
Towards a Mathematical Understanding of Supervised Learning:
what we know and what we don’t

Weinan E

Princeton University

Joint work with Chao Ma, Stephan Wojtowytsch, Lei Wu

Slides can be found in: www.math.princeton.edu/~weinan

Neural network-based machine learning is both very powerful and very fragile.

What are the reasons behind?

How can we do better (more robust formulation)?

July 20, 2020 1 / 39

www.math.princeton.edu/~weinan

Basic problem of supervised learning (regression)

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn (i.e. approximate) f ∗.

assume xj ∈ X = [0, 1]d, µ = the distribution of {xj}
Standard procedure:

1 choose a hypothesis space (set of trial functions) Hm

neural network models

2 choose a loss function (to fit the data)
“empirical risk”

R̂n(f) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2

3 choose an optimization algorithm and the hyper-parameters
gradient descent (GD), stochastic gradient descent (SGD), ADAM, RMSprop, ...

Objective: Minimize the “population risk” (the “generalization error”)

R(f) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

July 20, 2020 2 / 39

Three important aspects to study

hypothesis space: what kind of functions can be approximated efficiently,
generalization gap (= difference between training and testing errors)

loss function (the variational problem): landscape?

training: can we optimize? does the solution generalize?

Important parameters:

m =: number of free parameters

n =: size of training dataset

t =: training steps

d =: dimensionality

typically interested in the case: m,n, t→∞, d� 1.

Main goal: Error estimates

R(fm,n,t) . m−α + n−β + t−γ

Want: free of curse of dimensionality (CoD): α, β, γ are independent of d.

July 20, 2020 3 / 39

Given a class of hypothesis space (e.g. two-layer neural networks):

1. What class of functions can be
approximated by that model without CoD?

Looking for some function spaces. These are the analog of Besov spaces.

2. Generalization gap for this function class?

Bounds on Rademacher complexity.

July 20, 2020 4 / 39

Function spaces for ML models

Random feature model: RKHS (reproducing kernel Hilbert space,)

Two-layer neural networks: Barron space (Bach (2017), E, Ma and Wu (2018, 2019))

ResNets: Flow-induced space (E, Ma and Wu (2019))

Multi-layer neural networks: Multi-layer spaces (E and Wojtowytsch (2020))

July 20, 2020 5 / 39

Looking for the right function spaces

Given a type of hypothesis space Hm, identify the natural function space associated
with them (in particular, identify a norm Identify ‖f ∗‖∗)

Direct approximation theorem (with Monte Carlo rate):

inf
f∈Hm

R(f) = inf
f∈Hm

‖f − f ∗‖2
L2(dµ) .

‖f ∗‖2
∗

m

Inverse approximation theorem: If a function f ∗ can be approximated efficiently by the functions in

Hm, as m→ with some uniform bounds, then ‖f ∗‖∗ is finite.

Study the generalization gap for this function space. One way to do this is to study the
Rademacher complexity of the set HQ = {f, ‖f‖∗ ≤ Q}.

Ideally, we would like to have (f̂ = output of ML model):

RadS(HQ) .
Q√
n

Combined: Up to log terms, we have

R(f̂) .
‖f ∗‖2

∗
m

+
‖f ∗‖∗√

n

July 20, 2020 6 / 39

Two-layer neural network model: Barron spaces

E, Ma and Wu (2018, 2019), Bach (2017) i

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}, θ = {(aj,wj), j ∈ [m]}

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = E(a,w)∼ρ[aσ(wTx)]}, x ∈ X

Ω = R1 × Rd+1, ρ is a probability distribution on Ω.

‖f‖B = inf
ρ∈Pf

(
Eρ[a2‖w‖2

1]
)1/2

where Pf := {ρ : f (x) = Eρ[aσ(wTx)]}.

B = {f ∈ C0 : ‖f‖B <∞}

iRelated work in Barron (1993), Klusowski and Barron (2016), E and Wojtowytsch (2020)
July 20, 2020 7 / 39

Theorem (Direct Approximation Theorem)

‖f − fm‖L2(X) .
‖f‖B√
m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.

July 20, 2020 8 / 39

Complexity estimates

Theorem (Bach, 2017)

Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

July 20, 2020 9 / 39

A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

(
1

m

m∑
k=1

|ak|2‖wk‖2
1

)1/2

Theorem (E, Ma, Wu, 2018)

Assume f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, such that for any δ > 0, if λ ≥ C0,
then with probability at least 1− δ over the choice of training set, we have

R(θ̂n) .
‖f ∗‖2

B
m

+ λ‖f ∗‖B
√

log(2d)

n
+

√
log(1/δ) + log(n)

n
.

July 20, 2020 10 / 39

Other models

1. Random feature model

{φ(·;w)}: collection of random features, e.g. φ(x,w) = σ(wTx).
π: prob distribution of the random variable w.

Hypothesis space: Given any realization {wj}mj=1, i.i.d. with distribution π

Hm({wj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;wj)}.

Corresponding function space: reproducing kernel Hilbert space (RKHS) with kernel:

k(x,x′) = Ew∼π[φ(x;w)φ(x′;w)]

Consider the regularized model:

Ln,λ(a) = R̂n(a) +
λ√
n

‖a‖√
m
, ân = argmin Ln,λ(a)

Up to log terms

R(ân) .
‖f ∗‖2

H
m

+ λ
‖f ∗‖H√

n
July 20, 2020 11 / 39

2. ResNets

z0,L(x) = x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), l = 0, 1, · · · , L− 1

f (x, θ) = α · zL,L(x)

Corresponding function space: “flow-induced function space” (E, Ma and Wu (2019))
Regularized loss function:

Ln,λ(θ) = R̂n(θ) + λ‖θ‖P
√

2 log(2d)

n
.

Up to logarithmic terms, we have:

R(θ̂) .
‖f ∗‖2

D
L

+ λ
‖f ∗‖2

D√
n

Variance reduction:
‖f ∗‖D ≤ ‖f ∗‖B ≤ ‖f ∗‖H

July 20, 2020 12 / 39

3. Multilayer networks

f (x) =

mL∑
iL=1

aLiLσ

 mL−1∑
iL−1=1

aL−1
iLiL−1

σ

. . . σ
 m1∑

i1=1

a1
i2i1
σ

 d+1∑
i0=1

a0
i1i0
xi0


Corresponding function space: “multilayer space” (E and Wojtowytsch (in preparation))

Rademacher complexity/generalization gap: Same as for Barron space. Let

FQ = {f ∈ C0, ‖f‖multi-layer ≤ Q}. Then RadS(FQ) ≤ 2Q
√

2 ln(2d+2)
n

Inverse approximation theorem holds.

Direct approximation theorem: holds, but not with Monte-Carlo rate. For f ∗ in
multi-layer space and m ∈ N, there exists a network f with layers of width
m` = mL−`+1 such that

‖f − f ∗‖L2(P) .
2L ‖f ∗‖multi-layer

m1/(4L−2)
.

July 20, 2020 13 / 39

Representation of functions for different ML model:

Random feature model:
f (x) = Eπ[a(w)σ(wTx)]

Two-layer neural networks: Barron space

f (x) = E(a,w)∼ρ[aσ(wTx)]

ResNets: Flow-induced space

f (x) = α · z(1), ż = E{(a,w)∼ρτ}aσ(wTz), z(0) = x

Multi-layer neural networks: Multi-layer spaces

f (x) = EθL∼πLa
(L)
θL
σ(EθL−1∼πL−1

. . . σ(Eθ1∼π1a
1
θ2,θ1

σ(a0
θ1
· x)) . . .)

July 20, 2020 14 / 39

What’s not known?

Multi-layer spaces: The approximation error is not optimal. Can it be improved?

Function spaces for CNNs

Function space for DenseNets

July 20, 2020 15 / 39

Training dynamics

Optimization:
Does the training process converge to a
good solution? How fast?

Generalization:
In particular, is there such thing as “implicit
regularization”?

July 20, 2020 16 / 39

Mean-field formulation

Chizat and Bach (2018), Mei, Montanari and Nguyen (2018), Rotskoff and Vanden-Eijnden
(2018), Sirignano and Spiliopoulos (2018)

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}

Let
I(u1, · · · ,um) = R̂n(fm), uj = (aj,wj)

GD dynamics:
duj

dt
= −∇ujI(u1, · · · ,um), uj(0) = u0

j , j ∈ [m]

Lemma:. Let

ρ(u, t) =
1

m

∑
j

δuj(t)

then the GD dynamics described above is equivalent to:

∂tρ = ∇(ρ∇V), V =
δR̂n

δρ

This is the gradient flow of R̂n under the Wasserstein metric.
July 20, 2020 17 / 39

Convergence to global minima

The functional which is not displacement convex, but:

Theorem (Chizat-Bach ’18, ’20, Wojtowytsch ’20)
Let ρt be a solution of the Wasserstein gradient flow such that

ρ0 has a density on the cone Θ := {|a|2 ≤ |w|2}.
ρ0 is omni-directional: Every open cone in Θ has positive measure with respect to ρ0

Then the following are equivalent.
1 The velocity potentials V = δR

δρ (ρt, ·) converge to a unique limit as t→∞.

2 R(ρt)→ 0, as t→∞.

1 There are further technical conditions for the theorem to hold.
2 Convergence of subsequences of δR

δρ (ρt, ·) is guaranteed by compactness.

July 20, 2020 18 / 39

Training two-layer neural networks under conventional scaling

fm(x;a,B) =

m∑
j=1

ajσ(bTj x) = aTσ(Bx),

“Xavier-like” initialization:

aj(0) ∼ N (0, β2), bj(0) ∼ N (0, I/d)

β = 0 or 1/
√
m

The associated random feature model: {bj} frozen, only train {ai}

Define Gram matrix K = (Kij):

Ki,j =
1

n
Eb∼π0[σ(xTi b)σ(xTj b)].

July 20, 2020 19 / 39

Highly over-parametrized regime

Good news: Exponential convergence (Du et al (2018))

Bad news: Converged solution is no better than that of the random feature model
(E, Ma, Wu (2019), Arora et al (2019),)
Heuristics given in Jacot, Gabriel and Hongler (2018): “neural tangent kernel”

Theorem
Let λn = λmin(K) and assume β = 0. Denote by fm(x; ã(t),B0)) the solutions of GD
dynamics for the random feature model. For any δ ∈ (0, 1), assume that
m & n2λ−4

n δ
−1 ln(n2δ−1). Then with probability at least 1− 6δ we have

R̂n(a(t),B(t)) ≤ e−mλntR̂n(a(0),B(0))

sup
x∈Sd−1

|fm(x;a(t),B(t))− fm(x; ã(t),B0)| . (1 +
√

ln(δ−1))2λ−1
n√

m
.

Disappointing! No “implicit regularization” in this regime, since

with explicit regularization, the generalization error is small for all Barron functions.

without explicit regularization, the generalization error is small only for RKHS functions.

July 20, 2020 20 / 39

What happens in practice?

f ∗(x) = σ(e1 · x) (see Ma, Wu and E (2020) for more results).

0 5000 10000 15000 20000

Number of iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

Lo
ss

m=2000, n=200 d=20

nn, train
nn-test
rf, train
rf-test

(a)

0 250 500 750 1000 1250 1500 1750 2000

Index of neurons

−0.01

0.00

0.01

0.02

0.03

0.04

a
j
‖b

j
‖

m=2000, n=200 d=20

nn
rf

(b)

0 5000 10000 15000 20000 25000 30000

Number of iterations

10−4

10−3

10−2

10−1

100

L
os

s

n =∞,m = 200, d = 100

6× 10−1

2× 100

3× 100

NN

RF

(c)

0 25 50 75 100 125 150 175 200

Index of neurons

0.0

0.2

0.4

0.6

0.8

a
j
‖b

j
‖

n =∞,m = 200, d = 100

NN

RF

(d)
July 20, 2020 21 / 39

2 3 4 5 6
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

101 102 103

m

10−3

10−1

101

Te
st

er
ro

r

m = n
m = n

d+1

NN
RF

101 102 103

m

2

4

6

8

P
at

h
no

rm

m = n

July 20, 2020 22 / 39

Neural network-like vs. random feature-like behavior

Neural network-like behavior
two phases: initial random feature-like phase, followed by a second phase with quenching and

activation

Neurons are divided into two groups: activated ones and background neurons

testing error continues to decay after the first phase

Random feature-like behavior
simpler dynamics (e.g. no division into two groups)

testing error saturates quickly while training error continues to decay

This is observed for target functions which can be accurately approximated by a small
number of neurons (effectively “over-parametrized”).

July 20, 2020 23 / 39

What we don’t know?

Why does GD/SGD converge to good minima?

mean-field for continuum of neurons: This is a clean analysis problem.

mean-field for finite neurons: No rigorous results yet.

conventional scaling: Does there exist a regime with implicit regularization?

July 20, 2020 24 / 39

“Well-posed” formulations of ML?

Start with a “nice” continuous problem and discretize to get practical ML algorithms

representation of functions

the variational problem for minimizing the population risk (loss function)

gradient flow for the variational problem (training, a PDE-like problem)

Key: The variational problem should be “nice”.

July 20, 2020 25 / 39

Representation of functions: An illustrative example

Traditional approach:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach (π = probability measure on Rd):

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

Let {ωj} be an i.i.d. sample of π.

E|f (x)− 1

m

m∑
j=1

a(ωj)e
i(ωj ,x)|2 =

var(f)

m

1
m

∑m
j=1 a(ωj)e

i(ωj ,x) = two-layer neural network with activation function σ(z) = eiz.

July 20, 2020 26 / 39

Integral transform-based representation and the variational
problem

Consider the (parametric) representation:

f (x, θ) =

∫
Rd
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx) = E(a,w)∼ρaσ(wTx)

θ = parameter:

θ = {a(·)}, π is given

θ = {a(·), π(·)}, or equivalently θ = {ρ(·)}.

Given a target function f ∗, the variational problem for minimizing the population risk:

min
θ
R, R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

Conjecture: This is a “nice (convex-like)” variational problem.

July 20, 2020 27 / 39

Gradient flow for the population risk

Population risk: R(f) = Ex∼µ(f (x)− f ∗(x))2 = “free energy”

f (x) =

∫
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

Follow Halperin and Hohenberg (1977)

a = non-conserved, use “model A” dynamics (Allen-Cahn):

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B” (Cahn-Hilliard):

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.

July 20, 2020 28 / 39

Examples

θ = {a} (fix π, non-conservative).

∂ta(w, t) = −δR
δa

(w, t) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

K(w, w̃) = Ex[σ(wTx)σ(w̃Tx)], f̃ (w) = Ex[f ∗(x)σ(wTx)]

This is an integral equation with a symmetric positive definite kernel.

θ = {ρ} (conservative)

∂tρ = ∇(ρ∇V)

V (u) =
δR
δρ

(u) =

∫
K̃(u, ũ)ρ(dũ)− f̃ (u)

This is the same as the mean-field equation.

July 20, 2020 29 / 39

Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothes particle method – analog of vortex blob method

spectral method – very effective in low dimensions

July 20, 2020 30 / 39

Particle method for the feature-based model

Continuous problem:

∂ta(w, t) = −δR
δa

(w) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

π(dw) ∼ 1

m

∑
j

δwj
, a(wj, t) ∼ aj(t)

Discretized version:

d

dt
aj(t) = − 1

m

∑
k

K(wj,wk)ak(t) + f̃ (wj)

This is exactly the GD for the random feature model.

f (x) ∼ fm(x) =
1

m

∑
j

ajσ(wT
j x)

July 20, 2020 31 / 39

Discretization of the conservative flow

Consider the integral differential equation (IDE):

∂tρ = ∇(ρ∇V)

Particle method discretization:

ρ(a,w, t) ∼ 1

m

∑
j

δ(aj(t),wj(t)) =
1

m

∑
j

δuj(t)

gives rise to
duj

dt
= −∇ujI(u1, · · · ,um)

where

I(u1, · · · ,um) = R(fm), uj = (aj,wj), fm(x) =
1

m

∑
j

ajσ(wT
j x)

Note that this is exactly the GD dynamics for two-layer neural networks.

July 20, 2020 32 / 39

Why is “mean-field” or “continuous formulation” better?

Their performance is more robust.

101 102 103

Number of neurons

10−4

10−3

10−2

Te
st

er
ro

r

MF
Conventional

102 103

Number of samples

10−5

10−4

10−3

10−2

10−1

Te
st

er
ro

r

d=10
d=40
d=100

(a) Single neuron f ∗1 .

101 102 103

Number of neurons: m

10−3

10−2

Te
st

er
ro

r

MF
Conventional

102 103

Number of samples

10−4

10−3

10−2
Te

st
er

ro
r

d=10
d=40
d=100

(b) Circle neuron f ∗2 .
July 20, 2020 33 / 39

However, “mean-field” and “continuous” are different viewpoints:

mean field: discrete → continuous by taking the limit (more like interacting particles in
stat phys)

continuous formulation: continuous → discrete by discretization (more like the usual
numerical analysis situation)
The crucial technical work is in the statics (particularly the representation of functions).

“Continuous” formulation tries to formulate the “first principles” of ML.
It allows us to think “outside the box” about ML.

Indeed, there are other natural discretizations that lead to “non-neural network-like
models” (see E, Ma and Wu (2019)).

July 20, 2020 34 / 39

Flow-based representation

ODE viewpoint (E (2017), Haber/Ruthotto (2017), “Neural ODEs” (Chen et al (2018)))

dz

dτ
= g(τ, z), z(0) = x

The flow-map at time 1:
x→ z(1)

Hypothesis space (or trial functions):

f = αTz(1)

What form of g should we choose?

July 20, 2020 35 / 39

A natural choice of g (E, Ma and Wu, 2019):

g(τ, z) = Ew∼πτa(w, τ)σ(wTz) = E(a,w)∼ρτaσ(wTz)

where {πτ} or {ρτ} is a family of probability distributions.

dz

dτ
= Ew∼πτa(w, τ)σ(wTz) = E(a,w)∼ρτaσ(wTz)

f (x) = αTz(x, 1)

Discretize: We obtain the residual neural network model:

zl+1 = zl +
1

LM

M∑
j=1

aj,lσ(zTl wj,l), l = 1, 2, · · · , L− 1, z0 = V x̃

fL(x) = αTzL

Particle discretization of the continuous GD flow recovers GD for ResNets.

July 20, 2020 36 / 39

What we don’t know?

Other general representations of functions?

It has to be some kind of expectation.

Each such representation may lead to a new kind of ML model.

In a way, neural network models are also very natural: They arise naturally when considering
continuous formulations in high dimensions.

July 20, 2020 37 / 39

Not covered:

Other approximation results

Estimates of the generalization gap

Global minima selection for different optimization algorithms

Adaptive optimization algorithms (Adam, RMSprop, ...)

Landscapes, structure of the set of critical points

......

July 20, 2020 38 / 39

Summary: What do we know and what we don’t know?

approximation/generalization properties of hypothesis space
function spaces (RKHS, Barron, flow-induced, multi-layer)– the key is representation of functions

generalization error estimates of regularized model

CNNs, DenseNets, improvements?

highly over-parametrized NNs
optimizes well

generalizes badly

other regimes under the conventional scaling
qualitative behavior (better characterization of NN-like bahavior)?

behavior for different number of layers?

implicit regularization?

mean-field training dynamics
Chizat and Bach and extensions

stronger results?

continuous formulation
other representations of functions?

other discretizations?

classification? GAN? RNN? RL?

July 20, 2020 39 / 39

