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Example: Two-dimensional Poisson Equation
1. Strong form: Find u(x,y) € C3(Q), s.t.

—Au(x,y) = f(x,y), in Q
u(x,y) =0, on 9Q

or

min /(Au+f)2 dxdy
u(xy)eH;(Q) Ja

2. Weak form: Find u(x,y) € H}(), s.t.

/Vu-VvdXdy:/ frdxdy, Vv € H3(Q)
Q Q

3. Variational form :

1
min / <|Vu|2 - fu) dxdy
u(y)eH(@) Ja \ 2



Numerical algorithms

» Low computational cost
» Low human cost

» Robustness and generality

An incomplete list of some of the difficulties we still encounter
» Problems with complex geometry: Stokes flow in porous media
» Kinetic equations: Direct simulation Monte Carlo algorithm

» Multi-scale problems



QOutline

Traditional Algorithms

Machine Learning-based Algorithms M # N

A Bridge Between Traditional and Machine-learning Algorithms



Traditional Algorithms

» Strong form: Finite Difference Method, Spectral Collocation
Method, Least Square Method

» Variational form: Ritz Method

» Weak form: Finite Element Method, Spectral (Galerkin)
Method, Spectral Element Method, Mesh-free Method, etc



Finite Difference Method

» Discretization of equation — grid points (collocation points)

—Au(xij) = f(xi)

» Discretization of operator — finite difference

Aujj — Uim1j — Uit1j — Uij—1 = Uijt1
h2

= fij

» Boundary condition

Urj = Umj = Uj1=Ujn =0

» Total number of conditions = total number of unknowns

Simple, but not easy to handle complex geometries



Spectral Collocation Method

» Discretization of equation — grid points (collocation points)

—Au(xj) = f (xi))

» Approximation space: Linear combinations of global
polynomials (Lagrange polynomials, Fourier polynomials,
Chebyshev polynomials, etc)

UN(X,y) = Z (/J)U(X7Y)Ufj
i

» Polynomial basis functions need to satisfy boundary conditions

Spectral accuracy, not easy to handle complex geometries



Ritz Method

» Approximation space: Linear combinations of global basis
functions (Polynomials, Trigonometric functions, etc)

UN(Xay) = Zgbu(x,y)uu
iJ

» Basis functions need to satisfy boundary conditions

» Variational problem: Numerical integration

1
un(x,y) = argmin / (2 |Vv,\,\2 — va> dxdy
vn(x.y)eHg (@) /0

Not easy to handle complex geometries (boundary conditions and
numerical integration)



Finite Element Method

» Mesh generation: Tedious and time-consuming (~ 70% for
solving a PDE problem)

» Basis functions: linear combinations of local piecewise
polynomials

UN(Xay) = ZQbU(X,)/)UU
iJ

» Weak form

/ Vuy - Vvdxdy :/ fvdxdy, Vv e Vy
Q Q

» Boundary conditions can be enforced easily

Simple, easy to handle complex geometries, but generating the
mesh is not easy



Spectral (Galerkin) Method

» Approximation space: Linear combinations of global
polynomials

un(x,y) =D (% y)uj
"

» Polynomial basis functions need to satisfy boundary conditions
» Weak form

/ Vuy - Vvdxdy :/ fvdxdy, Vv e Vy
Q Q

Simple, spectral accuracy, not easy to handle complex regions
(boundary conditions, numerical integration)



Spectral Element Method

» Mesh generation

» Approximation space: Linear combination of local
higher-degree polynomials (Double summation of order index
and element index)

un(x,y) =D (%, y)uj

i

» Boundary conditions can be implemented easily

» Weak form:

/ Vupy - Vvdxdy :/ fvdxdy, Vv e Vy
Q Q

Spectral accuracy, easy to handle complex geometries
Mesh generation, boundary conditions and numerical integration
can be difficult



Meshfree Method

» Approximation space: Linear combinations of global and local
functions un(x,y) = >, ; ¢i(x. y)ujj
» Boundary conditions are enforced by a penalty term

» Weak form:

/VUN - Vvdxdy :/ fvdxdy, Vv e Vy
Q Q

Simple, algebraic accuracy, not easy to handle complex geometries
(numerical integration)



Accuracy vs Efficiency

WHICH METHOD IS BETTER???

» Strong form: Collocation points
» Weak form: Numerical integration
» Approximation space
» Boundary conditions
Note that we always have M = N, where

» M = number of parameters

» N = number of equations, or collocation points



Deep Neural Network
A new approximation space

u(x,y) = Wo (Wao (Wix + by) + bo)

How to optimize the parameters W and b?

» Strong form: Collocation points

» Variational form: Numerical integration or Monte-Carlo
sampling

» Weak form: Numerical integration or Monte-Carlo sampling



Components of a machine-learning algorithm

» Loss function: Strong, variational, weak
Collocation point, Quadrature or Monte Carlo sampling

» Approximation space: Deep neural networks

» Optimization of NN parameters: Stochastic gradient descent
method



Comparison

v

Error sources: approximation, integration, optimization

v

SGD can get a reasonable solution, which is not good enough

v

In high dimension
» Traditional methods fail
» Deep learning methods work (1% relative error without
convergence order)

v

In low dimension d < 3
» Traditional methods typically work well
» Deep-learning methods work (1% relative error without
convergence order), but have high coding efficiency



Machine Learning-based Algorithms

v

Variational form: Deep Ritz Method (DRM)!

Strong form: Deep Galerkin Method (DGM)?,
Physics-Informed Neural Networks (PINN)3

Weak form: Weak Adversarial Network (WAN)*

> etc

v

v

1EY2018.
2552018.
3PINN.
“Bao.



Deep Ritz Method

{ —Au(x) =1f(x), xe€Q
u(x) = g(x), x € 0Q

Loss function: Variational form + boundary penalty term

u] = /Q (;‘VU(X)’Z - f(x)u(x)) dx + )\/BQ(U(X) — g(x))%dx

Optimization:
Q] <= [1
— — — P . 2 J— . .
Okir1 =0k — aVy N, ;_1 [2 |Vu(x)| f(x) u(x,)]

- )\an‘(?V? > luly) —g )



v

v

v

v

Variational form: RelLU converges in general

Boundary condition is enforced by penalty term, but the
penalty parameter is difficult to tune

Loss function can be negative
M £ N



DGM, PINN

Oru=Lu, (t,x)€[0,T]xQ
u(0,x) = up(x),x € Q
u(t,x) =g(x), (t,x)e€][0,T]x 0N

Loss function: strong form in the least-squares sense 4+ boundary
penalty term

L(u) = |0t = Lull3 0, 71 + A1 4(0, ) — wol
+ X2l — g

2
2,0

2
2,00, T]x0Q

» Strong form: High regularity, and usually ReLU does not
converge

» Boundary condition is enforced by penalty term, but the
penalty parameter is difficult to tune

» M#£N



WAN

(Alu], ) = Ja (Z;’j:l 27:1 ajj0judip + Z,il biwdiu + cup — f‘P) dx=0
Blu] =0, on dQ

Loss function: weak form
I A[U]]lop £ max {(A[u], ¥)/ll¢ll2 | ¢ € Hg, ¢ # 0}
urgjg;l |A[u]ll5p <= urgj[,'l ;ne?% [(Aul, o)/ ll#ll5

Lint (9’77) £ |Og |<A [UG] 79077>‘2 - |Og ngﬁng
Nb . .
Lbdry (9) = (1/Nb) : Z ‘UG (X[(,J)) — 8 (Xg)) ‘2
j=1

mein m;\x L(0,m), where L(0,1) = Lin (0,7) + alpgry (6)



v

v

v

v

Weak form: RelLU converges in general
Boundary conditions require penalty terms

Min-max problem: uses GAN to solve and takes longer to
optimize

M+ N



Machine Learning-based Algorithms

» Simple, meshfree, easy to handle complex geometries and
boundary conditions

» The accuracy cannot be improved systematically and the
penalty parameters are difficult to tune

» Training takes a long time and the optimization error is
difficult to quantify

» Low human cost and low application barrier



Local Extreme Learning Machine®

v

Strong form: collocation points

v

Approximation space: domain decomposition + extreme
learning machine (only parameters in the output layer
optimized)®

v

Linear least-squares problem M # N

v

Similar to the spectral element method

Spectral accuracy, easy to handle complex geometries

*huang2006extreme.
®dong2021local.



Scalar PDE form

{ Lu(x) = f(x), in Q
Bu(x) = g(x), on 0Q

Domain decomposition: 2 = Q; Uy U - U Qp,

Local neural network is used to represent the solution in each
subdomain

Continuity conditions of basis functions and derivatives are
enforced
Main steps in the algorithm:

1 Selecting collocation points in subdomains €

2 Evaluating the equations at interior points and
boundary/continuity conditions at (sub-)boundary points

3 Solving the least-squares problem



[[lustration

Domain [0, 8] with N = 4 subdomains
» Equation at all points
» Boundary conditions at x =0 and x = 8

» Continuity conditions at x =2, x =4 and x =6

uq (x) Uy (%) usz(x) Uy (X)

0 2 4 6 8



Exponential convergence for Helmholtz equation

N [ L error L% error
4 8.76E-2 2.31E-2
8 | 4.06E-7 1.20E-7
16 | 3.52E-10 1.14E-10
32 | 1.73E-11 5.99E-12

Timoshenko beam: Loss of exponential accuracy

Nex N, | Qe Q, | uerror V error 0, error Ty, error
5*5 5.22E-3 4.90E-3 1.33E-2 2.39E-2

%9 10*10 1.55E-4 5.25E-5 1.44E-4 1.02E-4
20*20 | 6.36E-4 3.47E-4 6.55E-4 7.26E-4

40%40 1.76E-3 1.64E-3 1.93E-3 2.57E-3

5%5 8.50E-2 4.04E-2 7.72E-2 4.19E-2

4%4 10*10 1.32E-5 6.19E-6 3.25E-5 4.22E-5
20*20 1.33E-3 1.12E-3 1.31E-3 1.04E-3

40*%40 | 6.42E-4 191E-4 1.18E-3 1.38E-3




Comparison with Spectral Element Method

’ Local ELM ‘ SEM
Strong form Weak form
Domain decomposition Mesh generation
Extreme learning machine Polynomial
M #£ N M=N
Spectral accuracy Spectral accuracy
Geometry more friendly | Geometry friendly
Basis do not satisfy BC Basis satisfy BC

Local ELM does not work well for anisotropy/elasticity problems



Accuracy vs Efficiency

Is there a way to combine the advantages of traditional and
machine learning-based methods?



The Random Feature Method (RFM)’

v

Strong form: collocation points

v

Approximation space: random feature functions
1 Partition of unity and local random feature models
2 Multi-scale basis
3 Adaptive basis

v

Soft boundary condition: Basis functions do not satisfy BC

v

A linear convex optimization problem with easy-tuning
parameters (balance the contributions from the PDE terms
and the boundary conditions in the loss function)

> M#N

Simple, mesh-free, spectral accuracy, easy to handle complex
geometries and boundary conditions

"RFM.



Loss function

Examples include the elliptic problem, the linear elasticity problem,
and the Stokes flow problem when d < 3

{ﬁu(x) =f(x) xeQ,
Bu(x) = g(x) x €09,

where x = (x1,--- ,xg)", and Q is bounded and connected domain
in R9

Loss =Y ZA L5 u(x)—F (x)1B+ D ZA 1B u(x;)—g"(x))l|%
x;€C k=1 XJECB/ 1

Different penalty parameters at different collocation points are
allowed



Collocation points

Two sets of collocation points: C; in  and Cg on 022

| |
| | |
| |
R D
| | |
| |
| |
| |

Figure: Collocation points for a square domain: Cj, interior points in
orange and blue; Cg, boundary points in green.



Approximation space

A linear combination of M network basis functions {¢,} over Q as

M
upm(x) = Z Um®m(X)
m=1
Om(x) =o(km - x+ bm)

where ¢ is some scalar nonlinear function, k,, b, are some
random but fixed parameters



Partition of unity

A set of points {x,,}nM:”1 C Q with x, the center for a component
in the partition

=15 -1.0 -0.5 0.0 0.5 1.0 15

Figure: Visualization of ¢)?(x) and 1/°(x).

High-dimensional PoU: ¢,(x) = [] ¥n(xk)



Local random feature functions

Xx=—(x—-xp), n=1,--- M,
rn

where r, = (rp1, 2, ,rng) and {r,} are preselected
» Construct J, random feature functions by

QSnJ(X):U(knJ)?+an), ./:17 7Jn

where the feature vectors {(k,;, byj)} are often chosen
randomly, such as k,; ~ U([— Ry, R,j]¢) and
bnj ~ U([—Raj, Rnj])

» Approximate solution

MP Jn

un(x) = 3 n(x) 3 tnjeonj(x)

n=1 j=1



Multi-scale basis

MP Jn
um(x) = ug(x) + Y (%) Y unjoni(x)
n=1 j=1

where u, is a global random feature function



Adaptive basis

» Some (incomplete) information about the spectral distribution
of the solution in the precomputing stage

» A spectral analysis of the forcing term for example
» Selection of the spectral distribution of the feature vectors

» Particularly useful when sin/cos is used as the activation
function



Optimization: A least-squares problem

Parameter tuning is fully automatic!!!

Penalty coefficients in the loss functions are chosen as

c

k( Hk' ) i
(e max, Sn;?gm\ﬁ (& (xi)0n(xi))]

c

0 (x. .
1 % I3, | X, 1B (0 (xi)¢n(x))]

)\5(!: X,'EC[,k:].7"'./K/

o

XJ'GCB7 {=1--- Kg

where ¢ = 100 is a universal constant



Collocation points

» Explicit representation of boundary
Uniform grid over the computational domain
Uniform grid in the parameter space

» Implicit representation of boundary

Easily identify interior points
Define an energy function for finding a point on the boundary



Numerical setup

» Select a set of points {x,,},li/i’1 and construct the PoU

» Construct J, random feature functions with radius r, for each
Xn

» Sample Q collocation points

» Total number of random feature functions M

» Total number of conditions N

» Typically N > M due to the geometric complexity and the
limited computational resource



Partition of unity and local random feature models

Table: Comparison of the RFM and PINN for the one-dimensional
Helmholtz equation

M ? PP PINN

N L°° error N L=° error N L°° error
200 208 8.76E-2 202 2.51E-2 202 2.59E-2
400 416 5.89E-7 | 402 5.18E-7 | 402 6.77E-3
800 832 4.44E-10 | 802 6.61E-10 | 802 1.35E-2
1600 | 1664 8.84E-12 | 1602 1.18E-11 | 1602 8.94E-3

» Error in PINN is around 1E — 3 without notable further
improvement <— Optimization error

» RFM for different PoU functions has exponential convergence
< representability of random feature functions

» RFM has exponential convergence for all problems tested
when d =1,2,3



10-10
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Figure: Convergence of RFM and PINN for Helmholtz equation in the
semi-log scale



Different choice of PoU

(a) ¥° (b) ©*

Figure: Error distribution of the RFM with different choices of PoU for
Poisson equation
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Multi-scale basis

Table: Comparison of PoU-based local basis and multi-scale basis

functions for Poisson equation with the explicit solution

Solution frequency M N PoU-based basis | Multi-scale basis
1200 | 1920 1.93E-8 3.28E-9
Low 2700 | 4320 3.62E-9 6.42E-10
4800 | 7680 8.61E-10 3.05E-10
1200 | 1920 6.42E-6 9.36E-7
High 2700 | 4320 1.34E-7 3.58E-8
4800 | 7680 4.16E-8 1.75E-8
1200 | 1920 3.22E-6 4.68E-7
Mixed 2700 | 4320 6.54E-8 1.80E-8
4800 | 7680 2.06E-8 8.92E-9

Inclusion of global basis functions improves the accuracy when the

solution has a significant low-frequency component




Adaptive basis

Table: Results of using adaptive random feature functions for the
two-dimensional Poisson equation

tanh sin
Rm | U[—=Rm, Rm] | Equally spaced | U[—Rnm, Rm] | Equally spaced
0.5 4.92E-9 1.01E-9 2.55E-3 6.05E-4
1.0 2.91E-8 9.36E-9 8.96E-7 2.58E-5
1.5 1.33E-6 5.95E-7 1.79E-9 1.47E-6
2.0 8.75E-5 7.85E-5 3.30E-12 4.29E-7
2.5 8.16E-4 4.70E-5 2.86E-12 7.66E-6
3.0 2.06E-2 5.27E-4 7.32E-12 2.17E-5
3.5 1.53E-3 3.95E-3 6.10E-12 7.45E-5
4.0 2.66E-3 1.27E-3 6.10E-12 5.59E-5
4.5 5.39E-3 1.76E-2 2.29E-11 1.24E-3
5.0 1.29E-2 5.16E-2 2.17E-11 6.72E-3

Best results: sin activation function with R, >

initialization

k and random




Timoshenko beam problem: Elasticity problem in two
dimension

Table: Comparison of RFM and locELM

Method | M N u error v error Ox €rror Ty, error
400 1.36E-2  3.43E-3 1.40E-2 1.63E-2

REM 800 1200 | 7.14E-6  7.98E-7 8.93E-6  7.45E-6

4000 | 6.41E-11 4.34E-11 6.41E-11 6.58E-11

14400 | 8.16E-12 1.01E-12 1.07E-11 1.03E-11

400 5.22E-3  4.90E-3 1.33E-2 2.39E-2

1200 1.55E-4  5.25E-5 1.44E-4 1.02E-4

locELM 1 800 4000 | 6.36E-4 347E-4  6.55E-4  7.26E-4
14400 | 1.76E-3 1.64E-3 1.93E-3  2.57E-3

Rescaling strategy restores the spectral accuracy




Two-dimensional elasticity problem with a complex
geometry

eI S35 008

Figure: Complex domain with a cluster of holes that are nearly touching




Rescaling

Error in locELM is around 10~3 ~ 102, while RFM still maintains

spectral accuracy

M N U error Vv error O error g, error T, error
1784 | 496E-1 8.37E-1 1.09E4+0 3.52E+0 5.24E-1

3200 4658 | 5.82E-3 7.12E-3 1.04E-2  5.47E-2  3.85E-3
13338 | 1.69E-5 1.19E-5 2.89E-5 6.40E-5 8.18E-6

42820 | 1.39E-5 1.55E-5 492E-5 6.16E-5 1.29E-5

6578 | 9.11E-2 6.41E-2 1.03E-1 2.46E-1 2.95E-2

12800 17178 | 2.35E-4 2.10E-4 3.02E-4 7.56E-4  8.93E-5
50500 | 5.46E-7 4.98E-7 8.45E-7 2.03E-6 2.67E-7

165184 | 2.32E-7 1.89E-7 9.28E-8  2.32E-7  2.43E-8
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Figure: Numerical solution by the random feature method for the
elasticity problem
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Difference between the RFM and FEM solutions is about 1%

Method Reference M N u error v error oy error oy error Txy error
40326 1.28E4-0 1.12E4+0 1.29E4+0 9.37E-1 1.03E+0

RFM RFM N = 490176 16000 135442 1.12E-1 1.16E-1 1.13E-1 1.03E-2 1.20E-1
285472 6.52E-4 6.98E-4 1.03E-3 3.01E-5 1.88E-3

40326 1.30E4+0 1.12E4+0 1.28E4+0 9.37E-1 1.03E+0

135442 7.65E-2 8.55E-2 1.16E-1 1.31E-1 1.25E-1

RFM FEM M = 153562 16000 285472 3.94E-2 3.36E-2 6.59E-3 5.95E-2 2.31E-2
490176 4.00E-2 3.43E-2 6.20E-3 5.92E-2 2.30E-2

3716 3716 3.15E-4 4.54E-4 1.41E-2 5.81E-2 3.35E-2

FEM FEM M = 153562 10438 10438 1.20E-4 1.81E-4 9.39E-3 3.61E-2 2.13E-2
40054 40054 2.88E-5 3.93E-5 4.65E-3 1.62E-2 9.40E-3

3716 3716 3.87E-2 3.36E-2 1.43E-2 8.93E-2 3.86E-2

10438 10438 3.86E-2 3.34E-2 1.05E-2 7.29E-2 2.99E-2

FEM RFM NV = 490176 40054 40054 3.85E-2 3.32E-2 7.19E-3 6.33E-2 2.44E-2
153562 153562 3.85E-2 3.32E-2 6.22E-3 6.01E-2 2.31E-2

Table: Comparison of RFM and FEM




(f) ox over a cluster

Figure: Numerical solution by the random feature method for the
two-dimensional elasticity problem over a complex geometry



Mesh generation in FEM is difficult

%OC@% C@N
%O
o OO0

QQQ

Removal of the cluster leads to an L™ error of about 50% for o,

RFM shows a clear trend of numerical convergence

Table:

M N u error v error o error oy error Txy €rror
195146 2.30E-1 1.30E-1 6.64E-2 1.72E-1 1.71E-1

14400 226132 8.97E-2 1.23E-1 5.60E-2 1.41E-1 1.32E-1
259400 6.47E-2 6.94E-2 3.66E-2 9.04E-2 8.15E-2

294878 7.30E-2 6.68E-2 3.46E-2 7.13E-2 7.05E-2

Numerical results of the RFM with N = 332606 as the

reference



Multi-scale problems

(a) h (b) a

ol ’ i ol .

\ X o \
\ N oo \ \

(c) u (d) ux (e) uy

Figure: Random feature method for the elliptic homogenization problem



Table: Convergence of RFM

M N u error Uy error uy, error
25554 | 1.42E4+0 8.68E+0 8.73E+0

25600 91339 | 3.13E-2 3.54E-2  3.62E-2
197360 | 3.48E-3 6.45E-3  7.18E-3

343586

Reference




Stokes flow

Two-dimensional channel flows with the inhomogeneous boundary
condition

(y(1 —y),0) ifx=0
(u,v)[og = S (y(1 — y),0) ifx=1

(0,0) otherwise
o8 \ \ ‘
N \
L - N
. N
02 ‘ ‘

(b) v

Figure: Velocity field (u, v) generated by the random feature method



Pressure diagram for four sets of complex obstacles

» Spurious pressure mode arises due to the rank deficiency of
the discrete systems in spectral methods M = N8

» RFM automatically bypass this issue by looking for the
minimal-norm solution M # N

i o o b A
:.. n: . ﬂ ME Hr: H . ‘:
(a) (b) (c) (d)

8schumack1991spectral.




Discussions

Three key components of RFM

1 Loss function: least-squares (strong) formulation of the PDEs
on collocation points

2 Approximate solution: linear combination of random feature
functions

3 Optimization: least-squares problem with automatic
parameter tuning

» Traditional algorithms are robust but lack of flexibility
» Machine-learning algorithms are flexible but lack of robustness
» RFM seems to have both



Deep neural networks have strong representative power but
the parameters are difficult to optimize

Random feature functions seem to also have strong
representative power and the parameters are “easy” to
optimize

Classical methods M = N: Efficient linear solvers

Random feature method M # N: Least square framework
with large condition number



Further developments

» Choice of basis functions: Probability distribution for the
feature vector

» Choice of collocation points: Three dimensional domains
when the boundary is a surface

» Training: Preconditioning and reformulation techniques
» Time-dependent problems

» Applications



