
AI for Science
and Its Implication for Mathematics

Weinan E

Peking University

AI for Science Institute, Beijing

March 1, 2023 1 / 47



Two major purposes of scientific research:

Understanding first principles

Solving practical problems
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For practical purposes, the task of finding first principles is basically accomplished after
establishing quantum mechanics.

Paul M. Dirac (1929): “The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble.”

What remains to be done is to solve the mathematical problems that describe these first
principles.

March 1, 2023 3 / 47



First principles

Newtonian mechanics: Newton’s equations

Gas dynamics: Euler’s equations and Boltzmann equation

Elasticity theory: Lame’s equations

Fluid mechanics: Navier-Stokes equations

Electromagnetism: Maxwell equations

Quantum mechanics: Schrödinger equations

They provide the first principles for essentially all of natural sciences and engineering.
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They are in the form of differential equations, actually mostly PDEs.

Therefore solving PDEs has been a major theme in computational science and engineering.
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Three different phases

initially (until the 50’s): deriving and evaluating formulas

discretizing PDEs directly: finite difference, finite elements, spectral methods, ....

multi-scale modeling: dealing with the physical process and principles directly
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This has had enormous success!

structural mechanics, weather forecasting, all kinds of engineering

basic tool for engineering science

It is the foundation for modern technology!
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Many problems remain unsolved from first principles

material properties and design

drug design

combustion engines

optimal control of complex systems

......

These still largely rely on experiences, experiments, trial and error.
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A common source of difficulty: Too many degrees of freedom

The quantum many-body problem:

−∆ψ + V ψ = Eψ

where ψ is the wavefunction.

number of degrees of freedom = 3 × the number of electrons
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Curse of dimensionality (CoD)

As dimensionality grows, computational cost grows exponentially fast.

Reason: Polynomials, piecewise polynomials, wavelets, et al. are no longer effective in high
dimension.

too many monomials in high dimension (more then 1 million degree 10 monomials when
d = 10).

the mesh always looks too coarse

We have to settle with crude approximations such as the Hartree approximation:

f (x1, · · · ,xd) ∼ f1(x1) · · · fd(xd)
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This is exactly where deep learning can help!
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Machine learning can do amazing things
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Recognizing images better than average humans

Given a set of “labeled” images (“label” = the content of the image), find an algorithm
that can automatically tell us the content of similar images.

Figure: The Cifar-10 dataset: Each image is assigned a label from the 10 different categories

https://www.cs.toronto.edu/~kriz/cifar.html
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AlphaGo: Playing Go game better than the best humans!

It was done purely by machine learning!

https://www.bbc.com/news/technology-35761246
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Generating non-existing data: Pictures of FAKE human faces

https://arxiv.org/pdf/1710.10196v3.pdf
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In essence, what’s done in all these examples is to solve some standard
mathematical problem.

Image classification: Approximating the function

f ∗ : image→ its content (category)

Generating pictures of fake human faces: Approximating and sampling an unknown
probability distribution, where the random variable is the picture of human faces

AlphaGo: Solving the Bellman equation in dynamic programming.

These are all classical problems in numerical analysis!

But there is a key difference: Dimensionality!
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Dimensionality of the CIFAR-10 problem

Input dimension:
d = 32× 32× 3 = 3072
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Key observation:

Unlike polynomials, neural networks seem to be able to approximate
high dimensional functions much more efficiently.

This is far-reaching, since functions are the most basic objects in mathematics!
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Attacking problems in high dimension

Mathematical theory for neural network-based machine learning

Scientific computing problems (e.g. PDEs) in high dimension

Multi-scale modeling
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1. Mathematical theory

d = dimensionality of the problem

m = the total number of free parameters in the model

Classical approximation theory (say approximating by piecewise linear functions):
mesh-size h ∼ m−1/d

|f ∗ − fm| ∼ h2|∇2f ∗| ∼ m−2/d|∇2f ∗|

To reduce the error by a factor of 10, we need to increase m by a factor of 10d/2.

True for all classical algorithms, e.g. approximating functions using polynomials, or wavelets.
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Approximation theory for neural networks

For random feature models, two-layer neural network model and residual neural network
model,

‖f ∗ − fm(·; θ)‖L2(µ) .
‖f ∗‖B√
m

.

where the norm ‖ · ‖B depends on the choice of the model.

“Monte Carlo”-like convergence rate

For multi-layer neural network models,

‖f ∗ − fm(·; θ)‖L2(µ) .
‖f ∗‖B√
mα

.

where α depends on the number of layers but not on d.
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The picture is far from being complete

convergence of training algorithms, and the test accuracy
In fact, one can show that gradient descent-based training for these spaces MUST suffer
from CoD.

other settings, such as learning probability distributions, reinforcement learning, etc

We have learned much more than people seem to realize.
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2. Using deep learning to solve high dimensional problems in scientific computing
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Stochastic control

Dynamic model:
zl+1 = zl + gl(zl,al) + ξl,

where zl = state, al = control, ξl = noise.

Objective function:

min
{al}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl,al) + cT (zT )
}
,

where {cl} are the running cost, cT is the terminal cost.

Look for a feedback control:
al = al(z).

The standard approach via solving the Bellman equation suffers from CoD!

Jiequn Han and E (2016)
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Why choosing this as the first example?

There is a close analogy between stochastic control and ResNet-based deep learning.

Machine learning approximation:
al(z) = f (z, θl)

ResNet Stochastic Control

model zl+1 = zl + σ(Wlzl) zl+1 = zl + gl(zl, f (zl, θl)) + ξl

loss E‖WLzL − f ∗‖2 E{
∑
cl(zl, f (zl, θl)) + cT (zT )}

data {(xj, yj)} ξ0, . . . , ξT−1 (noise)

optimization SGD SGD

Table: Analogy between ResNet and stochastic control
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Work of Zhang, Long, Hu, E and Han (2022)
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2. Nonlinear parabolic PDEs

∂u

∂t
+

1

2
∆u + µ · ∇u + f

(
∇u
)

= 0, u(T,x) = g(x)

Reformulate as a stochastic control problem using backward stochastic differential equations
(BSDE, Pardoux and Peng (1990))

inf
Y0,{Zt}

E|g(XT )− YT |2,

s.t. Xt = X0 +

∫ t

0

µ(s,Xs) ds +

∫ t

0

dWs,

Yt = Y0 −
∫ t

0

f (Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer is the solution to the PDE with:

Yt = u(t,Xt) and Zt = ∇u(t,Xt).

E, Han and Jentzen (Comm Math Stats, 2017); Han, Jentzen and E (PNAS, 2018)

March 1, 2023 27 / 47



LQG (linear quadratic Gaussian) for d = 100 with the cost J = E(
∫ T

0 ‖mt‖2
2 dt + g(XT ))

dXt = 2
√
λmt dt +

√
2 dWt,

Hamilton-Jacobi-Bellman equation:

∂tu + ∆u− λ‖∇u‖2
2 = 0, u(T,x) = g(x)

Using Hopf-Cole transform, one obtains the solution:

u(t,x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.
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Figure: Optimal cost u(t=0,x=(0, . . . , 0)) for different values of λ.
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3. Deep learning-based algorithms for multi-scale modeling
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DeePMD: Molecular dynamics with ab initio accuracy

Modeling the dynamics of atoms in a material or molecule using Newton’s equation:

mi
d2xi
dt2

= −∇xiV, V = V (x1, ....,xN),

Key question: V =? The origin of V lies in quantum mechanics (QM).

Empirical potentials: basically guess what V should be.
Unreliable.

Compute the forces on the fly using QM models (Car and Parrinello (1985)).
As reliable as the QM model but expensive (limited to about 1000 atoms).

New paradigm:

use QM to supply the data

use neural network model to find accurate approximation of V

Behler and Parrinello (2007), Jiequn Han et al (2017), Linfeng Zhang et al (2018).
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Accuracy comparable to QM for a wide range of materials and
molecules

Linfeng Zhang, Jiequn Han, et al (2018)
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DeePMD simulation of 100M atoms with ab initio accuracy

Weile Jia, et al, SC20, 2020 ACM Gordon Bell Prize
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Phase diagram of water

Linfeng Zhang, Han Wang, et al. (2021)
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The hierarchy of physical models
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AI for Science: Making first principles truly reliable and useful

Machine learning provides the missing tool:

Quantum many-body problem: RBM (2017), DeePWF (2018), FermiNet (2019),
PauliNet (2019), ......

Density functional theory: DeePKS (2020), NeuralXC (2020), DM21 (2021), ......

Molecular dynamics: DeePMD (2018), ......

Coarse-grained molecular dynamics: DeePCG (2019)

Kinetic equation: machine learning-based moment closure (Han et al. 2019)

Continuum mechanics: DeePN2 (2020)

......

With applications in:

New tools for drug design

More systematic ways of battery design

New ways to model combustion engine

New ways to perform inversion using spectroscopy and other experimental tools
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What about solving low dimensional PDEs?
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Traditional methods: Finite difference, finite elements, etc

accuracy can be systematically improved

still not easy for complex problems such problems with complex geometry

We will see that machine learning-based algorithms behave in an opposite way.
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Machine learning-based algorithms for PDEs

Variational form: Deep Ritz Method (DRM, E and Yu (2018))

Strong form (least squares):
Physics-Informed Neural Networks (PINN, Raissi et al. (2019)),
Deep Galerkin Method (DGM, Sirignano and Spiliopoulos (2018))

Weak form (test function): Weak Adversarial Network (WAN, Bao et al. (2020))
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PINN and DGM

very general

uses least square formulation for both the PDE and the boundary condition,
m = n is no longer necessary

mesh-free, so easier for complex geometry

accuracy cannot be systematically improved, since the optimization problem is highly
non-convex
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Bridging classical and ML-based algorithms: The random feature
method

Keeping least square formulation using collocation points.

Replacing NNs by multi-scale random feature models (RFM)

Random feature model vs. (two-layer) NNs.

uM(x) =

M∑
m=1

umσ(km · x + bm)

where σ is the activation function.

random feature model: inner parameters are fixed (but random). The model is linear
and training is much easier.

two-layer NNs: the inner parameters are also trained. The model is more adaptive but
training is much harder.

See also “extreme learning machines” (Huang et al. (2006)).
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Multi-scale random feature models

fine scale features captured using a partition of unity, with an independent RFM for
each component in the partition

macro-scale features captured using a global RFM

um(x) = ug(x) +

mp∑
k=1

ψk(x)

Jk∑
j=1

unjφkj(x)

Similarity with “local extreme machines” (Dong et al. (2021)).
Difference: (1) the way locality is enforced; (2) loss function.
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Accuracy can be systematically improved
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Figure: Convergence of RFM and PINN for Helmholtz equation in the semi-log scale
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Easy to handle complex geometry: Stokes flow

(u, v)|∂Ω =


(y(1− y), 0) if x = 0

(y(1− y), 0) if x = 1

(0, 0) otherwise
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Figure: Velocity field (u, v) generated by the random feature method
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Two-dimensional elasticity problem with a complex geometry

Figure: Complex domain with a cluster of holes that are nearly touching
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Figure: Numerical solution by the random feature method for the two-dimensional elasticity problem over a

complex geometry
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Promising but still a lot to be understood

Jingrun Chen et al., Bridging Traditional and Machine Learning-based Algorithms for Solving
PDEs: The Random Feature Method, Journal of Machine Learning, vol 1. No 3. pp.
268-298.

What is the best way to select the basis functions? (Random basis seems to perform
better, but why?)
PINN/DGM is fully adaptive
RFM uses preselected basis functions.
The optimal solution must be somewhere in-between.

Least squares formulation makes the iterative training process very slow.

What is the best (convenient, robust, accurate) way to describe 3-D geometry?
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Summary

Deep neural networks seem to be able to approximate high dimensional functions
efficiently, and this opens doors to a lot of new possibilities.

”AI for Science” will change the way we do science in a fundamental way.

Even for very well-studied problems such as solving PDEs, ML might change the way we
do things.

It makes the task of connecting with real applications much easier.

Thanks you for your attention!
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