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Outline

Deep learning-based algorithms for
• stochastic control problems in high dimension

Jiequn Han and Weinan E, ”Deep learning approximation for stochastic control
problems”, NIPS Workshop on Deep Reinforcement Learning (2016)

• high dimensional nonlinear PDEs, including the HJB equation, based on
stochastic control formulation

Weinan E, Jiequn Han and Arnulf Jentzen, ”Deep learning-based numerical
methods for high-dimensional parabolic partial differential equations and
backward stochastic differential equations”, Communications in Mathematics
and Statistics (2017)

Jiequn Han, Arnulf Jentzen and Weinan E, ”Solving high-dimensional partial
differential equations using deep learning”, Proceedings of the National
Academy of Sciences (2018)
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Motivating Examples

• The Hamilton-Jacobi-Bellman equation in stochastic control

vt + max
a


1
2

Tr
σσT(Hessxv)

 +∇v · b + f

 = 0,

v(xt) = max
a
{f (xt, a) + γEv(xt+1)} .

• The Black-Scholes equation for pricing financial derivatives,

vt + 1
2

∆v + r∇v · x− rv + f = 0.

• Reinforcement learning (model-based)

max
π
E

 ∞∑
t=0

γtrt
 .
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Curse of Dimensionality

• The dimension can be easily large in practice.

Equation Dimension

Black-Scholes equation # of underlying financial assets
HJB equation the same as the state space

• A key computational challenge is the curse of dimensionality: the complexity is
exponential in dimension d for finite difference/element method – usually
unavailable for d ≥ 4.
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Related Work in High-dimensional Case

• Linear parabolic PDEs: Monte Carlo methods based on the Feynman-Kac
formula

• Semilinear parabolic PDEs:

1. branching diffusion approach (Henry-Labordère 2012, Henry-Labordère et
al. 2014)

2. multilevel Picard approximation (E and Jentzen et al. 2015)

• Hamilton-Jacobi PDEs: using Hopf formula and fast convex/nonconvex
optimization methods (Darbon & Osher 2016, Chow et al. 2017)

• Deep reinforcement learning
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Linear Parabolic PDE and Feynman-Kac Formula

∂u

∂t
(t, x) + 1

2
Tr

σσT(t, x)(Hessxu)(t, x)
 +∇u(t, x) · µ(t, x) + f (x, t) = 0.

Terminal condition u(T, x) = g(x).

Let
dXt = µ(t,Xt) dt + σ(t,Xt) dWt,

Feynman-Kac formula:

u(t, x) = E[g(XT ) +
∫ T
t f (s,Xs)ds|Xt = x].

Compute the solution of PDE using Monte Carlo, overcoming the curse of
dimensionality.
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Semilinear Parabolic PDE

∂u

∂t
(t, x) + 1

2
Tr

σσT(t, x)(Hessxu)(t, x)
 +∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
= 0.

Terminal condition u(T, x) = g(x).

Let
Xt = ξ +

∫ t
0 µ(s,Xs) ds +

∫ t
0 σ(s,Xs) dWs.

Itô’s lemma:

u(t,Xt)− u(0, X0)
=−

∫ t
0 f

(
s,Xs, u(s,Xs), σT(s,Xs)∇u(s,Xs)

)
ds

+
∫ t
0 [∇u(s,Xs)]T σ(s,Xs) dWs.
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Connection between PDE and BSDE

• BSDEs give a nonlinear Feynman-Kac representation of some nonlinear
parabolic PDEs. (Pardoux & Peng 1992, El Karoui et al. 1997, etc).

• Consider the following BSDE

Xt = ξ +

∫ t
0 µ(s,Xs) ds +

∫ t
0 σ(s,Xs) dWs,

Yt = g(XT ) +
∫ T
t f (s,Xs, Ys, Zs) ds−

∫ T
t (Zs)T dWs,

The solution is an (unique) adapted process {(Xt, Yt, Zt)}t∈[0,T ] with values in
Rd × R× Rd.

• This is the Pontryagin maximum principle for stochastic control.

• This is also the method of characteristics for nonlinear parabolic PDEs.
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Reformulating the PDE problem

• Connection between BSDE and PDE

Yt = u(t,Xt) and Zt = σT(t,Xt)∇u(t,Xt).

• In other words, consider the following variational problem

inf
Y0,{Zt}0≤t≤T

E|g(XT )− YT |2,

s.t. Xt = ξ +
∫ t
0 µ(s,Xs) ds +

∫ t
0 Σ(s,Xs) dWs,

Yt = Y0 −
∫ t
0 h(s,Xs, Ys, Zs) ds +

∫ t
0 (Zs)T dWs.

The unique minimizer is the solution to the PDE.
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Deep BSDE Method
• Key step: approximate the unknown functions

X0 7→ u(0, Y0) and Xt 7→ σT(t,Xt)∇u(t,Xt)

by feedforward neural networks ψ and φ.
• work with variational formulation, discretize time using Euler scheme on a grid

0 = t0 < t1 < . . . < tN = T :

inf
ψ0,{φn}N−1

n=0
E|g(XT )− YT |2,

s.t. X0 = ξ, Y0 = ψ0(ξ),
Xtn+1 = Xti + µ(tn, Xtn)∆t + σ(tn, Xtn)∆Wn,

Ztn = φn(Xtn),
Ytn+1 = Ytn − f (tn, Xtn, Ytn, Ztn)∆t + (Ztn)T∆Wn.

• there is a subnetwork at each time tj
• Observation: we can stack all the subnetworks together to form a deep neural

network (DNN) as a whole
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Network Architecture

Figure: Network architecture for solving parabolic PDEs. Each column corresponds to a subnetwork
at time t = tn. The whole network has (H + 1)(N − 1) layers in total that involve free parameters
to be optimized simultaneously.
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Optimization

• This network takes the paths {Xtn}0≤n≤N and {Wtn}0≤n≤N as the input data
and gives the final output, denoted by û({Xtn}0≤n≤N , {Wtn}0≤n≤N), as an
approximation to u(tN , XtN ).

• The error in the matching of given terminal condition defines the expected loss
function

l(θ) = E

∣∣∣∣g(XtN )− û
(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣∣∣2
.

• The paths can be simulated easily. Therefore the commonly used SGD
algorithm fits this problem well.

• We call the introduced methodology deep BSDE method since we use the
BSDE and DNN as essential tools.
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Why such deep networks can be trained?

Intuition: there are skip connections between different subnetworks

u(tn+1, Xtn+1)− u(tn, Xtn)
≈− f

(
tn, Xtn, u(tn, Xtn), φn(Xtn)

)
∆tn + (φn(Xtn))T∆Wn

resemble residual networks (fully connected deep NN are unstable!)
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Implementation

• Each subnetwork has 4 layers, with 1 input layer (d-dimensional), 2 hidden
layers (both d + 10-dimensional), and 1 output layer (d-dimensional).

• Choose the rectifier function (ReLU) as the activation function and optimize
with Adam method.

• The means and the standard deviations of the relative errors are approximated
by 5 independent runs of the algorithm with different random seeds.

• Implement in Tensorflow and reported examples are all run on a Macbook Pro.

• Github: https://github.com/frankhan91/DeepBSDE
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LQG (linear quadratic Gaussian) Example for
d=100

dXt = 2
√
λmt dt +

√
2 dWt,

Cost functional: J({mt}0≤t≤T ) = E
[ ∫T

0 ‖mt‖2
2 dt + g(XT )

]
.

HJB equation:
∂u

∂t
+ ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1
λ

ln
E

 exp
− λg(x +

√
2WT−t)


.
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Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0, . . . , 0)) when λ = 1, which achieves
0.17% in a runtime of 330 seconds. Right: Optimal cost u(t=0, x=(0, . . . , 0)) against different λ.
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Black-Scholes Equation with Default Risk

• The classical Black-Scholes model can and should be augmented by some
important factors in real markets, including defaultable securities, transactions
costs, uncertainties in the model parameters, etc.

• Ideally the pricing models should take into account the whole basket of
financial derivative underlyings, resulting in high-dimensional nonlinear PDEs.

• To test the deep BSDE method, we study a special case of the recursive
valuation model with default risk (Duffie et al. 1996, Bender et al. 2015).
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Black-Scholes Equation with Default Risk

• Consider the fair price of a European claim based on 100 underlying assets
conditional on no default having occurred yet.

• The underlying asset price moves as a geometric Brownian motion and the
possible default is modeled by the first jump time of a Poisson process.

• The claim value is modeled by a parabolic PDE with the nonlinear function

f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
=− (1− δ)Q(u(t, x))u(t, x)−Ru(t, x).
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Black-Scholes Equation with Default Risk

The unknown “exact” solution at t = 0 x = (100, . . . , 100) is computed by the
multilevel Picard method.

Figure: Approximation of u(t=0, x=(100, . . . , 100)) against number of iteration steps. The deep
BSDE method achieves a relative error of size 0.46% in a runtime of 617 seconds.
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Allen-Cahn Equation
The Allen-Cahn equation is a reaction-diffusion equation for the modeling of phase
separation and transition in physics. Here we consider a typical Allen-Cahn equation
with the “double-well potential” in 100-dimensional space:

∂u

∂t
(t, x) = ∆u(t, x) + u(t, x)− [u(t, x)]3 ,

with initial condition u(0, x) = g(x).
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Figure: Left: relative error of the deep BSDE method for u(t=0.3, x=(0, . . . , 0)), which achieves 0.30% in a
runtime of 647 seconds. Right: time evolution of u(t, x=(0, . . . , 0)) for t ∈ [0, 0.3], computed by means of the deep
BSDE method.
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An Example with Oscillating Explicit Solution

We consider an example studied for the numerical methods of PDE in literature
(Gobet & Turkedjiev 2017). We set d = 100 instead of d = 2.

The PDE is constructed artificially in a form
∂u

∂t
(t, x) + 1

2
∆u(t, x) + min

1,
(
u(t, x)− u∗(t, x)

)2
 = 0,

in which u∗(t, x) is the explicit oscillating solution

u∗(t, x) = κ + sin
(
λ ∑d

i=1 xi
)

exp
(
λ2d(t−T )

2
)
.
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Ablation Study
Number of layers† 29 58 87 116 145

Mean of relative error 2.29% 0.90% 0.60% 0.56% 0.53%
Std. of relative error 0.0026 0.0016 0.0017 0.0017 0.0014

Table: The mean and standard deviation (std.) of the relative error for the above PDE, obtained by
the deep BSDE method with different number of hidden layers. † We only count the layers that have
free parameters to be optimized.

Nonlinear BS LQG Allen-Cahn
ReLU 0.46% (0.0008) 0.17% (0.0004) 0.30% (0.0021)
Tanh 0.44% (0.0006) 0.17% (0.0005) 0.28% (0.0024)

Sigmoid 0.46% (0.0004) 0.19% (0.0008) 0.38% (0.0026)
Softplus 0.45% (0.0007) 0.17% (0.0004) 0.18% (0.0017)

Table: The mean and standard deviation (in parenthesis) of relative error obtained by the deep
BSDE method with different activation functions, for the nonlinear Black-Scholes equation, the
Hamilton-Jacobi-Bellman equation, and the Allen-Cahn equation.

25 / 38



References and Follow-up Works

• References:
I Han, Jentzen, and E, Solving high-dimensional partial differential equations using deep

learning, Proceedings of the National Academy of Sciences (2018)

I E, Han, and Jentzen, Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations,
Communications in Mathematics and Statistics (2017)

• Follow-up works:
I Beck et al. 2017 (deep 2BSDE method), Henry-Labordère 2017 (deep primal-dual for

BSDEs), Fujii et al. 2017 (deep BSDE with asymptotic expansion), Becker et al. 2018
(deep optimal stopping), Raissi 2018, Beck et al. 2018, Chan-Wai-Nam et al. 2018, Huré
et al. 2019
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Formulation of Stochastic Control
Model dynamics:

st+1 = st + bt(st, at) + ξt+1,

st is state, at is control, ξt is randomness. Consider objective:

min
{at}T−1

t=0
E
{ T−1∑
t=0

ct(st, at(st)) + cT (sT ) | s0
}
,

We look for a feedback control:

at = at(st).

• Neural network approximation:

at(st) ≈ at(st|θt),

Solve directly the approximate optimization problem

min
{θt}T−1

t=0
E
{ T−1∑
t=0

ct(st, at(st|θt)) + cT (sT )},

rather than dynamic programming principle.
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Network Architecture

Figure: Network architecture for solving stochastic control in discrete time. The whole network has
(N + 1)T layers in total that involve free parameters to be optimized simultaneously. Each column
(except ξt) corresponds to a sub-network at t.
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Example in Optimal Execution of Portfolios
The goal is to minimize the expected cost for trading multiple stocks over a fixed time horizon:

min
{at}T−1

t=0

E
T−1∑
t=0

pT
t at,

subject to ∑T−1
t=0 at = ā ∈ Rn. The execution price is influenced by the amount we buy at each time

and the stochastic market conditions.
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Figure: Learning curves of relative trading cost (left) and relative error for the controls (right). The
space of control function is R23 → R10.
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Example in Energy Storage with a Single Device

The goal is to maximize revenues from an energy storage device and a renewable
wind energy source while satisfying stochastic electricity demand.

Demand

Storage Wind SourceSpot Market
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Figure: Left: network diagram of energy; Right: learning curves of relative reward. The space of
control function is R4 → R5 with multiple equality and inequality constrains.
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Example in Energy Storage with Multiple Devices

The setting is similar to the above but now there are multiple devices, in which we
do not find any other available solution for comparison.
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Figure: Relative reward to the case n = 50 (with controls satisfying constraints strictly). The space
of control function is Rn+2 → R3n for n = 30, 40, 50, with multiple equality and inequality
constrains.
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Theorem (A Posteriori Estimates (Han and Long))
Under some assumptions, there exists a constant C, independent of h, d, and m,
such that for sufficiently small h,

sup
t∈[0,T ]

(E|Xt − X̂π
t |2 + E|Yt − Ŷ π

t |2) +
∫ T
0 E|Zt − Ẑ

π
t |2 dt

≤C[h + E|g(Xπ
T )− Y π

T |2],

where X̂π
t = Xπ

ti
, Ŷ π

t = Y π
ti

, Ẑπ
t = Zπ

ti
for t ∈ [ti, ti+1).
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Theorem (Upper Bound of Optimal Loss (Han and Long))
Under some assumptions, there exists a constant C, independent of h , d and m,
such that for sufficiently small h,

E|g(Xπ
T )− Y π

T |2

≤ C
{
h + E|Y0 − µπ0(ξ)|2 +

N−1∑
i=0

E|E[Z̃ti|X
π
ti
, Y π

ti
]− φπi (Xπ

ti
, Y π

ti
)|2h

}
,

where Z̃ti = h−1
E[∫ ti+1

ti Zt dt|Fti]. If b and σ are independent of Y , the term
E[Z̃ti|Xπ

ti
, Y π

ti
] can be replaced with E[Z̃ti|Xπ

ti
].

Remark
Similar bounds can be derived for the stochastic control problem (in both
continuous time and discrete time)
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Summary

• Deep learning are providing us powerful tools to overcome the curse of
dimensionality in high-dimensional parabolic PDEs and control problems.

• For general nonlinear parabolic PDEs, the deep BSDE method reformulate it
into a variational problem based on BSDEs and approximate the unknown
gradients by neural networks.

• Similar methodology can be applied to solve model based stochastic control
problems, in which the optimal policies are approximated by neural networks.

• Numerical results validate the proposed algorithm in high dimensions, in terms
of both accuracy and speed.

• This opens up new possibilities in various disciplines, including economics,
finance, operational research, and physics.
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DL for Other High-Dimensional Problems

• Moment closure for kinetic equations: a machine learning based hydrodynamic
model with uniform accuracy1

• Solving many-electron Schrödinger equation using deep neural networks2

• Large-scale simulation of molecular dynamics: Deep Potential3 model provides
potential energy, forces, or even coarse-grained models based on neural
networks with quantum accuracy

Thank you for your attention!

1J. Han, C. Ma, Z. Ma, W. E, PNAS (2019)
2J. Han, L. Zhang, and W. E, JCP, 399, 108929 (2019)
3J. Han, L. Zhang, R. Car, and W. E, CiCP, 23, 629–639 (2018); L. Zhang, J. Han, H. Wang, R. Car, and W. E,

PRL, 120(10), 143001 (2018)
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