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ON STEIN’S CONTRIBUTION TO PDE

Clarified, extended and popularized Calderon-Zygmund theory
of singular integrals

Father of Stein-Thomas-Strichartz inequalities

Clarified, extended and popularized Littlewwod-Paley theory

LITTLEWOOD-PALEY THEORY ( APPROPRIATELY
EXTENDED) IS NOT JUST A GOOD IDEA IN HARMONIC

ANALYSIS BUT RATHER A TRULY REVOLUTIONARY
METHODOLOGY WHICH HAS COMPLETELY TRANSFORMED

NONLINEAR PDE

Based on a powerful divide and conquer strategy which enables
the analyst to focus on the main difficulties of the problem at hand
while ignoring a multitude of other less essential ones (or equally
essential but somehow not interacting with the ones we choose to
focus on).
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Einstein equation in Vacuum

Solutions: Riccci flat space-times (M, g).

Ric(g) = 0.

Initial data sets: (Σ0, g , k) +constraints.

Classical WP Theorem: g ∈ Hs
loc(Σ0), k ∈ Hs−1

loc (Σ0), s > 5/2

⇒ unique space-time (M, g) and (Σ0, g , k) ↪→ (M, g) such
that (g , k) are the first and second fundamental forms of Σ0 in M.

Wave coordinates: �gxα = 0⇒

gαβ ∂α∂β gµν = Fµν(g, ∂g)

Model equation

gαβ(φ) ∂α∂β φ = F (φ, ∂φ)
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Quasilinear wave equations

gαβ(φ) ∂α∂β φ = F (φ, ∂φ),

Energy estimates:

‖φ(t)‖s . ‖φ(0)‖s exp

∫ t

0
‖∂φ(τ)‖L∞dτ

Sobolev embedding:

‖∂φ(τ)‖L∞ . ‖φ(t)‖s , s > 5/2 .

Iteration scheme: φ(0), φ(1), . . . , φ(k),

gαβ(φ(k)) ∂α∂β φ
(k+1) = F (φ(k), ∂φ(k))
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Improvements based on Strichartz estimates

Strichartz: For any s > 1,∫ t

0
‖φ(τ)‖L∞dτ . ‖∂φ(0)‖Hs−1 +

∫ t

0
‖�φ(τ)‖Hs−1 (1)

Semilinear equations: �φ = F (φ, ∂φ).
Estimate (1) can be used to improve the WP exponent to s > 2 .

Quasilinear equations: gαβ(φ) ∂α∂β φ = F (φ, ∂φ).
Strichartz estimates for equations with very rough coefficients
(Bahouri-Chemin, Tataru, K-Rodnianski).

Theorem[K-Rodnianski, Smith-Tataru] In wave coordinates EVE
are well posed for s > 2 .

Fact: Result is sharp for general equations (Lindblad)
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Bounded L2 curvature conjecture

Conjecture: EVE is well posed for s = 2 , i.e. initial data sets
with

Ric(g) ∈ L2
loc(Σ0), ∇k ∈ L2

loc(Σ0). (2)

Fact: Need to use the special structure of the Einstein equations !
Remark: Conjecture should be viewed as a break-down criterion.
Space-time, together with a well chosen time foliation, can be
extended as long as (2) hods true.
Theorem[K-Rodnianski, Wang] An EVE space-time, foliated by
the level surfaces Σt of a maximal time function with future unit
time normal T , can be extended as long as∫ t

0
‖LTg‖L∞(Στ )dτ <∞
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Main Difficulties

Problem of coordinates Are there coordinates, or gauge
conditions, relative to which EVE exhibit some appropriate
version of the null condition ?

Approximate solutions Do there exist effective parametrices,
for solutions of �gφ = 0 with rough metrics g, based on
which we can prove bilinear and Strichartz estimates ?
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Cartan Formalism

Orthonormal frames: vectorfields eα, α = 0, 1, 2, 3,

g(eα, eβ) = mαβ = diag(−1, 1, 1, 1).

Connection 1-forms:

(Aµ)αβ = g(Dµeβ, eα)

Curvature:

Rµναβ =
(
DµAν −DνAµ − [Aµ,Aν ]

)
αβ

:= (Fµν)αβ.

Yang-Mills:

DµFµν + [Aµ,Fµν ] = 0.

Frame changes: ẽα = Oγ
αeγ

(Ãµ)αβ = Oγ
α (Aµ)γδ Oδ

β + ∂µ(Oγ
α) Oγβ
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EVE as Yang Mills Gauge Theory

Connection 1-form: Aµ = (Aµ)αβ.

Curvature: Fµν = DµAν −DνAµ − [Aµ,Aν ]

Gauge transformations:

Ãµ = O · Aµ · O−1 + ∂µO · O−1

F̃µν = O · Fµν · O−1.

Yang-Mills: DµFµν + [Aµ,Fµν ] = 0.

�gAν −Dν(DµAµ) = Dµ([Aµ,Aν ])− [Aµ,Fµν ]

= Jν(A,DA)



PLAN OF LECTURE

I. INTRODUCTION

II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET
YANG-MILLS

III. YANG-MILLS EQUATIONS IN FLAT SPACE

IV . BILINEAR ESTIMATES IN FLAT SPACE

V. STRATEGY OF PROOF OF THE CONJECTURE.



Yang Mills equations in flat space.

Theorem[K-Machedon(1994)] The flat Yang-Mills equations in
R1+3 are well posed in the energy norm, i.e s = 1 .

Use gauge freedom to impose
∑3

i=1∇iAi = 0

Equations become, with A = (A0,A),

∆A0 = A · ∂A + A3

�Ai + ∂i∂tA0 = A j∂jAi + A j∂iAj + A0∂A + A∂(A0) + A3

Apply P = (−∆)−1curl (curl ), the projection operator on the
divergence free vectorfields,

�Ai = P(A j∂jAi + A j∂iAj) + l.o.t.

Use bilinear estimates to control the most dangerous terms,

P(A j∂jAi + A j∂iAj)
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Bilinear Estimates in R1+3

Assume: A = (A1,A2,A3), div A = 0 in DT = [0,T ]× R3.

Theorem

‖A i∂iφ‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)
·
(
‖∂φ(0)‖L2 +

∫ T

0
‖�φ(t)‖L2(Σt)dt

)
Theorem

‖P(A j∂iAj)‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)2

Reduction: Can assume �A = �φ = 0.



Bilinear Estimates in R1+3

Assume: A = (A1,A2,A3), div A = 0 in DT = [0,T ]× R3.

Theorem

‖A i∂iφ‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)
·
(
‖∂φ(0)‖L2 +

∫ T

0
‖�φ(t)‖L2(Σt)dt

)
Theorem

‖P(A j∂iAj)‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)2

Reduction: Can assume �A = �φ = 0.



Bilinear Estimates in R1+3

Assume: A = (A1,A2,A3), div A = 0 in DT = [0,T ]× R3.

Theorem

‖A i∂iφ‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)
·
(
‖∂φ(0)‖L2 +

∫ T

0
‖�φ(t)‖L2(Σt)dt

)
Theorem

‖P(A j∂iAj)‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)2

Reduction: Can assume �A = �φ = 0.



Bilinear Estimates in R1+3

Assume: A = (A1,A2,A3), div A = 0 in DT = [0,T ]× R3.

Theorem

‖A i∂iφ‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)
·
(
‖∂φ(0)‖L2 +

∫ T

0
‖�φ(t)‖L2(Σt)dt

)
Theorem

‖P(A j∂iAj)‖L2(DT ) .
(
‖∂A(0)‖L2 +

∫ T

0
‖�A(t)‖L2(Σt)dt

)2

Reduction: Can assume �A = �φ = 0.



PLAN OF LECTURE

I. INTRODUCTION

II. CARTAN FORMALISM. EINSTEIN EQUATIONS MEET
YANG-MILLS

III. YANG-MILLS EQUATIONS IN FLAT SPACE

IV PROOF OF BILINEAR ESTIMATES IN FLAT SPACE

V. STRATEGY OF PROOF OF THE CONJECTURE.



Proof of bilinear estimates in flat space

Generalized bilinear estimates: Estimate ‖C(U, ∂φ)‖L2(M) of
contractions between tensorfields U and solutions of

�φ = 0.

Suffices to consider C(U, ∂φf ) with,

φf (t, x) =

∫
S2

∫ ∞
0

e iλu(t,x ,ω) f̂ (λω)λ2dλdω

with u = t ± x · ω, i.e.

mαβ∂αu ∂βu = 0.

We have,

�φf =

∫
S2

∫ ∞
0

(�u) . . . = 0.
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Proof in R1+3

C(U, ∂φf ) =

∫
S2

C(U, ∂ (ω)u)J( (ω)u)dω

J( (ω)u) =

∫ ∞
0

e iλ
(ω)uλ3f̂ (λω)dλ

Now,

‖C(U, ∂φf )‖L2(DT ) .
∫
S2

‖C(U, ∂ (ω)u)J( (ω)u)‖L2(DT )dω

. sup
ω∈S2

‖C(U, ∂ (ω)u)‖L2(H( (ω)u))‖J(u)‖L2
u

. sup
ω∈S2

‖C(U, ∂ (ω)u)‖L2(H( (ω)u))‖∇
2f ‖L2(R3)
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Proof in R1+3

Observe that (ω)l := ∂ (ω)u is the null geodesic generator of the
null hyperplanes (ω)u = u0, denoted H( (ω)u).

m( (ω)l , (ω)l) = 0, D (ω)l
(ω)l = 0.

Lemma

‖C(U, ∂φ)f ‖L2(DT ) . ‖∇2f ‖L2(R3 · sup
ω∈S2

‖C(U, (ω)l)‖L2(H( (ω)u))

Main Point

In interesting situations the quantity ‖C(U, (ω)l)‖L2(H( (ω)u)) is the

flux through the null hypersurface H( (ω)u) of the tensor-field U.
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Applications

Theorem (First bilinear estimate)

‖A · ∇φ‖L2(DT ) . ‖∂A(0)‖L2(R2)‖∂φ(0)‖L2(R3).

Proof

Suffices to prove, for �φ = �ψ = 0, φ = φf ,

‖Q(ψ, φ)‖L2(DT ) . ‖∂ψ(0)‖L2(R2) · ‖∇2f ‖L2(R3)

where Q(ψ, φ) = ∂iψ∂jφ− ∂jψ∂iφ, i , j = 1, 2, 3

C(U = ∂ψ, (ω)l) = ∂iψ
(ω)lj − ∂jψ (ω)li

‖C(∂ψ, (ω)l)‖L2(H( (ω)u)) is bounded by the flux of ψ. Hence

‖C(∂ψ, (ω)l)‖L2(H( (ω)u)) ≤ ‖∂ψ(0)‖L2(R2)
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Strategy

1 Exhibit the hidden null structure of the Einstein equations.

Yang-Mills formalism
Coulomb type gauge
Projection operator

2 Construct an appropriate parametrix for �gφ = F . Obtain
control of the error term.

3 Use the parametrix to establish the needed bilinear estimates.
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Hidden null structure of EVE.

Connection 1-form: Aµ = (Aµ)αβ = g(Dµeβ, eα).

Curvature: Fµν = DµAν −DνAµ − [Aµ,Aν ]

Gauge transformations: ẽα = Oγ
αeγ .

Ãµ = O · Aµ · O−1 + ∂µO · O−1

F̃µν = O · Fµν · O−1.

Yang-Mills: DµFµν + [Aµ,Fµν ] = 0.

�gAν −Dν(DµAµ) = Dµ([Aµ,Aν ])− [Aµ,Fµν ].



Coulomb type gauge: Choose e0 unit normal to a maximal
foliation and e1, e2, e3 such that ,

∇iAi = A · A

Equations become, with A = (A0,A),

∆A0 = A · ∂A + A3

�gAi + ∂i∂tA0 = A j∂jAi + A j∂iAj + A0∂A + A∂(A0) + A3.

Projection: PA = (−∆)−1curl (curl A)

Fact: Commutation with P produces only null forms !
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Parametrix for �gφ = 0

Define

φf (t, x) =

∫
S2

∫ ∞
0

e iλu(t,x ,ω) f (λω)λ2dλdω

gαβ∂αu∂βu = 0

u(0, x , ω) ∼ x · ω when |x | → +∞ on Σ0.

We have,

�φf =

∫
S2

∫ ∞
0

(�u)e iλu(t,x ,ω) f (λω)λ3dλdω 6= 0.

Theorem

The operator ψf makes sense and,

‖�ψf ‖L2(M) . ‖λf ‖L2(R3)

‖∂�φf ‖L2(M) . ‖λ2f ‖L2(R3)
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Open questions

Prove a stronger version of the global stability of Minkowski
space

Can on beat the exponent s=2 ?

Find a better, scale invariant, continuation criterion result


