BOUNDED L^{2} CURVATURE CONJECTURE

Sergiu Klainerman
Princeton University

May 17, 2011

ON STEIN'S CONTRIBUTION TO PDE

Based on a powerful divide and conquer strategy which enables the analyst to focus on the main difficulties of the problem at hand while ignoring a multitude of other less essential ones (or equally essential but somehow not interacting with the ones we choose to focus on)

ON STEIN'S CONTRIBUTION TO PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
the analyst to focus on the main difficulties of the problem at hand
while ionoring a multitude of ather less escential ones (or eauallv essential but somenow not interacting with the ones we choose to focus on)

ON STEIN'S CONTRIBUTION TO PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities

ON STEIN'S CONTRIBUTION TO PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

ON STEIN'S CONTRIBUTION TO PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED NONLINEAR PDE

ON STEIN'S CONTRIBUTION TO PDE

- Clarified, extended and popularized Calderon-Zygmund theory of singular integrals
- Father of Stein-Thomas-Strichartz inequalities
- Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY (APPROPRIATELY EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC ANALYSIS BUT RATHER A TRULY REVOLUTIONARY METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED NONLINEAR PDE

Based on a powerful divide and conquer strategy which enables the analyst to focus on the main difficulties of the problem at hand while ignoring a multitude of other less essential ones (or equally essential but somehow not interacting with the ones we choose to focus on).

PLAN OF LECTURE

- I. INTRODUCTION
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV. BILINEAR ESTIMATES IN FLAT SPACE
- V. STRATEGY OF PROOF OF THE CONJECTURE.

PLAN OF LECTURE

- I. INTRODUCTION
- II.
- III.
- IV
- V.

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

$$
\operatorname{Ric}(\mathbf{g})=0
$$

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

$$
\operatorname{Ric}(\mathbf{g})=0
$$

Initial data sets: $\left(\Sigma_{0}, g, k\right)+$ constraints.

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

$$
\operatorname{Ric}(\mathbf{g})=0
$$

Initial data sets: $\left(\Sigma_{0}, g, k\right)+$ constraints.

Classical WP Theorem: $g \in H_{\text {loc }}^{s}\left(\Sigma_{0}\right), k \in H_{l o c}^{s-1}\left(\Sigma_{0}\right), s>5 / 2$
\Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $\left(\Sigma_{0}, g, k\right) \hookrightarrow(\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_{0} in \mathcal{M}.

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

$$
\operatorname{Ric}(\mathbf{g})=0
$$

Initial data sets: $\left(\Sigma_{0}, g, k\right)+$ constraints.

Classical WP Theorem: $g \in H_{\text {loc }}^{s}\left(\Sigma_{0}\right), k \in H_{l o c}^{s-1}\left(\Sigma_{0}\right), s>5 / 2$
\Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $\left(\Sigma_{0}, g, k\right) \hookrightarrow(\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_{0} in \mathcal{M}.

Wave coordinates: $\quad \square_{\mathbf{g}} x^{\alpha}=0 \Rightarrow$

$$
\mathbf{g}^{\alpha \beta} \partial_{\alpha} \partial_{\beta} \mathbf{g}_{\mu \nu}=F_{\mu \nu}(\mathbf{g}, \partial \mathbf{g})
$$

Einstein equation in Vacuum

Solutions: Riccci flat space-times $(\mathcal{M}, \mathbf{g})$.

$$
\operatorname{Ric}(\mathbf{g})=0
$$

Initial data sets: $\left(\Sigma_{0}, g, k\right)+$ constraints.

Classical WP Theorem: $g \in H_{\text {loc }}^{s}\left(\Sigma_{0}\right), k \in H_{l o c}^{s-1}\left(\Sigma_{0}\right), s>5 / 2$
\Rightarrow unique space-time $(\mathcal{M}, \mathbf{g})$ and $\left(\Sigma_{0}, g, k\right) \hookrightarrow(\mathcal{M}, \mathbf{g})$ such that (g, k) are the first and second fundamental forms of Σ_{0} in \mathcal{M}.

Wave coordinates: $\quad \square_{\mathbf{g}} x^{\alpha}=0 \Rightarrow$

$$
\mathbf{g}^{\alpha \beta} \partial_{\alpha} \partial_{\beta} \mathbf{g}_{\mu \nu}=F_{\mu \nu}(\mathbf{g}, \partial \mathbf{g})
$$

Model equation

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Quasilinear wave equations

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Quasilinear wave equations

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Energy estimates:

$$
\|\phi(t)\|_{s} \lesssim\|\phi(0)\|_{s} \exp \int_{0}^{t}\|\partial \phi(\tau)\|_{L^{\infty}} d \tau
$$

Quasilinear wave equations

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Energy estimates:

$$
\|\phi(t)\|_{s} \lesssim\|\phi(0)\|_{s} \exp \int_{0}^{t}\|\partial \phi(\tau)\|_{L^{\infty}} d \tau
$$

Sobolev embedding:

$$
\|\partial \phi(\tau)\|_{L^{\infty}} \lesssim\|\phi(t)\|_{s}, \quad s>5 / 2 .
$$

Quasilinear wave equations

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Energy estimates:

$$
\|\phi(t)\|_{s} \lesssim\|\phi(0)\|_{s} \exp \int_{0}^{t}\|\partial \phi(\tau)\|_{L^{\infty}} d \tau
$$

Sobolev embedding:

$$
\|\partial \phi(\tau)\|_{L^{\infty}} \lesssim\|\phi(t)\|_{s}, \quad s>5 / 2 .
$$

Iteration scheme: $\phi^{(0)}, \phi^{(1)}, \ldots, \phi^{(k)}$,

$$
\mathbf{g}^{\alpha \beta}\left(\phi^{(k)}\right) \partial_{\alpha} \partial_{\beta} \phi^{(k+1)}=F\left(\phi^{(k)}, \partial \phi^{(k)}\right)
$$

Improvements based on Strichartz estimates

Strichartz: For any $s>1$,

$$
\begin{equation*}
\int_{0}^{t}\|\phi(\tau)\|_{L^{\infty}} d \tau \lesssim\|\partial \phi(0)\|_{H^{s-1}}+\int_{0}^{t}\|\square \phi(\tau)\|_{H^{s-1}} \tag{1}
\end{equation*}
$$

Semilinear equations: $\quad \square \phi=F(\phi, \partial \phi)$.
Estimate (1) can be used to improve the WP exponent to $s>2$.

Fact: Result is sharp for general equations (Lindblad)

Improvements based on Strichartz estimates

Strichartz: For any $s>1$,

$$
\begin{equation*}
\int_{0}^{t}\|\phi(\tau)\|_{L^{\infty}} d \tau \lesssim\|\partial \phi(0)\|_{H^{s-1}}+\int_{0}^{t}\|\square \phi(\tau)\|_{H^{s-1}} \tag{1}
\end{equation*}
$$

Semilinear equations: $\quad \square \phi=F(\phi, \partial \phi)$.
Estimate (1) can be used to improve the WP exponent to $s>2$.
Quasilinear equations:

$$
\mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)
$$

Strichartz estimates for equations with very rough coefficients
(Bahouri-Chemin, Tataru, K-Rodnianski).

Improvements based on Strichartz estimates

Strichartz: For any $s>1$,

$$
\begin{equation*}
\int_{0}^{t}\|\phi(\tau)\|_{L^{\infty}} d \tau \lesssim\|\partial \phi(0)\|_{H^{s-1}}+\int_{0}^{t}\|\square \phi(\tau)\|_{H^{s-1}} \tag{1}
\end{equation*}
$$

Semilinear equations: $\quad \square \phi=F(\phi, \partial \phi)$.
Estimate (1) can be used to improve the WP exponent to $s>2$.
Quasilinear equations: $\quad \mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)$.
Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for $s>2$.

Improvements based on Strichartz estimates

Strichartz: For any $s>1$,

$$
\begin{equation*}
\int_{0}^{t}\|\phi(\tau)\|_{L^{\infty}} d \tau \lesssim\|\partial \phi(0)\|_{H^{s-1}}+\int_{0}^{t}\|\square \phi(\tau)\|_{H^{s-1}} \tag{1}
\end{equation*}
$$

Semilinear equations: $\quad \square \phi=F(\phi, \partial \phi)$.
Estimate (1) can be used to improve the WP exponent to $s>2$.
Quasilinear equations: $\quad \mathbf{g}^{\alpha \beta}(\phi) \partial_{\alpha} \partial_{\beta} \phi=F(\phi, \partial \phi)$.
Strichartz estimates for equations with very rough coefficients (Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE are well posed for $s>2$.

Fact: Result is sharp for general equations (Lindblad)

Bounded L^{2} curvature conjecture

Conjecture: EVE is well posed for $s=2$, i.e. initial data sets with

$$
\begin{equation*}
\operatorname{Ric}(g) \in L_{l o c}^{2}\left(\Sigma_{0}\right), \quad \nabla k \in L_{l o c}^{2}\left(\Sigma_{0}\right) \tag{2}
\end{equation*}
$$

Bounded L^{2} curvature conjecture

Conjecture: EVE is well posed for $s=2$, i.e. initial data sets with

$$
\begin{equation*}
\operatorname{Ric}(g) \in L_{l o c}^{2}\left(\Sigma_{0}\right), \quad \nabla k \in L_{l o c}^{2}\left(\Sigma_{0}\right) \tag{2}
\end{equation*}
$$

Fact: Need to use the special structure of the Einstein equations !

Bounded L^{2} curvature conjecture

Conjecture: EVE is well posed for $s=2$, i.e. initial data sets with

$$
\begin{equation*}
\operatorname{Ric}(g) \in L_{l o c}^{2}\left(\Sigma_{0}\right), \quad \nabla k \in L_{l o c}^{2}\left(\Sigma_{0}\right) \tag{2}
\end{equation*}
$$

Fact: Need to use the special structure of the Einstein equations ! Remark: Conjecture should be viewed as a break-down criterion. Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true.

Bounded L^{2} curvature conjecture

Conjecture: EVE is well posed for $s=2$, i.e. initial data sets with

$$
\begin{equation*}
\operatorname{Ric}(g) \in L_{l o c}^{2}\left(\Sigma_{0}\right), \quad \nabla k \in L_{l o c}^{2}\left(\Sigma_{0}\right) \tag{2}
\end{equation*}
$$

Fact: Need to use the special structure of the Einstein equations ! Remark: Conjecture should be viewed as a break-down criterion. Space-time, together with a well chosen time foliation, can be extended as long as (2) hods true.
Theorem[K-Rodnianski, Wang] An EVE space-time, foliated by the level surfaces Σ_{t} of a maximal time function with future unit time normal T, can be extended as long as

$$
\int_{0}^{t}\left\|\mathcal{L}_{T} \mathbf{g}\right\|_{L^{\infty}\left(\Sigma_{\tau}\right)} d \tau<\infty
$$

Main Difficulties

- Problem of coordinates Are there coordinates, or gauge conditions, relative to which EVE exhibit some appropriate version of the null condition ?
- Approximate solutions Do there exist effective parametrices, for solutions of $\square_{\mathbf{g}} \phi=0$ with rough metrics \mathbf{g}, based on which we can prove bilinear and Strichartz estimates ?

PLAN OF LECTURE

- I.
- II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET YANG-MILLS
- III.
- IV
- V.

Cartan Formalism

Orthonormal frames: vectorfields $e_{\alpha}, \alpha=0,1,2,3$,

$$
\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)
$$

Cartan Formalism

Orthonormal frames: vectorfields $e_{\alpha}, \alpha=0,1,2,3$,

$$
\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)
$$

Connection 1-forms:

$$
\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)
$$

Cartan Formalism

Orthonormal frames: vectorfields $e_{\alpha}, \alpha=0,1,2,3$,

$$
\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)
$$

Connection 1-forms:

$$
\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)
$$

Curvature:

$$
\mathbf{R}_{\mu \nu \alpha \beta}=\left(\mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}-\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)_{\alpha \beta}:=\left(\mathbf{F}_{\mu \nu}\right)_{\alpha \beta}
$$

Cartan Formalism

Orthonormal frames: vectorfields $e_{\alpha}, \alpha=0,1,2,3$,

$$
\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)
$$

Connection 1-forms:

$$
\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)
$$

Curvature:

$$
\mathbf{R}_{\mu \nu \alpha \beta}=\left(\mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}-\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)_{\alpha \beta}:=\left(\mathbf{F}_{\mu \nu}\right)_{\alpha \beta}
$$

Yang-Mills:

$$
\mathbf{D}^{\mu} \mathbf{F}_{\mu \nu}+\left[\mathbf{A}^{\mu}, \mathbf{F}_{\mu \nu}\right]=0
$$

Cartan Formalism

Orthonormal frames: vectorfields $e_{\alpha}, \alpha=0,1,2,3$,

$$
\mathbf{g}\left(e_{\alpha}, e_{\beta}\right)=\mathbf{m}_{\alpha \beta}=\operatorname{diag}(-1,1,1,1)
$$

Connection 1-forms:

$$
\left(\mathbf{A}_{\mu}\right)_{\alpha \beta}=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)
$$

Curvature:

$$
\mathbf{R}_{\mu \nu \alpha \beta}=\left(\mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}-\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)_{\alpha \beta}:=\left(\mathbf{F}_{\mu \nu}\right)_{\alpha \beta}
$$

Yang-Mills:

$$
\mathbf{D}^{\mu} \mathbf{F}_{\mu \nu}+\left[\mathbf{A}^{\mu}, \mathbf{F}_{\mu \nu}\right]=0
$$

Frame changes: $\widetilde{e}_{\alpha}=\mathbf{O}_{\alpha}^{\gamma} e_{\gamma}$

$$
\left(\widetilde{\mathbf{A}}_{\mu}\right)_{\alpha \beta}=\mathbf{O}_{\alpha}^{\gamma}\left(\mathbf{A}_{\mu}\right)_{\gamma \delta} \mathbf{O}_{\beta}^{\delta}+\partial_{\mu}\left(\mathbf{O}_{\alpha}^{\gamma}\right) \mathbf{O}_{\gamma \beta}
$$

EVE as Yang Mills Gauge Theory

Connection 1-form: $\mathbf{A}_{\mu}=\left(A_{\mu}\right)_{\alpha \beta}$.
Curvature: $\mathbf{F}_{\mu \nu}=\mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}-\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]$
Gauge transformations:

$$
\begin{aligned}
\tilde{\mathbf{A}}_{\mu} & =O \cdot \mathbf{A}_{\mu} \cdot O^{-1}+\partial_{\mu} O \cdot O^{-1} \\
\widetilde{\mathbf{F}}_{\mu \nu} & =O \cdot \mathbf{F}_{\mu \nu} \cdot O^{-1} .
\end{aligned}
$$

Yang-Mills: $\quad \mathbf{D}^{\mu} \mathbf{F}_{\mu \nu}+\left[\mathbf{A}^{\mu}, \mathbf{F}_{\mu \nu}\right]=0$.

$$
\begin{aligned}
\square_{\mathbf{g}} \mathbf{A}_{\nu}-\mathbf{D}_{\nu}\left(\mathbf{D}^{\mu} \mathbf{A}_{\mu}\right) & =\mathbf{D}^{\mu}\left(\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)-\left[\mathbf{A}^{\mu}, \mathbf{F}_{\mu \nu}\right] \\
& =\mathbf{J}_{\nu}(\mathbf{A}, \mathbf{D A})
\end{aligned}
$$

PLAN OF LECTURE

- I.
- II.
- III. YANG-MILLS EQUATIONS IN FLAT SPACE
- IV
- V.

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] The flat Yang-Mills equations in \mathbb{R}^{1+3} are well posed in the energy norm, i.e $s=1$.

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] The flat Yang-Mills equations in \mathbb{R}^{1+3} are well posed in the energy norm, i.e $s=1$.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i}=0$
- Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3}
\end{aligned}
$$

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] The flat Yang-Mills equations in \mathbb{R}^{1+3} are well posed in the energy norm, i.e $s=1$.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i}=0$
- Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3}
\end{aligned}
$$

- Apply $\mathcal{P}=(-\Delta)^{-1}$ curl (curl), the projection operator on the divergence free vectorfields,

$$
\square A_{i}=\mathcal{P}\left(A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}\right)+\text { l.o.t. }
$$

Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] The flat Yang-Mills equations in \mathbb{R}^{1+3} are well posed in the energy norm, i.e $s=1$.

- Use gauge freedom to impose $\sum_{i=1}^{3} \nabla^{i} A_{i}=0$
- Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3}
\end{aligned}
$$

- Apply $\mathcal{P}=(-\Delta)^{-1}$ curl (curl), the projection operator on the divergence free vectorfields,

$$
\square A_{i}=\mathcal{P}\left(A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}\right)+\text { l.o.t. }
$$

- Use bilinear estimates to control the most dangerous terms,

$$
\mathcal{P}\left(A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}\right)
$$

Bilinear Estimates in \mathbb{R}^{1+3}

Assume: $A=\left(A_{1}, A_{2}, A_{3}\right)$, $\operatorname{div} A=0$ in $\mathcal{D}_{T}=[0, T] \times \mathbb{R}^{3}$.

Bilinear Estimates in \mathbb{R}^{1+3}

Assume: $A=\left(A_{1}, A_{2}, A_{3}\right)$, $\operatorname{div} A=0$ in $\mathcal{D}_{T}=[0, T] \times \mathbb{R}^{3}$.

Theorem

$$
\begin{aligned}
\left\|A^{i} \partial_{i} \phi\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} & \lesssim\left(\|\partial A(0)\|_{L^{2}}+\int_{0}^{T}\|\square A(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right) \\
& \cdot\left(\|\partial \phi(0)\|_{L^{2}}+\int_{0}^{T}\|\square \phi(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right)
\end{aligned}
$$

Bilinear Estimates in \mathbb{R}^{1+3}

Assume: $A=\left(A_{1}, A_{2}, A_{3}\right)$, $\operatorname{div} A=0$ in $\mathcal{D}_{T}=[0, T] \times \mathbb{R}^{3}$.

Theorem

$$
\begin{aligned}
\left\|A^{i} \partial_{i} \phi\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} & \lesssim\left(\|\partial A(0)\|_{L^{2}}+\int_{0}^{T}\|\square A(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right) \\
& \cdot\left(\|\partial \phi(0)\|_{L^{2}}+\int_{0}^{T}\|\square \phi(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right)
\end{aligned}
$$

Theorem

$$
\left\|\mathcal{P}\left(A^{j} \partial_{i} A_{j}\right)\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\left(\|\partial A(0)\|_{L^{2}}+\int_{0}^{T}\|\square A(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right)^{2}
$$

Bilinear Estimates in \mathbb{R}^{1+3}

Assume: $A=\left(A_{1}, A_{2}, A_{3}\right)$, $\operatorname{div} A=0$ in $\mathcal{D}_{T}=[0, T] \times \mathbb{R}^{3}$.

Theorem

$$
\begin{aligned}
\left\|A^{i} \partial_{i} \phi\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} & \lesssim\left(\|\partial A(0)\|_{L^{2}}+\int_{0}^{T}\|\square A(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right) \\
& \cdot\left(\|\partial \phi(0)\|_{L^{2}}+\int_{0}^{T}\|\square \phi(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right)
\end{aligned}
$$

Theorem

$$
\left\|\mathcal{P}\left(A^{j} \partial_{i} A_{j}\right)\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\left(\|\partial A(0)\|_{L^{2}}+\int_{0}^{T}\|\square A(t)\|_{L^{2}\left(\Sigma_{t}\right)} d t\right)^{2}
$$

Reduction: Can assume $\square A=\square \phi=0$.

PLAN OF LECTURE

- 1.
- II.
- III.
- IV PROOF OF BILINEAR ESTIMATES IN FLAT SPACE - V.

Proof of bilinear estimates in flat space

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^{2}(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$
\square \phi=0 .
$$

Proof of bilinear estimates in flat space

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^{2}(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$
\square \phi=0 .
$$

Suffices to consider $\mathcal{C}\left(U, \partial \phi_{f}\right)$ with,

$$
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} \widehat{f}(\lambda \omega) \lambda^{2} d \lambda d \omega
$$

Proof of bilinear estimates in flat space

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^{2}(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$
\square \phi=0 .
$$

Suffices to consider $\mathcal{C}\left(U, \partial \phi_{f}\right)$ with,

$$
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} \widehat{f}(\lambda \omega) \lambda^{2} d \lambda d \omega
$$

with $u=t \pm x \cdot \omega$, i.e.

$$
\mathbf{m}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0 .
$$

Proof of bilinear estimates in flat space

Generalized bilinear estimates: Estimate $\|\mathcal{C}(U, \partial \phi)\|_{L^{2}(\mathcal{M})}$ of contractions between tensorfields U and solutions of

$$
\square \phi=0 .
$$

Suffices to consider $\mathcal{C}\left(U, \partial \phi_{f}\right)$ with,

$$
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} \widehat{f}(\lambda \omega) \lambda^{2} d \lambda d \omega
$$

with $u=t \pm x \cdot \omega$, i.e.

$$
\mathbf{m}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0 .
$$

We have,

$$
\square \phi_{f}=\int_{\mathbb{S}^{2}} \int_{0}^{\infty}(\square u) \ldots=0 .
$$

Proof in \mathbb{R}^{1+3}

$$
\begin{aligned}
\mathcal{C}\left(U, \partial \phi_{f}\right) & =\int_{\mathbb{S}^{2}} \mathcal{C}\left(U, \partial^{(\omega)} u\right) J\left({ }^{(\omega)} u\right) d \omega \\
J\left({ }^{(\omega)} u\right) & =\int_{0}^{\infty} e^{i \lambda(\omega)} u \lambda^{3} \widehat{f}(\lambda \omega) d \lambda
\end{aligned}
$$

Proof in \mathbb{R}^{1+3}

$$
\begin{aligned}
\mathcal{C}\left(U, \partial \phi_{f}\right) & =\int_{\mathbb{S}^{2}} \mathcal{C}\left(U, \partial^{(\omega)} u\right) J\left({ }^{(\omega)} u\right) d \omega \\
J\left({ }^{(\omega)} u\right) & =\int_{0}^{\infty} e^{i \lambda{ }^{(\omega)} u} \lambda^{3} \widehat{f}(\lambda \omega) d \lambda
\end{aligned}
$$

Now,
$\left\|\mathcal{C}\left(U, \partial \phi_{f}\right)\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim \int_{\mathbb{S}^{2}}\left\|\mathcal{C}\left(U, \partial{ }^{(\omega)} u\right) J\left({ }^{(\omega)} u\right)\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} d \omega$

$$
\begin{aligned}
& \lesssim \sup _{\omega \in \mathbb{S}^{2}}\left\|\mathcal{C}\left(U, \partial^{(\omega)} u\right)\right\|_{L^{2}\left(\mathcal{H}\left({ }^{(\omega)} u\right)\right)}\|J(u)\|_{L_{u}^{2}} \\
& \lesssim \sup _{\omega \in \mathbb{S}^{2}}\left\|\mathcal{C}\left(U, \partial^{(\omega)} u\right)\right\|_{L^{2}\left(\mathcal{H}\left({ }^{(\omega)} u\right)\right)}\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
\end{aligned}
$$

Proof in \mathbb{R}^{1+3}

Observe that ${ }^{(\omega)} /:=\partial^{(\omega)} u$ is the null geodesic generator of the null hyperplanes ${ }^{(\omega)} u=u_{0}$, denoted $\mathcal{H}\left({ }^{(\omega)} u\right)$.

$$
\mathbf{m}\left({ }^{(\omega)} I,{ }^{(\omega)} l\right)=0, \quad \mathbf{D}_{(\omega)}{ }^{(\omega)} I=0 .
$$

Proof in \mathbb{R}^{1+3}

Observe that ${ }^{(\omega)} /:=\partial^{(\omega)} u$ is the null geodesic generator of the null hyperplanes ${ }^{(\omega)} u=u_{0}$, denoted $\mathcal{H}\left({ }^{(\omega)} u\right)$.

$$
\mathbf{m}\left({ }^{(\omega)} I,{ }^{(\omega)} I\right)=0, \quad \mathbf{D}_{(\omega)}{ }^{(\omega)} I=0 .
$$

Lemma

$$
\left\|\mathcal{C}(U, \partial \phi)_{f}\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right.} \cdot \sup _{\omega \in \mathbb{S}^{2}}\left\|\mathcal{C}\left(U,{ }^{(\omega)} /\right)\right\|_{L^{2}(\mathcal{H}((\omega) u))}
$$

Proof in \mathbb{R}^{1+3}

Observe that ${ }^{(\omega)} /:=\partial^{(\omega)} u$ is the null geodesic generator of the null hyperplanes ${ }^{(\omega)} u=u_{0}$, denoted $\mathcal{H}\left({ }^{(\omega)} u\right)$.

$$
\mathbf{m}\left({ }^{(\omega)} l,{ }^{(\omega)} l\right)=0, \quad \mathbf{D}_{(\omega)}{ }^{(\omega)} I=0 .
$$

Lemma

$$
\left\|\mathcal{C}(U, \partial \phi)_{f}\right\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right.} \cdot \sup _{\omega \in \mathbb{S}^{2}}\left\|\mathcal{C}\left(U,{ }^{(\omega)} /\right)\right\|_{L^{2}(\mathcal{H}((\omega) u))}
$$

Main Point

In interesting situations the quantity $\left\|\mathcal{C}\left(U,{ }^{(\omega)} /\right)\right\|_{L^{2}\left(\mathcal{H}\left({ }^{(\omega)} u\right)\right)}$ is the flux through the null hypersurface $\mathcal{H}\left({ }^{(\omega)} u\right)$ of the tensor-field U.

Applications

Theorem (First bilinear estimate)

$$
\|A \cdot \nabla \phi\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial A(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}\|\partial \phi(0)\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Applications

Theorem (First bilinear estimate)

$$
\|A \cdot \nabla \phi\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial A(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}\|\partial \phi(0)\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Proof

- Suffices to prove, for $\square \phi=\square \psi=0, \quad \phi=\phi_{f}$,

$$
\|Q(\psi, \phi)\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial \psi(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \cdot\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

where $Q(\psi, \phi)=\partial_{i} \psi \partial_{j} \phi-\partial_{j} \psi \partial_{i} \phi, \quad i, j=1,2,3$

Applications

Theorem (First bilinear estimate)

$$
\|A \cdot \nabla \phi\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial A(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}\|\partial \phi(0)\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Proof

- Suffices to prove, for $\square \phi=\square \psi=0, \quad \phi=\phi_{f}$,

$$
\|Q(\psi, \phi)\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial \psi(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \cdot\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

where $Q(\psi, \phi)=\partial_{i} \psi \partial_{j} \phi-\partial_{j} \psi \partial_{i} \phi, \quad i, j=1,2,3$

- $\mathcal{C}\left(U=\partial \psi,{ }^{(\omega)} \ell\right)=\partial_{i} \psi^{(\omega)} I_{j}-\partial_{j} \psi^{(\omega)} I_{i}$

Applications

Theorem (First bilinear estimate)

$$
\|A \cdot \nabla \phi\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial A(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}\|\partial \phi(0)\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Proof

- Suffices to prove, for $\square \phi=\square \psi=0, \quad \phi=\phi_{f}$,

$$
\|Q(\psi, \phi)\|_{L^{2}\left(\mathcal{D}_{T}\right)} \lesssim\|\partial \psi(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \cdot\left\|\nabla^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

where $Q(\psi, \phi)=\partial_{i} \psi \partial_{j} \phi-\partial_{j} \psi \partial_{i} \phi, \quad i, j=1,2,3$

- $\mathcal{C}\left(U=\partial \psi,{ }^{(\omega)} \ell\right)=\partial_{i} \psi^{(\omega)} \iota_{j}-\partial_{j} \psi^{(\omega)} I_{i}$
- $\left\|\mathcal{C}\left(\partial \psi,{ }^{(\omega)} /\right)\right\|_{L^{2}\left(\mathcal{H}\left({ }^{(\omega)} u\right)\right)}$ is bounded by the flux of ψ. Hence

$$
\left\|\mathcal{C}\left(\partial \psi,{ }^{(\omega)} l\right)\right\|_{L^{2}\left(\mathcal{H}\left({ }^{(\omega)} u\right)\right)} \leq\|\partial \psi(0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

PLAN OF LECTURE

- I.
- II.
- III.
- IV
- V. STRATEGY OF PROOF OF THE CONJECTURE.

Strategy

(1) Exhibit the hidden null structure of the Einstein equations.

Strategy

(1) Exhibit the hidden null structure of the Einstein equations.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator

Strategy

(1) Exhibit the hidden null structure of the Einstein equations.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
(2) Construct an appropriate parametrix for $\square_{\mathbf{g}} \phi=F$. Obtain control of the error term.

Strategy

(1) Exhibit the hidden null structure of the Einstein equations.

- Yang-Mills formalism
- Coulomb type gauge
- Projection operator
(2) Construct an appropriate parametrix for $\square_{\mathbf{g}} \phi=F$. Obtain control of the error term.
(3) Use the parametrix to establish the needed bilinear estimates.

Hidden null structure of EVE.

Connection 1-form: $\mathbf{A}_{\mu}=\left(A_{\mu}\right)_{\alpha \beta}=\mathbf{g}\left(\mathbf{D}_{\mu} e_{\beta}, e_{\alpha}\right)$.
Curvature: $\mathbf{F}_{\mu \nu}=\mathbf{D}_{\mu} \mathbf{A}_{\nu}-\mathbf{D}_{\nu} \mathbf{A}_{\mu}-\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]$
Gauge transformations: $\quad \widetilde{e}_{\alpha}=\mathbf{O}_{\alpha}^{\gamma} e_{\gamma}$.

$$
\begin{aligned}
\tilde{\mathbf{A}}_{\mu} & =O \cdot \mathbf{A}_{\mu} \cdot O^{-1}+\partial_{\mu} O \cdot O^{-1} \\
\widetilde{\mathbf{F}}_{\mu \nu} & =O \cdot \mathbf{F}_{\mu \nu} \cdot O^{-1} .
\end{aligned}
$$

Yang-Mills: $\quad \mathbf{D}^{\mu} \mathbf{F}_{\mu \nu}+\left[\mathbf{A}^{\mu}, \mathbf{F}_{\mu \nu}\right]=0$.

$$
\square_{\mathbf{g}} \mathbf{A}_{\nu}-\mathbf{D}_{\nu}\left(\mathbf{D}^{\mu} \mathbf{A}_{\mu}\right)=\mathbf{D}^{\mu}\left(\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]\right)-\left[\mathbf{A}_{\mu}, \mathbf{F}_{\mu \nu}\right]
$$

Coulomb type gauge: Choose e_{0} unit normal to a maximal foliation and e_{1}, e_{2}, e_{3} such that,

$$
\nabla^{i} A_{i}=A \cdot A
$$

Coulomb type gauge: Choose e_{0} unit normal to a maximal foliation and e_{1}, e_{2}, e_{3} such that,

$$
\nabla^{i} A_{i}=A \cdot A
$$

Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square_{g} A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3} .
\end{aligned}
$$

Coulomb type gauge: Choose e_{0} unit normal to a maximal foliation and e_{1}, e_{2}, e_{3} such that,

$$
\nabla^{i} A_{i}=A \cdot A
$$

Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square_{g} A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3} .
\end{aligned}
$$

Projection: $\mathcal{P} A=(-\Delta)^{-1} \operatorname{curl}(\operatorname{curl} A)$

Coulomb type gauge: Choose e_{0} unit normal to a maximal foliation and e_{1}, e_{2}, e_{3} such that,

$$
\nabla^{i} A_{i}=A \cdot A
$$

Equations become, with $\mathbf{A}=\left(A_{0}, A\right)$,

$$
\begin{aligned}
\Delta A_{0} & =\mathbf{A} \cdot \partial \mathbf{A}+\mathbf{A}^{3} \\
\square_{g} A_{i}+\partial_{i} \partial_{t} A_{0} & =A^{j} \partial_{j} A_{i}+A^{j} \partial_{i} A_{j}+A_{0} \partial \mathbf{A}+\mathbf{A} \partial\left(A_{0}\right)+\mathbf{A}^{3} .
\end{aligned}
$$

Projection: $\mathcal{P} A=(-\Delta)^{-1} \operatorname{curl}(\operatorname{curl} A)$
Fact: Commutation with \mathcal{P} produces only null forms !

Parametrix for $\square_{\mathrm{g}} \phi=0$

Define

$$
\begin{gathered}
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} f(\lambda \omega) \lambda^{2} d \lambda d \omega \\
\mathbf{g}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0 \\
u(0, x, \omega) \sim x \cdot \omega \text { when }|x| \rightarrow+\infty \text { on } \Sigma_{0}
\end{gathered}
$$

Parametrix for $\square_{\mathrm{g}} \phi=0$

Define

$$
\begin{gathered}
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} f(\lambda \omega) \lambda^{2} d \lambda d \omega \\
\mathbf{g}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0 \\
u(0, x, \omega) \sim x \cdot \omega \text { when }|x| \rightarrow+\infty \text { on } \Sigma_{0}
\end{gathered}
$$

We have,

$$
\square \phi_{f}=\int_{\mathbb{S}^{2}} \int_{0}^{\infty}(\square u) e^{i \lambda u(t, x, \omega)} f(\lambda \omega) \lambda^{3} d \lambda d \omega \neq 0
$$

Parametrix for $\square_{\mathrm{g}} \phi=0$

Define

$$
\begin{gathered}
\phi_{f}(t, x)=\int_{\mathbb{S}^{2}} \int_{0}^{\infty} e^{i \lambda u(t, x, \omega)} f(\lambda \omega) \lambda^{2} d \lambda d \omega \\
\mathbf{g}^{\alpha \beta} \partial_{\alpha} u \partial_{\beta} u=0 \\
u(0, x, \omega) \sim x \cdot \omega \text { when }|x| \rightarrow+\infty \text { on } \Sigma_{0}
\end{gathered}
$$

We have,

$$
\square \phi_{f}=\int_{\mathbb{S}^{2}} \int_{0}^{\infty}(\square u) e^{i \lambda u(t, x, \omega)} f(\lambda \omega) \lambda^{3} d \lambda d \omega \neq 0
$$

Theorem

The operator ψ_{f} makes sense and,

$$
\begin{aligned}
\left\|\square \psi_{f}\right\|_{L^{2}(\mathcal{M})} & \lesssim\|\lambda f\|_{L^{2}\left(\mathbb{R}^{3}\right)} \\
\left\|\partial \square \phi_{f}\right\|_{L^{2}(\mathcal{M})} & \lesssim\left\|\lambda^{2} f\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
\end{aligned}
$$

Open questions

- Prove a stronger version of the global stability of Minkowski space
- Can on beat the exponent $\mathrm{s}=2$?
- Find a better, scale invariant, continuation criterion result

