Bridging Traditional and Machine Learning-Based Algorithms for Solving Partial Differential Equations: The Random Feature Method

Weinan E

Peking University

Beijing, 2022

Collaborators

- ▶ Jingrun Chen, USTC
- Xurong Chi, USTC
- Zhouwang Yang, USTC

Example: Two-dimensional Poisson Equation

1. Strong form: Find $u(x,y) \in C^2(\Omega)$, s.t.

$$-\Delta u(x, y) = f(x, y),$$
 in Ω
 $u(x, y) = 0,$ on $\partial \Omega$

or

$$\min_{u(x,y)\in H_0^1(\Omega)} \int_{\Omega} (\Delta u + f)^2 \, \mathrm{d}x \, \mathrm{d}y$$

2. Weak form: Find $u(x, y) \in H_0^1(\Omega)$, s.t.

$$\int_{\Omega} \nabla u \cdot \nabla v \mathrm{d}x \mathrm{d}y = \int_{\Omega} f v \mathrm{d}x \mathrm{d}y, \quad \forall v \in H_0^1(\Omega)$$

3. Variational form:

$$\min_{u(x,y)\in H^1_0(\Omega)} \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - fu\right) \mathrm{d}x \mathrm{d}y$$

Numerical algorithms

- Low computational cost
- Low human cost
- Robustness and generality

An incomplete list of some of the difficulties we still encounter

- ▶ Problems with complex geometry: Stokes flow in porous media
- ► Kinetic equations: Direct simulation Monte Carlo algorithm
- Multi-scale problems

Outline

Traditional Algorithms

Machine Learning-based Algorithms $M \neq N$

A Bridge Between Traditional and Machine-learning Algorithms

Traditional Algorithms

- Strong form: Finite Difference Method, Spectral Collocation Method, Least Square Method
- Variational form: Ritz Method
- Weak form: Finite Element Method, Spectral (Galerkin)
 Method, Spectral Element Method, Mesh-free Method, etc

Finite Difference Method

▶ Discretization of equation → grid points (collocation points)

$$-\Delta u\left(x_{i,j}\right) = f\left(x_{i,j}\right)$$

▶ Discretization of operator → finite difference

$$\frac{4u_{i,j} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1}}{h^2} = f_{i,j}$$

Boundary condition

$$u_{1,j} = u_{m,j} = u_{i,1} = u_{i,n} = 0$$

▶ Total number of conditions = total number of unknowns

Spectral Collocation Method

▶ Discretization of equation → grid points (collocation points)

$$-\Delta u\left(x_{i,j}\right) = f\left(x_{i,j}\right)$$

 Approximation space: Linear combinations of global polynomials (Lagrange polynomials, Fourier polynomials, Chebyshev polynomials, etc)

$$u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$$

Polynomial basis functions need to satisfy boundary conditions

Spectral accuracy, not easy to handle complex geometries

Ritz Method

 Approximation space: Linear combinations of global basis functions (Polynomials, Trigonometric functions, etc)

$$u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$$

- Basis functions need to satisfy boundary conditions
- Variational problem: Numerical integration

$$u_N(x,y) = \operatorname*{arg\,min}_{v_N(x,y) \in H_0^1(\Omega)} \int_{\Omega} \left(\frac{1}{2} \left| \nabla v_N \right|^2 - f v_N \right) \mathrm{d}x \mathrm{d}y$$

Not easy to handle complex geometries (boundary conditions and numerical integration)

Finite Element Method

- Mesh generation: Tedious and time-consuming (~ 70% for solving a PDE problem)
- Basis functions: linear combinations of local piecewise polynomials

$$u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$$

Weak form

$$\int_{\Omega} \nabla u_{N} \cdot \nabla v dx dy = \int_{\Omega} f v dx dy, \quad \forall v \in V_{N}$$

Boundary conditions can be enforced easily

Simple, easy to handle complex geometries, but generating the mesh is not easy

Spectral (Galerkin) Method

 Approximation space: Linear combinations of global polynomials

$$u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$$

- Polynomial basis functions need to satisfy boundary conditions
- Weak form

$$\int_{\Omega} \nabla u_{\mathsf{N}} \cdot \nabla v \mathrm{d}x \mathrm{d}y = \int_{\Omega} f v \mathrm{d}x \mathrm{d}y, \quad \forall v \in V_{\mathsf{N}}$$

Simple, spectral accuracy, not easy to handle complex regions (boundary conditions, numerical integration)

Spectral Element Method

- Mesh generation
- Approximation space: Linear combination of local higher-degree polynomials (Double summation of order index and element index)

$$u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$$

- Boundary conditions can be implemented easily
- Weak form:

$$\int_{\Omega} \nabla u_{\mathsf{N}} \cdot \nabla v \mathrm{d}x \mathrm{d}y = \int_{\Omega} f v \mathrm{d}x \mathrm{d}y, \quad \forall v \in V_{\mathsf{N}}$$

Spectral accuracy, easy to handle complex geometries

Mesh generation, boundary conditions and numerical integration
can be difficult

Meshfree Method

- ▶ Approximation space: Linear combinations of global and local functions $u_N(x,y) = \sum_{i,j} \phi_{ij}(x,y)u_{ij}$
- Boundary conditions are enforced by a penalty term
- Weak form:

$$\int_{\Omega} \nabla u_{N} \cdot \nabla v dx dy = \int_{\Omega} f v dx dy, \quad \forall v \in V_{N}$$

Simple, algebraic accuracy, not easy to handle complex geometries (numerical integration)

Accuracy vs Efficiency

WHICH METHOD IS BETTER???

- Strong form: Collocation points
- Weak form: Numerical integration
- Approximation space
- Boundary conditions

Note that we always have M = N, where

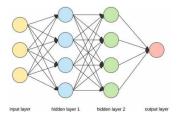
- ightharpoonup M = number of parameters
- ightharpoonup N = number of equations, or collocation points

Deep Neural Network

A new approximation space

$$u(x,y) = W\sigma (W_2\sigma (W_1\mathbf{x} + b_1) + b_2)$$

How to optimize the parameters W and b?



- Strong form: Collocation points
- Variational form: Numerical integration or Monte-Carlo sampling
- ► Weak form: Numerical integration or Monte-Carlo sampling

Components of a machine-learning algorithm

- Loss function: Strong, variational, weak
 Collocation point, Quadrature or Monte Carlo sampling
- Approximation space: Deep neural networks
- Optimization of NN parameters: Stochastic gradient descent method

Comparison

- Error sources: approximation, integration, optimization
- ▶ SGD can get a reasonable solution, which is not good enough
- In high dimension
 - Traditional methods fail
 - ▶ Deep learning methods work (1% relative error without convergence order)
- ▶ In low dimension $d \le 3$
 - Traditional methods typically work well
 - ▶ Deep-learning methods work (1% relative error without convergence order), but have high coding efficiency

Machine Learning-based Algorithms

- ► Variational form: Deep Ritz Method (DRM)¹
- Strong form: Deep Galerkin Method (DGM)², Physics-Informed Neural Networks (PINN)³
- Weak form: Weak Adversarial Network (WAN)⁴
- etc

¹EY2018.

²SS2018.

³PINN.

⁴Bao.

Deep Ritz Method

$$\begin{cases} -\Delta u(x) = f(x), & x \in \Omega \\ u(x) = g(x), & x \in \partial \Omega \end{cases}$$

Loss function: Variational form + boundary penalty term

$$I[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 - f(x)u(x) \right) dx + \lambda \int_{\partial\Omega} (u(x) - g(x))^2 dx$$

Optimization:

$$\theta_{k+1} = \theta_k - \alpha \nabla_{\theta} \frac{|\Omega|}{N_v} \sum_{i=1}^{N_v} \left[\frac{1}{2} |\nabla u(x_i)|^2 - f(x_i) u(x_i) \right]$$
$$- \lambda \alpha \nabla_{\theta} \frac{|\partial \Omega|}{N_b} \sum_{i=1}^{N_b} \left[u(y_i) - g(y_i) \right]^2$$

- ▶ Variational form: ReLU converges in general
- ▶ Boundary condition is enforced by penalty term, but the penalty parameter is difficult to tune
- Loss function can be negative
- M ≠ N

DGM, PINN

$$\partial_t u = \mathcal{L}u, \quad (t, x) \in [0, T] \times \Omega$$

$$u(0, x) = u_0(x), x \in \Omega$$

$$u(t, x) = g(x), \quad (t, x) \in [0, T] \times \partial \Omega$$

Loss function: strong form in the least-squares sense + boundary penalty term

$$L(u) = \|\partial_t u - \mathcal{L}u\|_{2,[0,T]\times\Omega}^2 + \lambda_1 \|u(0,\cdot) - u_0\|_{2,\Omega}^2 + \lambda_2 \|u - g\|_{2,[0,T]\times\partial\Omega}^2$$

- Strong form: High regularity, and usually ReLU does not converge
- Boundary condition is enforced by penalty term, but the penalty parameter is difficult to tune
- M ≠ N

WAN

$$\begin{cases} \langle \mathcal{A}[u], \varphi \rangle \triangleq \int_{\Omega} \left(\sum_{j=1}^{d} \sum_{i=1}^{d} a_{ij} \partial_{j} u \partial_{i} \varphi + \sum_{i=1}^{d} b_{i} \varphi \partial_{i} u + c u \varphi - f \varphi \right) \mathrm{d}x = 0 \\ \mathcal{B}[u] = 0, \quad \text{on } \partial \Omega \end{cases}$$

Loss function: weak form

$$\begin{split} \|\mathcal{A}[u]\|_{op} &\triangleq \max \left\{ \langle \mathcal{A}[u], \varphi \rangle / \|\varphi\|_2 \mid \varphi \in H_0^1, \varphi \neq 0 \right\} \\ &\underset{u \in H^1}{\min} \|\mathcal{A}[u]\|_{op}^2 \iff \underset{u \in H^1}{\min} \max_{\varphi \in H_0^1} |\langle \mathcal{A}[u], \varphi \rangle|^2 / \|\varphi\|_2^2 \\ &L_{\text{int}} \left(\theta, \eta\right) \triangleq \log |\langle \mathcal{A}\left[u_\theta\right], \varphi_\eta \rangle|^2 - \log \|\varphi_\eta\|_2^2 \\ &L_{\text{bdry}} \left(\theta\right) \triangleq (1/N_b) \cdot \sum_{j=1}^{N_b} \left| u_\theta \left(x_b^{(j)}\right) - g \left(x_b^{(j)}\right) \right|^2 \\ &\underset{\theta}{\min} \max_{\eta} L(\theta, \eta), \quad \text{where } L(\theta, \eta) \triangleq L_{\text{int}} \left(\theta, \eta\right) + \alpha L_{\text{bdry}} \left(\theta\right) \end{split}$$

- ▶ Weak form: ReLU converges in general
- ▶ Boundary conditions require penalty terms
- Min-max problem: uses GAN to solve and takes longer to optimize
- M ≠ N

Machine Learning-based Algorithms

- Simple, meshfree, easy to handle complex geometries and boundary conditions
- ► The accuracy cannot be improved systematically and the penalty parameters are difficult to tune
- Training takes a long time and the optimization error is difficult to quantify
- Low human cost and low application barrier

Local Extreme Learning Machine⁶

- Strong form: collocation points
- Approximation space: domain decomposition + extreme learning machine (only parameters in the output layer optimized)⁵
- ▶ Linear least-squares problem $M \neq N$
- Similar to the spectral element method

Spectral accuracy, easy to handle complex geometries

⁵huang2006extreme.

⁶dong2021local.

Scalar PDE form

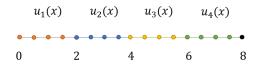
$$\begin{cases} \mathcal{L}u(\mathbf{x}) = f(\mathbf{x}), \text{ in } \Omega \\ \mathcal{B}u(\mathbf{x}) = g(\mathbf{x}), \text{ on } \partial\Omega \end{cases}$$

- ▶ Domain decomposition: $\Omega = \Omega_1 \cup \Omega_2 \cup \cdots \cup \Omega_{N_e}$
- Local neural network is used to represent the solution in each subdomain
- Continuity conditions of basis functions and derivatives are enforced
- ▶ Main steps in the algorithm:
 - 1 Selecting collocation points in subdomains Ω_s
 - 2 Evaluating the equations at interior points and boundary/continuity conditions at (sub-)boundary points
 - 3 Solving the least-squares problem

Illustration

Domain [0, 8] with N = 4 subdomains

- ► Equation at all points
- ▶ Boundary conditions at x = 0 and x = 8
- ► Continuity conditions at x = 2, x = 4 and x = 6



Exponential convergence for Helmholtz equation

N	L [∞] error	L ² error
4	8.76E-2	2.31E-2
8	4.06E-7	1.20E-7
16	3.52E-10	1.14E-10
32	1.73E-11	5.99E-12

Timoshenko beam: Loss of exponential accuracy

$N_x * N_y$	$Q_x * Q_y$	u error	v error	σ_{x} error	$ au_{xy}$ error
2*2	5*5	5.22E-3	4.90E-3	1.33E-2	2.39E-2
	10*10	1.55E-4	5.25E-5	1.44E-4	1.02E-4
	20*20	6.36E-4	3.47E-4	6.55E-4	7.26E-4
	40*40	1.76E-3	1.64E-3	1.93E-3	2.57E-3
4*4	5*5	8.50E-2	4.04E-2	7.72E-2	4.19E-2
	10*10	1.32E-5	6.19E-6	3.25E-5	4.22E-5
	20*20	1.33E-3	1.12E-3	1.31E-3	1.04E-3
	40*40	6.42E-4	1.91E-4	1.18E-3	1.38E-3

Comparison with Spectral Element Method

Local ELM	SEM	
Strong form	Weak form	
Domain decomposition	Mesh generation	
Extreme learning machine	Polynomial	
$M \neq N$	M = N	
Spectral accuracy	Spectral accuracy	
Geometry more friendly	Geometry friendly	
Basis do not satisfy BC	Basis satisfy BC	

Local ELM does not work well for anisotropy/elasticity problems

Accuracy vs Efficiency

Is there a way to combine the advantages of traditional and machine learning-based methods?

The Random Feature Method (RFM)⁷

- Strong form: collocation points
- Approximation space: random feature functions
 - 1 Partition of unity and local random feature models
 - 2 Multi-scale basis
 - 3 Adaptive basis
- Soft boundary condition: Basis functions do not satisfy BC
- ► A linear convex optimization problem with easy-tuning parameters (balance the contributions from the PDE terms and the boundary conditions in the loss function)
- M ≠ N

Simple, mesh-free, spectral accuracy, easy to handle complex geometries and boundary conditions

Loss function

Examples include the elliptic problem, the linear elasticity problem, and the Stokes flow problem when $d \le 3$

$$\begin{cases} \mathcal{L}\mathbf{u}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) & \mathbf{x} \in \Omega, \\ \mathcal{B}\mathbf{u}(\mathbf{x}) = \mathbf{g}(\mathbf{x}) & \mathbf{x} \in \partial\Omega, \end{cases}$$

where $\mathbf{x} = (x_1, \dots, x_d)^T$, and Ω is bounded and connected domain in \mathbb{R}^d

$$Loss = \sum_{\mathbf{x}_{i} \in C_{l}} \sum_{k=1}^{K_{l}} \lambda_{li}^{k} \|\mathcal{L}^{k} \mathbf{u}(\mathbf{x}_{i}) - \mathbf{f}^{k}(\mathbf{x}_{i})\|_{l^{2}}^{2} + \sum_{\mathbf{x}_{j} \in C_{B}} \sum_{\ell=1}^{K_{B}} \lambda_{Bj}^{\ell} \|\mathcal{B}^{\ell} \mathbf{u}(\mathbf{x}_{j}) - \mathbf{g}^{\ell}(\mathbf{x}_{j})\|_{l^{2}}^{2}$$

Different penalty parameters at different collocation points are allowed

Collocation points

Two sets of collocation points: C_I in Ω and C_B on $\partial\Omega$

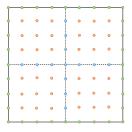


Figure: Collocation points for a square domain: C_I , interior points in orange and blue; C_B , boundary points in green.

Approximation space

A linear combination of M network basis functions $\{\phi_m\}$ over Ω as

$$u_M(\mathbf{x}) = \sum_{m=1}^M u_m \phi_m(\mathbf{x})$$

$$\phi_m(\mathbf{x}) = \sigma(\mathbf{k}_m \cdot \mathbf{x} + b_m)$$

where σ is some scalar nonlinear function, k_m , b_m are some random but fixed parameters

Partition of unity

A set of points $\{x_n\}_{n=1}^{M_p} \subset \Omega$ with x_n the center for a component in the partition

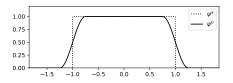


Figure: Visualization of $\psi^a(x)$ and $\psi^b(x)$.

High-dimensional PoU:
$$\psi_n(\mathbf{x}) = \prod_{k=1}^d \psi_n(x_k)$$

Local random feature functions

$$\tilde{\mathbf{x}} = \frac{1}{\mathbf{r}_n}(\mathbf{x} - \mathbf{x}_n), \quad n = 1, \cdots, M_p$$

where $\mathbf{r}_n = (r_{n1}, r_{n2}, \cdots, r_{nd})$ and $\{\mathbf{r}_n\}$ are preselected

▶ Construct J_n random feature functions by

$$\phi_{nj}(\mathbf{x}) = \sigma(\mathbf{k}_{nj} \cdot \tilde{\mathbf{x}} + b_{nj}), \quad j = 1, \cdots, J_n$$

where the feature vectors $\{(\boldsymbol{k}_{nj},b_{nj})\}$ are often chosen randomly, such as $\boldsymbol{k}_{nj} \sim \mathbb{U}([-R_{nj},R_{nj}]^d)$ and $b_{nj} \sim \mathbb{U}([-R_{nj},R_{nj}])$

Approximate solution

$$u_{M}(\mathbf{x}) = \sum_{n=1}^{M_{p}} \psi_{n}(\mathbf{x}) \sum_{j=1}^{J_{n}} u_{nj} \phi_{nj}(\mathbf{x})$$

Multi-scale basis

$$u_{M}(\mathbf{x}) = u_{g}(\mathbf{x}) + \sum_{n=1}^{M_{p}} \psi_{n}(\mathbf{x}) \sum_{j=1}^{J_{n}} u_{nj} \phi_{nj}(\mathbf{x})$$

where u_g is a global random feature function

Adaptive basis

- ► Some (incomplete) information about the spectral distribution of the solution in the precomputing stage
- ► A spectral analysis of the forcing term for example
- Selection of the spectral distribution of the feature vectors
- Particularly useful when sin/cos is used as the activation function

Optimization: A least-squares problem

Parameter tuning is fully automatic!!!

Penalty coefficients in the loss functions are chosen as

$$\begin{split} \lambda_{li}^k &= \frac{c}{\max\limits_{1 \leq n \leq M_p 1 \leq j' \leq J_n 1 \leq k' \leq K_l} \max |\mathcal{L}^k(\phi_{nj'}^{k'}(\boldsymbol{x}_i)\psi_n(\boldsymbol{x}_i))|} \quad \boldsymbol{x}_i \in C_l, \ k = 1, \cdots, K_l \\ \lambda_{Bj}^\ell &= \frac{c}{\max\limits_{1 \leq n \leq M_p 1 \leq j' \leq J_n 1 \leq \ell' \leq K_l} \max |\mathcal{B}^\ell(\phi_{nj'}^{\ell'}(\boldsymbol{x}_j)\psi_n(\boldsymbol{x}_j))|} \quad \boldsymbol{x}_j \in C_B, \ \ell = 1, \cdots, K_B \end{split}$$

where c = 100 is a universal constant

Collocation points

- Explicit representation of boundary
 Uniform grid over the computational domain
 Uniform grid in the parameter space
- Implicit representation of boundary
 Easily identify interior points
 Define an energy function for finding a point on the boundary

Numerical setup

- ► Select a set of points $\{x_n\}_{n=1}^{M_p}$ and construct the PoU
- ► Construct J_n random feature functions with radius r_n for each x_n
- Sample Q collocation points
- Total number of random feature functions M
- Total number of conditions N
- ► Typically *N* > *M* due to the geometric complexity and the limited computational resource

Partition of unity and local random feature models

Table: Comparison of the RFM and PINN for the one-dimensional Helmholtz equation

М	ψ^{a}			ψ^{b}	PINN	
	N	L [∞] error	N	L [∞] error	N	L [∞] error
200	208	8.76E-2	202	2.51E-2	202	2.59E-2
400	416	5.89E-7	402	5.18E-7	402	6.77E-3
800	832	4.44E-10	802	6.61E-10	802	1.35E-2
1600	1664	8.84E-12	1602	1.18E-11	1602	8.94E-3

- ► Error in PINN is around 1E 3 without notable further improvement — Optimization error
- ▶ RFM for different PoU functions has exponential convergence
 ← representability of random feature functions
- ▶ RFM has exponential convergence for all problems tested when d = 1, 2, 3

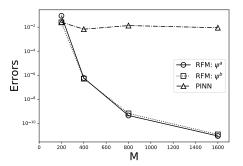


Figure: Convergence of RFM and PINN for Helmholtz equation in the semi-log scale

Different choice of PoU

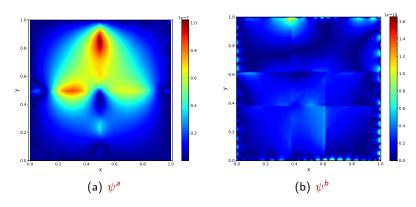


Figure: Error distribution of the RFM with different choices of PoU for Poisson equation

Multi-scale basis

Table: Comparison of PoU-based local basis and multi-scale basis functions for Poisson equation with the explicit solution

Solution frequency	М	N	PoU-based basis	Multi-scale basis
	1200	1920	1.93E-8	3.28E-9
Low	2700	4320	3.62E-9	6.42E-10
	4800	7680	8.61E-10	3.05E-10
	1200	1920	6.42E-6	9.36E-7
High	2700	4320	1.34E-7	3.58E-8
	4800	7680	4.16E-8	1.75E-8
	1200	1920	3.22E-6	4.68E-7
Mixed	2700	4320	6.54E-8	1.80E-8
	4800	7680	2.06E-8	8.92E-9

Inclusion of global basis functions improves the accuracy when the solution has a significant low-frequency component

Adaptive basis

Table: Results of using adaptive random feature functions for the two-dimensional Poisson equation

	t	anh	sin		
R_m	$\mathbb{U}[-R_m,R_m]$	$\mathbb{U}[-R_m, R_m]$ Equally spaced		Equally spaced	
0.5	4.92E-9	1.01E-9	2.55E-3	6.05E-4	
1.0	2.91E-8	9.36E-9	8.96E-7	2.58E-5	
1.5	1.33E-6	5.95E-7	1.79E-9	1.47E-6	
2.0	8.75E-5	7.85E-5	3.30E-12	4.29E-7	
2.5	8.16E-4	4.70E-5	2.86E-12	7.66E-6	
3.0	2.06E-2	5.27E-4	7.32E-12	2.17E-5	
3.5	1.53E-3	3.95E-3	6.10E-12	7.45E-5	
4.0	2.66E-3	1.27E-3	6.10E-12	5.59E-5	
4.5	5.39E-3	1.76E-2	2.29E-11	1.24E-3	
5.0	1.29E-2	5.16E-2	2.17E-11	6.72E-3	

Best results: \sin activation function with $R_m \ge k$ and random initialization

Timoshenko beam problem: Elasticity problem in two dimension

Table: Comparison of RFM and locELM

Method	М	Ν	<i>u</i> error	v error	σ_{x} error	$ au_{xy}$ error
		400	1.36E-2	3.43E-3	1.40E-2	1.63E-2
RFM	800	1200	7.14E-6	7.98E-7	8.93E-6	7.45E-6
KLIVI	000	4000	6.41E-11	4.34E-11	6.41E-11	6.58E-11
		14400	8.16E-12	1.01E-12	1.07E-11	1.03E-11
		400	5.22E-3	4.90E-3	1.33E-2	2.39E-2
locELM	800	1200	1.55E-4	5.25E-5	1.44E-4	1.02E-4
IOCELIVI	800	4000	6.36E-4	3.47E-4	6.55E-4	7.26E-4
		14400	1.76E-3	1.64E-3	1.93E-3	2.57E-3

Rescaling strategy restores the spectral accuracy

Two-dimensional elasticity problem with a complex geometry

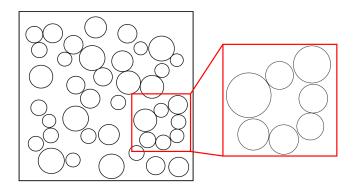


Figure: Complex domain with a cluster of holes that are nearly touching

Rescaling

Error in locELM is around $10^{-3} \sim 10^{-2},$ while RFM still maintains spectral accuracy

М	Ν	u error	v error	$\sigma_{\scriptscriptstyle X}$ error	σ_y error	$ au_{xy}$ error
3000	1784	4.96E-1	8.37E-1	1.09E+0	3.52E+0	5.24E-1
	4658	5.82E-3	7.12E-3	1.04E-2	5.47E-2	3.85E-3
3200	13338	1.69E-5	1.19E-5	2.89E-5	6.40E-5	8.18E-6
	42820	1.39E-5	1.55E-5	4.92E-5	6.16E-5	1.29E-5
	6578	9.11E-2	6.41E-2	1.03E-1	2.46E-1	2.95E-2
12800	17178	2.35E-4	2.10E-4	3.02E-4	7.56E-4	8.93E-5
12000	50500	5.46E-7	4.98E-7	8.45E-7	2.03E-6	2.67E-7
	165184	2.32E-7	1.89E-7	9.28E-8	2.32E-7	2.43E-8

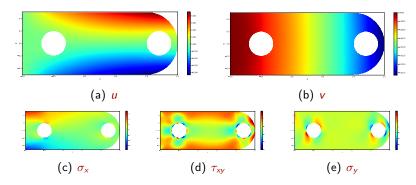


Figure: Numerical solution by the random feature method for the elasticity problem

Difference between the RFM and FEM solutions is about 1%

Method	Reference	М	N	u error	v error	$\sigma_{\scriptscriptstyle X}$ error	σ_y error	$ au_{xy}$ error
			40326	1.28E+0	1.12E+0	1.29E+0	9.37E-1	1.03E+0
RFM	RFM $N = 490176$	16000	135442	1.12E-1	1.16E-1	1.13E-1	1.03E-2	1.20E-1
			285472	6.52E-4	6.98E-4	1.03E-3	3.01E-5	1.88E-3
			40326	1.30E+0	1.12E+0	1.28E+0	9.37E-1	1.03E+0
RFM	FEM M = 153562	16000	135442	7.65E-2	8.55E-2	1.16E-1	1.31E-1	1.25E-1
Krivi	RFIVI FEIVI IVI = 193902	10000	285472	3.94E-2	3.36E-2	6.59E-3	5.95E-2	2.31E-2
			490176	4.00E-2	3.43E-2	6.20E-3	5.92E-2	2.30E-2
		3716	3716	3.15E-4	4.54E-4	1.41E-2	5.81E-2	3.35E-2
FEM	FEM $M = 153562$	10438	10438	1.20E-4	1.81E-4	9.39E-3	3.61E-2	2.13E-2
		40054	40054	2.88E-5	3.93E-5	4.65E-3	1.62E-2	9.40E-3
		3716	3716	3.87E-2	3.36E-2	1.43E-2	8.93E-2	3.86E-2
FEM	FEM RFM $N = 490176$	10438	10438	3.86E-2	3.34E-2	1.05E-2	7.29E-2	2.99E-2
FEIVI	Krivi /V = 4901/0	40054	40054	3.85E-2	3.32E-2	7.19E-3	6.33E-2	2.44E-2
		153562	153562	3.85E-2	3.32E-2	6.22E-3	6.01E-2	2.31E-2

Table: Comparison of RFM and FEM

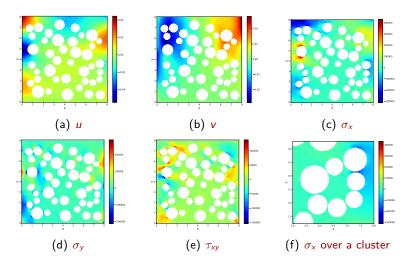
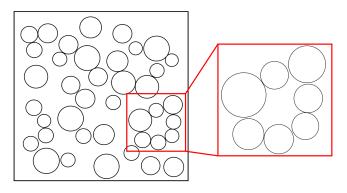


Figure: Numerical solution by the random feature method for the two-dimensional elasticity problem over a complex geometry

Mesh generation in FEM is difficult



Removal of the cluster leads to an L^{∞} error of about 50% for σ_{x} RFM shows a clear trend of numerical convergence

М	N	u error	v error	σ_X error	σ_y error	$ au_{xy}$ error
	195146	2.30E-1	1.30E-1	6.64E-2	1.72E-1	1.71E-1
14400	226132	8.97E-2	1.23E-1	5.60E-2	1.41E-1	1.32E-1
14400	259400	6.47E-2	6.94E-2	3.66E-2	9.04E-2	8.15E-2
	294878	7.30E-2	6.68E-2	3.46E-2	7.13E-2	7.05E-2

Table: Numerical results of the RFM with N = 332606 as the reference

Multi-scale problems

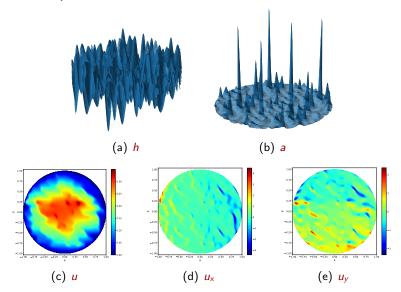


Figure: Random feature method for the elliptic homogenization problem

Table: Convergence of RFM

М	N	<u>u</u> error	u _x error	u _y error
	25554	1.42E+0	8.68E+0	8.73E+0
25600	91339	3.13E-2	3.54E-2	3.62E-2
25600	197360	3.48E-3	6.45E-3	7.18E-3
	343586		Reference	

Stokes flow

Two-dimensional channel flows with the inhomogeneous boundary condition

$$(u,v)|_{\partial\Omega}= egin{cases} (y(1-y),0) & ext{if } x=0 \ (y(1-y),0) & ext{if } x=1 \ (0,0) & ext{otherwise} \end{cases}$$

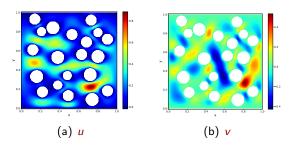
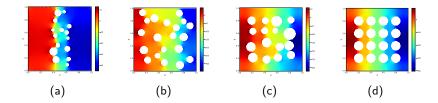


Figure: Velocity field (u, v) generated by the random feature method

Pressure diagram for four sets of complex obstacles

- Spurious pressure mode arises due to the rank deficiency of the discrete systems in spectral methods $M = N^8$
- ► RFM automatically bypass this issue by looking for the minimal-norm solution $M \neq N$



⁸schumack1991spectral.

Discussions

Three key components of RFM

- 1 Loss function: least-squares (strong) formulation of the PDEs on collocation points
- 2 Approximate solution: linear combination of random feature functions
- 3 Optimization: least-squares problem with automatic parameter tuning
- Traditional algorithms are robust but lack of flexibility
- Machine-learning algorithms are flexible but lack of robustness
- RFM seems to have both

- ▶ Deep neural networks have strong representative power but the parameters are difficult to optimize
- Random feature functions seem to also have strong representative power and the parameters are "easy" to optimize
- \triangleright Classical methods M = N: Efficient linear solvers
- ▶ Random feature method $M \neq N$: Least square framework with large condition number

Further developments

- Choice of basis functions: Probability distribution for the feature vector
- Choice of collocation points: Three dimensional domains when the boundary is a surface
- ► Training: Preconditioning and reformulation techniques
- ► Time-dependent problems
- Applications