Initial data sets: (Σ_0, g, k) +constraints.

$$\mathbf{g}^{lphaeta}\partial_{lpha}\partial_{eta}\,\mathbf{g}_{\mu
u}=\mathcal{F}_{\mu
u}(\mathbf{g},\partial\mathbf{g})$$

Model equation

$$\mathbf{g}^{lphaeta}(\phi)\partial_{lpha}\partial_{eta}\phi=F(\phi,\partial\phi)$$

$$\mathbf{g}^{\alpha\beta}(\phi)\,\partial_{\alpha}\partial_{\beta}\,\phi=F(\phi,\partial\phi),$$

$$\|\phi(t)\|_s \lesssim \|\phi(0)\|_s \exp \int_0^t \|\partial \phi(au)\|_{L^\infty} d au$$

Sobolev embedding:

$$\|\partial \phi(au)\|_{L^\infty} \lesssim \|\phi(t)\|_s, \qquad ig|s > 5/2 ig|.$$

Iteration scheme: $\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(k)}$,

 $\mathbf{g}^{\alpha\beta}(\phi^{(k)})\,\partial_{\alpha}\partial_{\beta}\,\phi^{(k+1)} = F(\phi^{(k)},\partial\phi^{(k)})$

$$\mathbf{g}^{\alpha\beta}(\phi)\,\partial_{\alpha}\partial_{\beta}\,\phi=F(\phi,\partial\phi),$$

$$\|\phi(t)\|_{s}\lesssim \|\phi(0)\|_{s}\exp\int_{0}^{t}\|\partial\phi(au)\|_{L^{\infty}}d au$$

Sobolev embedding:

$$\|\partial \phi(au)\|_{L^{\infty}} \lesssim \|\phi(t)\|_s, \qquad \left|s > 5/2\right|.$$

Iteration scheme: $\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(k)}$,

 $\mathbf{g}^{\alpha\beta}(\phi^{(k)})\,\partial_{\alpha}\partial_{\beta}\,\phi^{(k+1)} = F(\phi^{(k)},\partial\phi^{(k)})$

$$\mathbf{g}^{\alpha\beta}(\phi)\,\partial_{\alpha}\partial_{\beta}\,\phi=F(\phi,\partial\phi),$$

$$\|\phi(t)\|_{s} \lesssim \|\phi(0)\|_{s} \exp \int_{0}^{t} \|\partial\phi(\tau)\|_{L^{\infty}} d au$$

Sobolev embedding:

$$\|\partial \phi(\tau)\|_{L^{\infty}} \lesssim \|\phi(t)\|_s, \qquad s > 5/2.$$

Iteration scheme: $\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(k)}$,

 $\mathbf{g}^{\alpha\beta}(\phi^{(k)})\,\partial_{\alpha}\partial_{\beta}\,\phi^{(k+1)} = F(\phi^{(k)},\partial\phi^{(k)})$

$$\mathbf{g}^{\alpha\beta}(\phi)\,\partial_{\alpha}\partial_{\beta}\,\phi=F(\phi,\partial\phi),$$

$$\|\phi(t)\|_{s} \lesssim \|\phi(0)\|_{s} \exp \int_{0}^{t} \|\partial\phi(\tau)\|_{L^{\infty}} d au$$

Sobolev embedding:

$$\|\partial \phi(\tau)\|_{L^{\infty}} \lesssim \|\phi(t)\|_s, \qquad s > 5/2.$$

Iteration scheme: $\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(k)},$

 $\mathbf{g}^{\alpha\beta}(\phi^{(k)})\,\partial_{\alpha}\partial_{\beta}\,\phi^{(k+1)}=\mathcal{F}(\phi^{(k)},\partial\phi^{(k)})$

$$\int_0^t \|\phi(\tau)\|_{L^\infty} d\tau \lesssim \|\partial\phi(0)\|_{H^{s-1}} + \int_0^t \|\Box\phi(\tau)\|_{H^{s-1}} \tag{1}$$

Semilinear equations: $\Box \phi = F(\phi, \partial \phi).$ Estimate (1) can be used to improve the WP exponent to s > 2.

Quasilinear equations: $g^{\alpha\beta}(\phi) \partial_{\alpha}\partial_{\beta}\phi = F(\phi, \partial\phi).$ Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for $\boxed{s > 2}$.

$$\int_{0}^{t} \|\phi(\tau)\|_{L^{\infty}} d\tau \lesssim \|\partial\phi(0)\|_{H^{s-1}} + \int_{0}^{t} \|\Box\phi(\tau)\|_{H^{s-1}}$$
(1)

Semilinear equations: $\Box \phi = F(\phi, \partial \phi)$. Estimate (1) can be used to improve the WP exponent to s > 2.

Quasilinear equations: $\mathbf{g}^{\alpha\beta}(\phi) \partial_{\alpha}\partial_{\beta}\phi = F(\phi, \partial\phi).$ Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for $\boxed{s > 2}$.

$$\int_{0}^{t} \|\phi(\tau)\|_{L^{\infty}} d\tau \lesssim \|\partial\phi(0)\|_{H^{s-1}} + \int_{0}^{t} \|\Box\phi(\tau)\|_{H^{s-1}}$$
(1)

Semilinear equations: $\Box \phi = F(\phi, \partial \phi).$ Estimate (1) can be used to improve the WP exponent to s > 2.

Quasilinear equations: $\mathbf{g}^{\alpha\beta}(\phi) \partial_{\alpha}\partial_{\beta}\phi = F(\phi, \partial\phi).$ Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for [s > 2].

$$\int_0^t \|\phi(\tau)\|_{L^\infty} d\tau \lesssim \|\partial\phi(0)\|_{H^{s-1}} + \int_0^t \|\Box\phi(\tau)\|_{H^{s-1}}$$
(1)

Semilinear equations: $\Box \phi = F(\phi, \partial \phi).$ Estimate (1) can be used to improve the WP exponent to s > 2.

Quasilinear equations: $\mathbf{g}^{\alpha\beta}(\phi) \partial_{\alpha}\partial_{\beta}\phi = F(\phi, \partial\phi).$ Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for [s > 2].

$$Ric(g) \in L^2_{loc}(\Sigma_0), \quad \nabla k \in L^2_{loc}(\Sigma_0).$$
 (2)

Fact: Need to use the special structure of the Einstein equations **Remark:** Conjecture should be viewed as a break-down criterion. *Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true.* **Theorem**[K-Rodnianski, Wang] An EVE space-time, foliated by the level surfaces Σ_t of a maximal time function with future unit time normal T, can be extended as long as

$$\int_0^t \|\mathcal{L}_{\mathcal{T}}\mathbf{g}\|_{L^\infty(\Sigma_\tau)} d\tau < \infty$$

$$Ric(g) \in L^2_{loc}(\Sigma_0), \quad \nabla k \in L^2_{loc}(\Sigma_0).$$
 (2)

Fact: Need to use the special structure of the Einstein equations ! Remark: Conjecture should be viewed as a break-down criterion. Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true. Theorem[K-Rodnianski, Wang] An EVE space-time, foliated by the level surfaces Σ_t of a maximal time function with future unit time normal T, can be extended as long as

$$\int_0^t \|\mathcal{L}_T \mathbf{g}\|_{L^\infty(\Sigma_\tau)} d\tau < \infty$$

$$Ric(g) \in L^2_{loc}(\Sigma_0), \quad \nabla k \in L^2_{loc}(\Sigma_0).$$
 (2)

Fact: Need to use the special structure of the Einstein equations ! **Remark:** Conjecture should be viewed as a break-down criterion. *Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true.*

the level surfaces Σ_t of a maximal time function with future unit time normal T, can be extended as long as

$$\int_0^t \|\mathcal{L}_T \mathbf{g}\|_{L^\infty(\Sigma_\tau)} d\tau < \infty$$

$$Ric(g) \in L^2_{loc}(\Sigma_0), \quad \nabla k \in L^2_{loc}(\Sigma_0).$$
 (2)

Fact: Need to use the special structure of the Einstein equations ! **Remark:** Conjecture should be viewed as a break-down criterion. *Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true.* **Theorem**[K-Rodnianski, Wang] *An EVE space-time, foliated by the level surfaces* Σ_t *of a maximal time function with future unit time normal T, can be extended as long as*

$$\int_0^t \|\mathcal{L}_{\mathcal{T}}\mathbf{g}\|_{L^\infty(\Sigma_\tau)} d\tau < \infty$$

- **Problem of coordinates** Are there coordinates, or gauge conditions, relative to which EVE exhibit some appropriate version of the null condition ?
- Approximate solutions Do there exist effective parametrices, for solutions of $\Box_{\mathbf{g}}\phi = 0$ with *rough metrics* \mathbf{g} , based on which we can prove bilinear and Strichartz estimates ?

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV . BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

$$\mathbf{g}(\mathbf{e}_{lpha},\mathbf{e}_{eta})=\mathbf{m}_{lphaeta}=\mathsf{diag}(-1,1,1,1).$$

Connection 1-forms:

$(\mathsf{A}_{\mu})_{lphaeta}=\mathbf{g}(\mathsf{D}_{\mu}e_{\!eta},e_{\!lpha})$

Curvature:

 $\left[\mathsf{R}_{\mu
ulphaeta}=\left(\mathsf{D}_{\mu}\mathsf{A}_{
u}-\mathsf{D}_{
u}\mathsf{A}_{\mu}-\left[\mathsf{A}_{\mu},\mathsf{A}_{
u}
ight]
ight)_{lphaeta}:=(\mathsf{F}_{\mu
u})_{lphaeta}$

Yang-Mills:

 $\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu} + [\mathbf{A}^{\mu}, \mathbf{F}_{\mu\nu}] = 0.$

Frame changes: $\widetilde{e}_{lpha}={f O}_{lpha}^{\gamma}e_{lpha}$

 $(\widetilde{\mathsf{A}}_{\mu})_{lphaeta} = \mathbf{O}^{\gamma}_{lpha} \, (\mathsf{A}_{\mu})_{\gamma\delta} \, \mathbf{O}^{\delta}_{eta} + \partial_{\mu} (\mathbf{O}^{\gamma}_{lpha}) \, \mathbf{O}_{\gammaeta}$

$$\mathbf{g}(\mathbf{e}_{lpha},\mathbf{e}_{eta})=\mathbf{m}_{lphaeta}=\mathsf{diag}(-1,1,1,1).$$

Connection 1-forms:

$$(\mathsf{A}_{\mu})_{lphaeta}=\mathsf{g}(\mathsf{D}_{\mu}\mathsf{e}_{eta},\mathsf{e}_{lpha})$$

Curvature:

 $\mathsf{R}_{\mu\nu\alpha\beta} = \left(\mathsf{D}_{\mu}\mathsf{A}_{\nu} - \mathsf{D}_{\nu}\mathsf{A}_{\mu} - [\mathsf{A}_{\mu},\mathsf{A}_{\nu}]\right)_{\alpha\beta} := (\mathsf{F}_{\mu\nu})_{\alpha\beta}.$

Yang-Mills:

 $\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu} + [\mathbf{A}^{\mu}, \mathbf{F}_{\mu\nu}] = 0.$

Frame changes: $\widetilde{e}_{\alpha} = \mathbf{O}_{\alpha}^{\gamma} e_{\alpha}$

 $(\widetilde{\mathsf{A}}_{\mu})_{lphaeta} = \mathbf{O}^{\gamma}_{lpha} \, (\mathsf{A}_{\mu})_{\gamma\delta} \, \mathbf{O}^{\delta}_{eta} + \partial_{\mu} (\mathbf{O}^{\gamma}_{lpha}) \, \mathbf{O}_{\gammaeta}$

$$\mathbf{g}(e_{lpha},e_{eta})=\mathbf{m}_{lphaeta}=\mathsf{diag}(-1,1,1,1).$$

Connection 1-forms:

$$(\mathsf{A}_{\mu})_{lphaeta} = \mathsf{g}(\mathsf{D}_{\mu}\mathsf{e}_{eta},\mathsf{e}_{lpha})$$

Curvature:

$$\mathbf{R}_{\mu\nu\alpha\beta} = \left(\mathbf{D}_{\mu}\mathbf{A}_{\nu} - \mathbf{D}_{\nu}\mathbf{A}_{\mu} - [\mathbf{A}_{\mu},\mathbf{A}_{\nu}]\right)_{\alpha\beta} := (\mathbf{F}_{\mu\nu})_{\alpha\beta}.$$

Yang-Mills:

$$\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu} + [\mathbf{A}^{\mu}, \mathbf{F}_{\mu\nu}] = 0.$$

Frame changes: $\widetilde{e}_{\alpha} = \mathbf{O}_{\alpha}^{\gamma} e_{\gamma}$

 $(\widetilde{\mathsf{A}}_{\mu})_{lphaeta} = \mathbf{O}^{\gamma}_{lpha} \, (\mathsf{A}_{\mu})_{\gamma\delta} \, \mathbf{O}^{\delta}_{eta} + \partial_{\mu} (\mathbf{O}^{\gamma}_{lpha}) \, \mathbf{O}_{\gammaeta}$

$$\mathbf{g}(e_{lpha},e_{eta})=\mathbf{m}_{lphaeta}=\mathsf{diag}(-1,1,1,1).$$

Connection 1-forms:

$$(\mathsf{A}_{\mu})_{lphaeta} = \mathsf{g}(\mathsf{D}_{\mu}\mathsf{e}_{eta},\mathsf{e}_{lpha})$$

Curvature:

$$\mathbf{R}_{\mu\nu\alpha\beta} = \left(\mathbf{D}_{\mu}\mathbf{A}_{\nu} - \mathbf{D}_{\nu}\mathbf{A}_{\mu} - [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]\right)_{\alpha\beta} := (\mathbf{F}_{\mu\nu})_{\alpha\beta}.$$

Yang-Mills:

$$\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu}+\left[\mathbf{A}^{\mu},\mathbf{F}_{\mu\nu}\right]=0.$$

Frame changes: $\widetilde{e}_lpha = {f O}_lpha^\gamma e_lpha$

 $\overline{(\mathsf{A}_{\mu})_{lphaeta}} = \mathbf{O}^{\gamma}_{lpha}\,(\mathsf{A}_{\mu})_{\gamma\delta}\,\mathbf{O}^{\delta}_{eta} + \partial_{\mu}(\mathbf{O}^{\gamma}_{lpha})\,\mathbf{O}_{\gammaeta}$

$$\mathbf{g}(\mathbf{e}_{lpha},\mathbf{e}_{eta})=\mathbf{m}_{lphaeta}=\mathsf{diag}(-1,1,1,1).$$

Connection 1-forms:

$$(\mathsf{A}_{\mu})_{lphaeta} = \mathsf{g}(\mathsf{D}_{\mu}\mathsf{e}_{eta},\mathsf{e}_{lpha})$$

Curvature:

$$\mathsf{R}_{\mu\nu\alpha\beta} = \left(\mathsf{D}_{\mu}\mathsf{A}_{\nu} - \mathsf{D}_{\nu}\mathsf{A}_{\mu} - [\mathsf{A}_{\mu},\mathsf{A}_{\nu}]\right)_{\alpha\beta} := (\mathsf{F}_{\mu\nu})_{\alpha\beta}.$$

Yang-Mills:

$$\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu}+[\mathbf{A}^{\mu},\mathbf{F}_{\mu\nu}]=0.$$

Frame changes: $\widetilde{e}_{\alpha} = \mathbf{O}_{\alpha}^{\gamma} e_{\gamma}$

$$(\widetilde{\mathbf{A}}_{\mu})_{lphaeta} = \mathbf{O}_{lpha}^{\gamma} (\mathbf{A}_{\mu})_{\gamma\delta} \mathbf{O}_{eta}^{\delta} + \partial_{\mu} (\mathbf{O}_{lpha}^{\gamma}) \mathbf{O}_{\gamma\beta}$$

Connection 1-form: $\mathbf{A}_{\mu} = (A_{\mu})_{\alpha\beta}$. Curvature: $\mathbf{F}_{\mu\nu} = \mathbf{D}_{\mu}\mathbf{A}_{\nu} - \mathbf{D}_{\nu}\mathbf{A}_{\mu} - [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$

Gauge transformations:

$$\widetilde{\mathbf{A}}_{\mu} = O \cdot \mathbf{A}_{\mu} \cdot O^{-1} + \partial_{\mu} O \cdot O^{-1}$$

$$\widetilde{\mathbf{F}}_{\mu\nu} = O \cdot \mathbf{F}_{\mu\nu} \cdot O^{-1}.$$

Yang-Mills: $\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu} + [\mathbf{A}^{\mu},\mathbf{F}_{\mu\nu}] = 0.$

 $\Box_{\mathbf{g}} \mathbf{A}_{\nu} - \mathbf{D}_{\nu} (\mathbf{D}^{\mu} \mathbf{A}_{\mu}) = \mathbf{D}^{\mu} ([\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]) - [\mathbf{A}^{\mu}, \mathbf{F}_{\mu\nu}]$ = $\mathbf{J}_{\nu} (\mathbf{A}, \mathbf{D} \mathbf{A})$

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV . BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] *The flat Yang-Mills equations in* \mathbb{R}^{1+3} are well posed in the energy norm, i.e s = 1.

- Use gauge freedom to impose
- Equations become, with A

 $\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^{\prime}$ $\Box A_i + \partial_i \partial_t A_0 = A^j \partial_i A_i + A^j \partial_i A_i + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}$

 Apply P = (−∆)⁻¹curl (curl), the projection operator on the divergence free vectorfields,

$$\Box A_i = \mathcal{P}(A^j \partial_j A_i + A^j \partial_i A_j) + \text{ l.o.t.}$$

• Use bilinear estimates to control the most dangerous terms, $\mathcal{P}(A^j\partial_iA_i + A^j\partial_iA_i)$

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] *The flat Yang-Mills equations in* \mathbb{R}^{1+3} are well posed in the energy norm, i.e s = 1.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i} = 0$
- Equations become, with $\mathbf{A} = (A_0, A)$,

 $\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$

 $\Box A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3$

 Apply P = (-Δ)⁻¹curl (curl), the projection operator on the divergence free vectorfields,

$$\Box A_i = \mathcal{P}(A^j \partial_j A_i + A^j \partial_i A_j) + \text{ l.o.t.}$$

• Use bilinear estimates to control the most dangerous terms, $\mathcal{P}(A^j \partial_i A_i + A^j \partial_i A_i)$

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] *The flat Yang-Mills equations in* \mathbb{R}^{1+3} are well posed in the energy norm, i.e s = 1.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i} = 0$
- Equations become, with $\mathbf{A} = (A_0, A)$,

$$\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$$

$$\Box A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3$$

Apply P = (-Δ)⁻¹curl (curl), the projection operator on the divergence free vectorfields,

$$\Box A_i = \mathcal{P}(A^j \partial_j A_i + A^j \partial_i A_j) + \text{ l.o.t.}$$

• Use bilinear estimates to control the most dangerous terms, $\mathcal{P}(A^j \partial_i A_i + A^j \partial_i A_i)$

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] *The flat Yang-Mills equations in* \mathbb{R}^{1+3} are well posed in the energy norm, i.e s = 1.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i} = 0$
- Equations become, with $\mathbf{A} = (A_0, A)$,

$$\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$$

$$\Box A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3$$

Apply P = (-Δ)⁻¹curl (curl), the projection operator on the divergence free vectorfields,

$$\Box A_i = \mathcal{P}(A^j \partial_j A_i + A^j \partial_i A_j) + \text{ l.o.t.}$$

• Use bilinear estimates to control the most dangerous terms, $\mathcal{P}(A^j\partial_iA_i + A^j\partial_iA_i)$

Assume: $A = (A_1, A_2, A_3)$, div A = 0 in $\mathcal{D}_T = [0, T] \times \mathbb{R}^3$.

Theorem

$$\begin{split} \|A^{i}\partial_{i}\phi\|_{L^{2}(\mathcal{D}_{T})} &\lesssim (\|\partial A(0)\|_{L^{2}} + \int_{0}^{T} \|\Box A(t)\|_{L^{2}(\Sigma_{t})}dt) \\ &\cdot (\|\partial \phi(0)\|_{L^{2}} + \int_{0}^{T} \|\Box \phi(t)\|_{L^{2}(\Sigma_{t})}dt) \end{split}$$

Theorem

$$\|\mathcal{P}(A^{j}\partial_{i}A_{j})\|_{L^{2}(\mathcal{D}_{T})} \lesssim \left(\|\partial A(0)\|_{L^{2}} + \int_{0}^{T} \|\Box A(t)\|_{L^{2}(\Sigma_{t})} dt\right)^{2}$$

Reduction: Can assume $\Box A = \Box \phi = 0$

Assume:
$$A = (A_1, A_2, A_3)$$
, div $A = 0$ in $\mathcal{D}_T = [0, T] \times \mathbb{R}^3$.

Theorem

$$egin{aligned} &\|A^i\partial_i\phi\|_{L^2(\mathcal{D}_{\mathcal{T}})}&\lesssim & ig(\|\partial A(0)\|_{L^2}+\int_0^{\mathcal{T}}\|\Box A(t)\|_{L^2(\Sigma_t)}dtig)\ &\cdot & ig(\|\partial\phi(0)\|_{L^2}+\int_0^{\mathcal{T}}\|\Box\phi(t)\|_{L^2(\Sigma_t)}dtig) \end{aligned}$$

Theorem

$$\|\mathcal{P}(A^{j}\partial_{i}A_{j})\|_{L^{2}(\mathcal{D}_{T})} \lesssim (\|\partial A(0)\|_{L^{2}} + \int_{0}^{T} \|\Box A(t)\|_{L^{2}(\Sigma_{t})}dt)^{2}$$

Reduction: Can assume $\Box A = \Box \phi = 0$.

Assume:
$$A = (A_1, A_2, A_3)$$
, div $A = 0$ in $\mathcal{D}_T = [0, T] \times \mathbb{R}^3$.

Theorem

$$egin{aligned} &\|A^i\partial_i\phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} &\lesssim & ig(\|\partial A(0)\|_{L^2} + \int_0^{\mathcal{T}} \|\Box A(t)\|_{L^2(\Sigma_t)} dtig) \ &\cdot & ig(\|\partial\phi(0)\|_{L^2} + \int_0^{\mathcal{T}} \|\Box\phi(t)\|_{L^2(\Sigma_t)} dtig) \end{aligned}$$

Theorem

$$\|\mathcal{P}(A^j\partial_iA_j)\|_{L^2(\mathcal{D}_T)} \hspace{2mm} \lesssim \hspace{2mm} \left(\|\partial A(0)\|_{L^2} + \int_0^T \|\Box A(t)\|_{L^2(\Sigma_t)}dt
ight)^2$$

Reduction: Can assume $\Box A = \Box \phi = 0$

Assume:
$$A = (A_1, A_2, A_3)$$
, div $A = 0$ in $\mathcal{D}_T = [0, T] \times \mathbb{R}^3$.

Theorem

$$egin{aligned} &\|A^i\partial_i\phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} &\lesssim & ig(\|\partial A(0)\|_{L^2} + \int_0^{\mathcal{T}} \|\Box A(t)\|_{L^2(\Sigma_t)} dtig) \ &\cdot & ig(\|\partial\phi(0)\|_{L^2} + \int_0^{\mathcal{T}} \|\Box\phi(t)\|_{L^2(\Sigma_t)} dtig) \end{aligned}$$

Theorem

$$\|\mathcal{P}(A^{j}\partial_{i}A_{j})\|_{L^{2}(\mathcal{D}_{T})} \lesssim \left(\|\partial A(0)\|_{L^{2}} + \int_{0}^{T} \|\Box A(t)\|_{L^{2}(\Sigma_{t})}dt\right)^{2}$$

Reduction: Can assume $\Box A = \Box \phi = 0$.

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV PROOF OF BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

Generalized bilinear estimates: Estimate $\|C(U, \partial \phi)\|_{L^2(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$\Box \phi = \mathbf{0}.$$

Suffices to consider $C(U, \partial \phi_f)$ with,

$$\phi_f(t,x) = \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} \,\widehat{f}(\lambda\omega) \lambda^2 d\lambda d\omega$$

with $u = t \pm x \cdot \omega$, i.e.

 $\mathbf{m}^{\alpha\beta}\partial_{\alpha}u\,\partial_{\beta}u=0.$

We have,

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) \dots = 0.$$

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^2(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$\Box \phi = \mathbf{0}.$$

Suffices to consider $C(U, \partial \phi_f)$ with,

$$\phi_f(t,x) = \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} \,\widehat{f}(\lambda\omega) \lambda^2 d\lambda d\omega$$

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) \dots = 0.$$

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^2(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$\Box \phi = \mathbf{0}.$$

Suffices to consider $C(U, \partial \phi_f)$ with,

$$\phi_f(t,x) = \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} \,\widehat{f}(\lambda\omega) \lambda^2 d\lambda d\omega$$

with $u = t \pm x \cdot \omega$. i.e.

$$\mathbf{m}^{\alpha\beta}\partial_{\alpha}u\,\partial_{\beta}u=0.$$

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) \dots = 0.$$

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^2(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$\Box \phi = \mathbf{0}.$$

Suffices to consider $C(U, \partial \phi_f)$ with,

$$\phi_f(t,x) = \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} \,\widehat{f}(\lambda\omega) \lambda^2 d\lambda d\omega$$

with $u = t \pm x \cdot \omega$. i.e.

$$\mathbf{m}^{\alpha\beta}\partial_{\alpha}u\,\partial_{\beta}u=0.$$

We have.

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) \dots = 0.$$

$$\mathcal{C}(U,\partial\phi_f) = \int_{\mathbb{S}^2} \mathcal{C}(U,\partial^{(\omega)}u) J(^{(\omega)}u) d\omega$$
$$J(^{(\omega)}u) = \int_0^\infty e^{i\lambda^{(\omega)}u} \lambda^3 \widehat{f}(\lambda\omega) d\lambda$$

Now,

 $\begin{aligned} \|\mathcal{C}(U,\partial\phi_{f})\|_{L^{2}(\mathcal{D}_{T})} &\lesssim \int_{\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{-(\omega)}u)J(^{-(\omega)}u)\|_{L^{2}(\mathcal{D}_{T})}d\omega \\ &\lesssim \sup_{\omega\in\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{-(\omega)}u)\|_{L^{2}(\mathcal{H}(^{-(\omega)}u))}\|J(u)\|_{L^{2}_{u}} \\ &\lesssim \sup_{\omega\in\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{-(\omega)}u)\|_{L^{2}(\mathcal{H}(^{-(\omega)}u))}\|\nabla^{2}f\|_{L^{2}(\mathbb{R}^{3})} \end{aligned}$

$$\mathcal{C}(U,\partial\phi_f) = \int_{\mathbb{S}^2} \mathcal{C}(U,\partial^{(\omega)}u) J(^{(\omega)}u) d\omega$$
$$J(^{(\omega)}u) = \int_0^\infty e^{i\lambda^{(\omega)}u} \lambda^3 \widehat{f}(\lambda\omega) d\lambda$$

Now,

$$\begin{split} \|\mathcal{C}(U,\partial\phi_{f})\|_{L^{2}(\mathcal{D}_{T})} &\lesssim \int_{\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{(\omega)}u)J(^{(\omega)}u)\|_{L^{2}(\mathcal{D}_{T})}d\omega \\ &\lesssim \sup_{\omega\in\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{(\omega)}u)\|_{L^{2}(\mathcal{H}(^{(\omega)}u))}\|J(u)\|_{L^{2}_{u}} \\ &\lesssim \sup_{\omega\in\mathbb{S}^{2}} \|\mathcal{C}(U,\partial^{(\omega)}u)\|_{L^{2}(\mathcal{H}(^{(\omega)}u))}\|\nabla^{2}f\|_{L^{2}(\mathbb{R}^{3})} \end{split}$$

Observe that ${}^{(\omega)}I := \partial {}^{(\omega)}u$ is the null geodesic generator of the null hyperplanes ${}^{(\omega)}u = u_0$, denoted $\mathcal{H}({}^{(\omega)}u)$.

$$\mathbf{m}(\ ^{(\omega)}I,\ ^{(\omega)}I)=0,\qquad \mathbf{D}_{\ ^{(\omega)}I}=0.$$

Lemma

 $\|\mathcal{C}(U,\partial\phi)_f\|_{L^2(\mathcal{D}_T)} \lesssim \|\nabla^2 f\|_{L^2(\mathbb{R}^3} \cdot \sup_{\omega \in \mathbb{S}^2} \|\mathcal{C}(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$

Main Point

In interesting situations the quantity $\|\mathcal{C}(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is the flux through the null hypersurface $\mathcal{H}({}^{(\omega)}u)$ of the tensor-field U.

Observe that ${}^{(\omega)}I := \partial {}^{(\omega)}u$ is the null geodesic generator of the null hyperplanes ${}^{(\omega)}u = u_0$, denoted $\mathcal{H}({}^{(\omega)}u)$.

$$\mathbf{m}(\ ^{(\omega)}I,\ ^{(\omega)}I)=0,\qquad \mathbf{D}_{\ ^{(\omega)}I}=0.$$

Lemma

$$\|\mathcal{C}(U,\partial\phi)_f\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\nabla^2 f\|_{L^2(\mathbb{R}^3} \cdot \sup_{\omega \in \mathbb{S}^2} \|\mathcal{C}(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$$

Main Point

In interesting situations the quantity $\|C(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is the flux through the null hypersurface $\mathcal{H}({}^{(\omega)}u)$ of the tensor-field U.

Observe that ${}^{(\omega)}I := \partial {}^{(\omega)}u$ is the null geodesic generator of the null hyperplanes ${}^{(\omega)}u = u_0$, denoted $\mathcal{H}({}^{(\omega)}u)$.

$$\mathbf{m}(\ ^{(\omega)}I,\ ^{(\omega)}I)=0,\qquad \mathbf{D}_{\ ^{(\omega)}I}=0.$$

Lemma

$$\|\mathcal{C}(U,\partial\phi)_f\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\nabla^2 f\|_{L^2(\mathbb{R}^3} \cdot \sup_{\omega \in \mathbb{S}^2} \|\mathcal{C}(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$$

Main Point

In interesting situations the quantity $\|\mathcal{C}(U, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is the flux through the null hypersurface $\mathcal{H}({}^{(\omega)}u)$ of the tensor-field U.

 $\|A \cdot \nabla \phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial A(0)\|_{L^2(\mathbb{R}^2)} \|\partial \phi(0)\|_{L^2(\mathbb{R}^3)}.$

Proof

• Suffices to prove, for $\ \Box \phi = \Box \psi = 0, \qquad \phi = \phi_f,$

 $\|Q(\psi,\phi)\|_{L^2(\mathcal{D}_T)} \lesssim \|\partial\psi(0)\|_{L^2(\mathbb{R}^2)} \cdot \|\nabla^2 f\|_{L^2(\mathbb{R}^3)}$

where $Q(\psi, \phi) = \partial_i \psi \partial_j \phi - \partial_j \psi \partial_i \phi$, i, j = 1, 2, 3• $C(U = \partial \psi, {}^{(\omega)}I) = \partial_i \psi {}^{(\omega)}I_i - \partial_i \psi {}^{(\omega)}I_i$

• $\|\mathcal{C}(\partial \psi, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is bounded by the flux of ψ . Hence

 $\|\mathcal{C}(\partial\psi, {}^{(\omega)}I)\|_{L^{2}(\mathcal{H}({}^{(\omega)}u))} \leq \|\partial\psi(0)\|_{L^{2}(\mathbb{R}^{2})}$

$$\|A \cdot \nabla \phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial A(0)\|_{L^2(\mathbb{R}^2)} \|\partial \phi(0)\|_{L^2(\mathbb{R}^3)}.$$

Proof

• Suffices to prove, for $\Box \phi = \Box \psi = 0$, $\phi = \phi_f$,

 $\begin{aligned} \|Q(\psi,\phi)\|_{L^{2}(\mathcal{D}_{T})} &\lesssim \|\partial\psi(0)\|_{L^{2}(\mathbb{R}^{2})} \cdot \|\nabla^{2}f\|_{L^{2}(\mathbb{R}^{3})} \\ \text{where } Q(\psi,\phi) &= \partial_{i}\psi\partial_{j}\phi - \partial_{j}\psi\partial_{i}\phi, \quad i,j = 1,2,3 \\ \mathcal{C}(U &= \partial\psi, \ ^{(\omega)}l) &= \partial_{i}\psi \ ^{(\omega)}l_{j} - \partial_{j}\psi \ ^{(\omega)}l_{i} \\ \mathcal{C}(\partial\psi, \ ^{(\omega)}l)\|_{L^{2}(\mathcal{H}(\ ^{(\omega)}u))} \text{ is bounded by the flux of } \psi. \text{ Hence} \end{aligned}$

 $\|\mathcal{C}(\partial\psi, {}^{(\omega)}I)\|_{L^{2}(\mathcal{H}({}^{(\omega)}U))} \leq \|\partial\psi(0)\|_{L^{2}(\mathbb{R}^{2})}$

 $\|A \cdot \nabla \phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial A(0)\|_{L^2(\mathbb{R}^2)} \|\partial \phi(0)\|_{L^2(\mathbb{R}^3)}.$

Proof

• Suffices to prove, for $\Box \phi = \Box \psi = 0$, $\phi = \phi_f$,

 $\|Q(\psi,\phi)\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial\psi(0)\|_{L^2(\mathbb{R}^2)} \cdot \|\nabla^2 f\|_{L^2(\mathbb{R}^3)}$

where $Q(\psi, \phi) = \partial_i \psi \partial_j \phi - \partial_j \psi \partial_i \phi$, i, j = 1, 2, 3• $C(U = \partial \psi, {}^{(\omega)}I) = \partial_i \psi {}^{(\omega)}I_i - \partial_i \psi {}^{(\omega)}I_i$

• $\|\mathcal{C}(\partial \psi, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is bounded by the flux of ψ . Hence

 $\|\mathcal{C}(\partial\psi, {}^{(\omega)}I)\|_{L^{2}(\mathcal{H}({}^{(\omega)}U))} \leq \|\partial\psi(0)\|_{L^{2}(\mathbb{R}^{2})}$

$$\|A \cdot \nabla \phi\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial A(0)\|_{L^2(\mathbb{R}^2)} \|\partial \phi(0)\|_{L^2(\mathbb{R}^3)}.$$

Proof

• Suffices to prove, for $\Box \phi = \Box \psi = 0$, $\phi = \phi_f$,

 $\|Q(\psi,\phi)\|_{L^2(\mathcal{D}_{\mathcal{T}})} \lesssim \|\partial\psi(0)\|_{L^2(\mathbb{R}^2)} \cdot \|\nabla^2 f\|_{L^2(\mathbb{R}^3)}$

where $Q(\psi, \phi) = \partial_i \psi \partial_j \phi - \partial_j \psi \partial_i \phi$, i, j = 1, 2, 3

- $C(U = \partial \psi, (\omega)I) = \partial_i \psi (\omega)I_j \partial_j \psi (\omega)I_i$
- $\|\mathcal{C}(\partial \psi, {}^{(\omega)}I)\|_{L^2(\mathcal{H}({}^{(\omega)}u))}$ is bounded by the flux of ψ . Hence

$$\|\mathcal{C}(\partial\psi, \ ^{(\omega)}I)\|_{L^{2}(\mathcal{H}(\ ^{(\omega)}u))} \leq \|\partial\psi(0)\|_{L^{2}(\mathbb{R}^{2})}$$

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV. BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
- Construct an appropriate parametrix for $\Box_g \phi = F$. Obtain control of the error term.
- Use the parametrix to establish the needed bilinear estimates.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
- Construct an appropriate parametrix for $\Box_{g}\phi = F$. Obtain control of the error term.
- Use the parametrix to establish the needed bilinear estimates.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
- ② Construct an appropriate parametrix for □_gφ = F. Obtain control of the error term.
- Use the parametrix to establish the needed bilinear estimates.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
- ② Construct an appropriate parametrix for □_gφ = F. Obtain control of the error term.
- Use the parametrix to establish the needed bilinear estimates.

Connection 1-form: $\mathbf{A}_{\mu} = (A_{\mu})_{\alpha\beta} = \mathbf{g}(\mathbf{D}_{\mu}e_{\beta}, e_{\alpha}).$ Curvature: $\mathbf{F}_{\mu\nu} = \mathbf{D}_{\mu}\mathbf{A}_{\nu} - \mathbf{D}_{\nu}\mathbf{A}_{\mu} - [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$ Gauge transformations: $\tilde{e}_{\alpha} = \mathbf{O}_{\alpha}^{\gamma}e_{\gamma}.$

$$\begin{split} \widetilde{\mathbf{A}}_{\mu} &= O \cdot \mathbf{A}_{\mu} \cdot O^{-1} + \partial_{\mu} O \cdot O^{-1} \\ \widetilde{\mathbf{F}}_{\mu\nu} &= O \cdot \mathbf{F}_{\mu\nu} \cdot O^{-1}. \end{split}$$

Yang-Mills: $\mathbf{D}^{\mu}\mathbf{F}_{\mu\nu} + [\mathbf{A}^{\mu},\mathbf{F}_{\mu\nu}] = 0.$

 $\Box_{\mathbf{g}}\mathbf{A}_{\nu}-\mathbf{D}_{\nu}(\mathbf{D}^{\mu}\mathbf{A}_{\mu}) \ = \ \mathbf{D}^{\mu}([\mathbf{A}_{\mu},\mathbf{A}_{\nu}])-[\mathbf{A}_{\mu},\mathbf{F}_{\mu\nu}].$

$$\nabla^i A_i = A \cdot A$$

Equations become, with $A = (A_0, A)$,

 $\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$ $\Box_g A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3.$ Projection: $\mathcal{P}A = (-\Delta)^{-1} curl(curl A)$

$$\nabla^i A_i = A \cdot A$$

Equations become, with $\mathbf{A} = (A_0, A)$,

$$\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$$

$$\Box_g A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3.$$

Projection: $\mathcal{P}A=(-\Delta)^{-1}$ curl (curl A)

$$\nabla^i A_i = A \cdot A$$

Equations become, with $\mathbf{A} = (A_0, A)$,

$$\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$$

$$\Box_g A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3.$$

Projection: $\mathcal{P}A = (-\Delta)^{-1} curl (curl A)$

$$\nabla^i A_i = A \cdot A$$

Equations become, with $\mathbf{A} = (A_0, A)$,

$$\Delta A_0 = \mathbf{A} \cdot \partial \mathbf{A} + \mathbf{A}^3$$

$$\Box_g A_i + \partial_i \partial_t A_0 = A^j \partial_j A_i + A^j \partial_i A_j + A_0 \partial \mathbf{A} + \mathbf{A} \partial (A_0) + \mathbf{A}^3.$$

Projection: $\mathcal{P}A = (-\Delta)^{-1} \operatorname{curl} (\operatorname{curl} A)$

Parametrix for $\Box_{\mathbf{g}}\phi = 0$

Define

$$\phi_f(t,x) = \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} f(\lambda\omega) \lambda^2 d\lambda d\omega$$
$$\mathbf{g}^{\alpha\beta} \partial_\alpha u \partial_\beta u = 0$$
$$u(0,x,\omega) \sim x \cdot \omega \text{ when } |x| \to +\infty \text{ on } \Sigma_0.$$

We have

$$\Box \phi_{f} = \int_{\mathbb{S}^{2}} \int_{0}^{\infty} (\Box u) e^{i\lambda u(t,x,\omega)} f(\lambda \omega) \lambda^{3} d\lambda d\omega \neq 0.$$

Theorem

Parametrix for $\Box_{\mathbf{g}}\phi = 0$

Define

$$\begin{split} \phi_f(t,x) &= \int_{\mathbb{S}^2} \int_0^\infty e^{i\lambda u(t,x,\omega)} f(\lambda\omega) \lambda^2 d\lambda d\omega \\ &\mathbf{g}^{\alpha\beta} \partial_\alpha u \partial_\beta u = 0 \\ u(0,x,\omega) &\sim x \cdot \omega \text{ when } |x| \to +\infty \text{ on } \Sigma_0. \end{split}$$

We have,

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) e^{i\lambda u(t,x,\omega)} f(\lambda \omega) \lambda^3 d\lambda d\omega \neq 0.$$

Theorem

The operator ψ_f makes sense and, $\|\Box \psi_f\|_{L^2(\mathcal{M})} \lesssim \|\lambda f\|_{L^2(\mathbb{R}^3)}$ $\|\partial \Box \phi_f\|_{L^2(\mathcal{M})} \lesssim \|\lambda^2 f\|_{L^2(\mathbb{R}^3)}$

Parametrix for $\Box_{\mathbf{g}}\phi = 0$

Define

$$\phi_{f}(t,x) = \int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i\lambda u(t,x,\omega)} f(\lambda\omega)\lambda^{2} d\lambda d\omega$$
$$\mathbf{g}^{\alpha\beta}\partial_{\alpha}u\partial_{\beta}u = 0$$
$$u(0,x,\omega) \sim x \cdot \omega \text{ when } |x| \to +\infty \text{ on } \Sigma_{0}.$$

We have,

$$\Box \phi_f = \int_{\mathbb{S}^2} \int_0^\infty (\Box u) e^{i\lambda u(t,x,\omega)} f(\lambda \omega) \lambda^3 d\lambda d\omega \neq 0.$$

Theorem

The operator ψ_f makes sense and, $\|\Box \psi_f\|_{L^2(\mathcal{M})} \lesssim \|\lambda f\|_{L^2(\mathbb{R}^3)}$ $\|\partial \Box \phi_f\|_{L^2(\mathcal{M})} \lesssim \|\lambda^2 f\|_{L^2(\mathbb{R}^3)}$

- Prove a stronger version of the global stability of Minkowski space
- Can on beat the exponent s=2 ?
- Find a better, scale invariant, continuation criterion result