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PDEs and fundamental laws of physics
PDEs and fundamental laws of physics
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PDEs and fundamental laws of physics

Dirac’s claim (1929)

" The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only that
the exact application of these laws leads to equations much too complicated to be soluble.

For most practical applications, the difficulty is not in the fundamental laws of physics, but in
the mathematics.
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Period 1: Solving differential equations numerically
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© Period 1: Solving differential equations numerically
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Period 1: Solving differential equations numerically

Numerical methods: 50's-80's

@ finite difference
@ finite element
@ spectral methods

These have completely changed the way we do science, and to an even greater extend,
engineering.

@ gas dynamics

@ structural analysis

@ radar, sonar, optics

@ control of flight vehicles, satellites

If the finite difference method was invented today, the shock wave that it will generate would
be just as strong as the one generated by deep learning.
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Period 1: Solving differential equations numerically

Many difficult problems remain

Common feature of these problems: Dependence on many variables.

many-body problems (classical and quantum, in molecular science)
quantum control

first principle-based drug and materials design

protein folding

turbulence, weather forecasting

transitional flows in gas dynamics

polymeric fluids

plasticity

control problems in high dimensions

Curse of dimensionality: As the dimension grows, the complexity (or computational cost)
grows exponentially.
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Period 2: Multiscale, multi-physics modeling
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© Period 2: Multiscale, multi-physics modeling
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Period 2: Multiscale, multi-physics modeling

Multiscale, multi-physics modeling: 90’s till now
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@ works well when the macro- and micro-scales are very well separated

@ not very effective when there are no separation of scales (e.g. turbulence problem)
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Period 2: Multiscale, multi-physics modeling

Status summary

@ Solved: low dimensional problems (few dependent variables)

@ Unsolved: high dimensional problems (many dependent variables)

Machine learning, particularly deep learning, seems to be a powerful tool for high dimensional
problems.
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Period 3: Integrating machine learning with physical modeling
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@ Period 3: Integrating machine learning with physical modeling
@ Molecular modeling
@ Kinetic model for gas dynamics
@ Economics and Finance
@ Linguistics
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Example 1: Molecular dynamics

Traditional dilemma: accuracy vs cost.

Two ways to calculate £/ and F':

@ Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive:

E = (Wo|HE W), pdi = HE ¢+~ Nijob;.
J
@ Empirical potentials: efficient but unreliable. The Lennard-Jones potential:
o

Vi =42 = () E=53 Ve

Hii i]
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Period 3: Integrating machine learning with physical modeling Molecular modeling

How can we represent (approximate) a function of many variables?

New paradigm:
@ quantum mechanics model — data generator
@ machine learning — parametrize (represent) the model
@ molecular dynamics — simulator

Issues (different from usual Al applications):
@ preserving physical symmetries (translation, rotation, permutation)
@ getting the “optimal data set”
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Deep potential

The whole sub-network consists of an encoding net D'(R") and a fitting net E'(D").
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(Rotation: RY(R')!, permutation: (G1)IR" and (R")! G*2.)
DeepPot-SE (arxiv: 1805.09003, NIPS 2018), see also Behler and Parrinello, PRL 2007.
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Period 3: Integrating machine learning with physical modeling Molecular modeling

DP-GEN: active learning for uniformly accurate model

Initial
Initial model Samblin
tralnlng P g
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>
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atase
training Flnal data
Final Fmal
model data
S -
Indicator: € = max; \/<||fz fZH > = <fz> " Active Learning of Uniformly Accurate Inter-atomic Potentials

for Materials Simulation.” arXiv:1810.11890 (2018).
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Period 3: Integrating machine learning with physical modeling

Molecular modeling

In addition, initialize the exploration with a variety of different initial configurations.

Systems Al Mg Al-Mg alloy

Type Lattice F#atom #Confs #Data #Confs #Data #Conis #Data

FCC 32 15,174,000 1,326 15,174,000 860 39,266,460 7,313

Bulk HCP 16 15,174,000 908 15,174,000 760 18,999,900 2,461

Diamond 16 5,058,000 1,026 5,058,000 543 5,451,300 2,607

SC 8 5,058,000 713 5,058,000 234 2,543,940 667

FCC (100) 12 3,270,960 728 3,270,960 251 62,203,680 1,131

FCC (110) 16%,20° 3,270,960 838 3,270,960 353 10,744,2720 2,435

Surface FCC (111) 12 3,270,960 544 3,270,960 230 62,203,680 1,160

HCP (0001) 12 3,270,960 39 3,270,960 109 62,203,680 176

HCP (1010) 12 3,270,960 74 3,270,960 167 62,203,680 203

HCP (1120) 16%,20° 3,270,960 293 3,270,960 182 107,442,720 501

sum 60,089,760 6,489 60,089,760 3,689 529,961,760 18,654
%Pure Al

®Mg and Al-Mg alloy

~0.005% configurations explored by DeePMD are selected for labeling.
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Case 1: accuracy is comparable to the accuracy of the data
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Period 3: Integrating machine learning with physical modeling Molecular modeling

Case 2: structural information of DF T water

Radial and angular distribution function of liquid water (PI-AIMD):
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: DeePMD 0-O — ] -
3.0 F DeePMD O-H - 0.7
s DeePMD H-H — 1 I
25 F DFTO-0 ---- 4 087
— C DFT O-H ] 05
5 20 F DFTH-H ---- 3 _ " |
. [ p 304
O 15 4% i
T : . 1 03
. U7z = IRY
0.5 F E 0.1
0'0 :-- 1 'Y T T T e ] 00
3 4 5 6 0.5 1 1.5 2 2.5 3
r [A] v [rad]

Distribution of the Steinhardt order parameter Q:

10-0 T T L
[ DeePMD —
i DFT -
8.0 f i
—~ 6.0F .
= i
c i
& 40F .
20 | .
0.0t : ' .
0 0.2 0.4 0.6 0.8 1

July 16, 2019 19 / 58



Period 3: Integrating machine learning with physical modeling Molecular modeling

DeePMD-kit

Towards realization of a general platform for ML-based PES modeling.

@ GitHub, Inc. [US] | https://github.com/deepmodeling/deepmd-kit

pata DeePMD-kit Table of contents
Generator Data Train/Test
DFT, AIMD, QMC, ... raw data | @ « Install DeePMD-kit
3 o Install tensorflow's Python interface
¢ n
. o o Install tensorflow's C++ interface
DeePMD-kit descriptors = T o Install xdrfile
MD support ) 2 o Install DeePMD-kit
DeePMD 5 o Install Lammps' DeePMD-kit module
MD Interface Model networks @ « Use DeePMD-kit
classical MD: LAMMPS & % o Prepare data
path integral MD: i-PI Predictions 8 o Train a model
o Freeze the model
o Run MD with Lammps
o Run path-integral MD with i-PI
TensorFlow lib DeePMD-kit lib @ Run MD with native cods
standard Tensor OP descript OP, force OP, ® Code structure
& Compt. Graph & virial OP - boense

@ interfacing state-of-the-art deep learning and MD packages: TensorFlow, LAMMPS, i-PI:
@ parallelization: MP1/GPU support.

Comp. Phys. Comm., 2018: 0010-4655 (https://github.com/deepmodeling/deepmd-kit))



Period 3: Integrating machine learning with physical modeling Molecular modeling

@ physical/chemical problems

e understanding water (phase diagram of water, including reactive regions; phase transition: ice to
water, ionic liquid to super-ionic ice; nuclear quantum effect: collective tunneling, isotope effect;
reactive event: dissociation and recombination; water surface and water/TiO2 interface; spectra:
infra-red; Raman; X-ray Absorption; exotic properties: dielectric constant; density anomaly, etc.

@ physical understanding of different systems that require long-time large-scale simulation with high
degrees of model fidelity ( high-pressure iron: fractional defect; phase boundary; high-pressure
hydrogen: exotic phases)

o catalysis (Pt cluster on MoS2 surface; CO molecules on gold surface, etc.)

@ materials science problems

e battery materials (diffusion of lithium in LGePS, LSGeSiPS, etc.; diffusion of Se in Cu2Se alloy)
e high entropy/high temperature alloy (CoCrFeMnNi alloy; Ni-based alloy)

© organic chemistry/bio problems

@ crystal structure prediction of molecular crystals;
@ protein-ligand interaction;
e protein folding.
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Period 3: Integrating machine learning with physical modeling

Example 2: Modeling gas dynamics

Kinetic model for gas dynamics

Micro-World

Macro-World
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Boltzmann Equation

One-particle density function f(x, v, 1)

1
atf+v-vmf=gQ(f), veR), xeQCR’

¢ = Knudsen number and () is the collision operator.

Macroscopic state variables: p, u and T' (density, bulk velocity and temperature)

1 1
p:/fdv, u:—/fvdv, T:—/f|v—u\2dfv.
p 3p

When ¢ < 1, Boltzmann can be approximated by Euler:
U +V,-FU) =0,

with p = pT', E = %qu + %pT,
U = (p,pu, E)’

F(U) = (pu, pu @ u+pl, (E + p)u)"
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model using machine
learning.

Step 1: Learn the Moments through Autoencoder
Find an encoder W that maps f(-,v) to generalized moments W € RY and a decoder ®
that recovers the original f from U, W

W =VU(f)= /Wf dv, OU,W)(v)=h(v;U,W).

The goal is essentially to find optimal w and h parametrized by neural networks through
minimizing
Ef - SN+ Ay(n(f) = hy(U, W)™,

n(f) denotes entropy.
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Step 2: Learn the Fluxes and Source Terms in the PDE

Recall the general conservative form of the moment system

QU +V, - F(U,Wie) =0,
oW +V, - GU,W:e)=RU,W:¢).

Rewrite it into (variance reduction)

OU + V- [Fy(U)+ F(U,W:e)] =0,
OW +V,-[GoU)+GU,W;e)] =R(U,W;e).

Fy(U),Gy(U) are the fluxes of the moments U, W under the Maxwellian distribution.
Our goal is to obtain ML models for F', G, R from the original kinetic equation.

Issues: (1) physical symmetries (e.g. Galilean invariance); (2) data generation (active
learning algorithm); (3) locality vs. non-locality of the model
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Numerical results for transitional flows

¢ varies from 1072 to 10 in the domain. W € RS.
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Figure: Profiles of p, pu, E (from left to right) at ¢ = 0,0.05,0.1 (from top to bottom)
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Numerical results

Learned functions w(v) as generalized moments
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Period 3: Integrating machine learning with physical modeling Kinetic model for gas dynamics

Possible applications

e transitional flow in gas dynamics (e.g. reentry of space-craft)
@ plasma dynamics (e.g. tokomak)

e complex fluids (colloids, polymer fluids, etc)

Most importantly, these kinds of ideas provide a very promising way of doing multiscale
modeling in the absence of scale separation.
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Example 3: Economics and finance

Nonlinear parabolic PDEs

ou 1
E+§Au+Vu-,u+f(u,Vu) = 0.

@ Terminal condition: u(7T,z) = g(x).
@ To fix ideas, we are interested in the solution at t = 0, z = £ for some vector & € R?.

Example: Black-Scholes Equation with Default Risk:
f=—(1—5)Q(u)u— Ru
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Connection between PDE and BSDE

Backward stochastic differential equations (Pardoux and Peng 1992): Find an adapted
process {(Xy, Ys, Z;) brejo,) such that

t
:§+/ w(s, Xs)ds + dW;
0

T T
Y, = g(X7) + / F(Y., Z,) ds - / (Z,)T d.,

Connection to the PDEs (nonlinear Feynman-Kac formula):
}/; — U(t, Xt); Zt = Vu(t, Xt)

In other words, given the stochastic process satisfying

¢
:§+/ w(s, Xs)ds + Wy,
0

the solution of PDE satisfies the following SDE
t
u(t, X¢) — u(0, Xo) = f u(s, Xs), Vu(s, X ))ds—i—/ Vu(s, Xs)dWs.
0
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Neural Network Approximation

@ Key step: approximate the function x — Vu(t, z) at each discretized time step t = ¢,
by a feedforward neural network (a subnetwork)

VU(tn, th) ~ VU(tn, th‘9n>
where 6,, denotes neural network parameters.

@ Observation: after time discretization, we can stack all the subnetworks together to
form a deep neural network (DNN) as a whole:

Xt — th ~ ,LL(tn, th> Atn + AWn

n+1

Ultnst, Xi, ) — ultn, X0,) & — F(u(tn, X1, Vulty, Xo, ) Aty + Vu(ty, X, ) AW,
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Period 3: Integrating machine learning with physical modeling

u(to,X;O) —> M([],th) —> M(IZ,XQ) e e T

Vu(tO ) Xt() )

Vu(tl 9 th )
b

T

Figure: Each column corresponds to a subnetwork at time ¢t = ¢,

L) =E [IQ(XM — ({X4, bo<nen, {Wh, }o<nen) ’2]

Vu(IZ 9 th )
hy

T

T
h

Economics and Finance

Vu(ty-1, X, ,)

H
hN—l

I =1IN-1

Open-source code on https://github.com /frankhan91 /DeepBSDE
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https://github.com/frankhan91/DeepBSDE

Period 3: Integrating machine learning with physical modeling Economics and Finance

LQG (linear quadratic Gaussian) Example for d=100

dXt = met dt + det;

Cost functional: J({m;}o<i<7) = [fo [my |5 dt + Q(XTH
HJB equation:

g—? + Au — M|Vul|3=0
u(t,x) = —% In (]E{exp( — Ag(z + \/§WT_t)>} >

e—e Deep BSDE Solver
e—e Monte Carlo

u(0,0,...,0)
»

Relative approximation error
. =

00 1000 1500 20 30
Number of iteration steps lambda

Figure: Left: Relative error of the deep BSDE method for u(t=0,2z=(0)) when X = 1, which achieves 0.17% in a runtime of
330 seconds. Right: u(t=0,2=(0)) for different A.
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Period 3: Integrating machine learning with physical modeling Economics and Finance

Black-Scholes Equation with Default Risk for d=100

“exact” solution at t = 0 x = (100, ...,100) computed by the multilevel Picard method.

(100,.

=0’X=
P ul
[oe]

u(t

1 1 1 1 1 1 -
0 1000 2000 3000 4000 5000 6000
Number of iteration steps

Figure: Approximation of u(t=0, z=(100, . ..,100)) against number of iteration steps. The deep BSDE method
achieves a relative error of size 0.46% in a runtime of 617 seconds.

Has been applied to the pricing of basket options and path-dependent options.
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Period 3: Integrating machine learning with physical modeling Linguistics

Example 4. Mathematical principles of natural languages

Diversity and universality of human languages at different scales:

@ words
@ sentences

@ Inter-sentences
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Period 3: Integrating machine learning with physical modeling Linguistics

What is semantics? Semantics are invariants under translation

Universal fingerprints for semantics

Markov eigenvalues and their invariance

Why are Markov spectra (nearly) invariant
under translation?

£ 100 N
% @ Thought experiment: measurement of
3 f E P(W — W7)
§ ok L Alice first thinks in A, Bob first consults A—]
_?Dg_li’{Ei 0! la:gﬂl{Pj ! then consults A—B. then thinks in B.
— English — French — Russian — Finnish PA TA—}B: TA%’BPB
Alice  monolingual in language A @ By ersé an nature

Bob monolingual in language B @ Ideal dictionary = det(Ts_g) #0 =

D'[:P_;-J = 'D'(PE)
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Period 3: Integrating machine learning with physical modeling Linguistics

Summary

Common features:

@ multi-scale
@ classical multi-scale methods have trouble to deal with them

e new machine learning models seem to be of big help in overcoming the
curse of dimensionality.
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Mathematical theory of machine learning

Outline

© Mathematical theory of machine learning
@ Example 1: Random feature model
@ Example 2: Two-layer neural networks
@ Example 3. Deep residual networks
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Mathematical theory of machine learning

Supervised learning: Approximating functions using samples

o Object of interest: (f*, 1), where f*: R? — R! 11 is a prob measure on R,

o Given a set of samples from i, {x;}"_;, and {y; = f*(x;)}}_,

o Task: Approximate f* using S = {(x;,4;)} .

e Strategy: Construct some “hypothesis space” (space of functions) H,, (m ~ the
dimension of H.,,).

o linear regression: f(x)=05-x + f

generalized linear models: f(x) = >, | cror(x), where {¢1} are linearly independent functions.
two-layer neural networks: f(x) =), aro(by - © + c;), where o is some nonlinear function, e.g.
o(z) = max(z,0).

o deep neural networks (DNN) : compositions of functions of the form above.

@ Minimize the “empirical risk":
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Mathematical theory of machine learning

Classical numerical analysis (approximation theory)

@ Define a “well-posed” math model (the hypothesis space, the loss function, etc)
@ splines: hypothesis space = C' piecewise cubic polynomials the data
1 n
L($) = 3 3 ()~ ) [ 1D (o)
j=1
o finite elements: hypothesis space = C piecewise polynomials
@ Identify the right function spaces, e.g. Sobolev/Besov spaces

e direct and inverse approximation theorem (Bernstein and Jackson type theorems):
f can be approximated by trig polynomials in L? to order s iff f € H*, || f[|Fs = > 1o [VFf]52.
e functions of interest are in the right spaces (PDE theory, real analysis, etc).

@ Optimal error estimates

@ A priori estimates (for piecewise linear finite elements, o = 1/d, s = 2)

Lo = f ol < Cm= ([ [ s

@ A posteriori estimates (say in finite elements):

[fon = ol < Cm™ | finlln
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Mathematical theory of machine learning

Difference between ML and classical approximation theory

@ high dimensionality
@ finite amount of data

Empirical risk vs. population risk:
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Mathematical theory of machine learning

Another benchmark: High dimensional integration

Monte Carlo: X = [0,1]%, {z;,j = 1,--- ,n} is uniformly distributed in X.

1) = [ g@dn. L) =1 Yol

wmw—hwwzgwm»
Var(g) = [, ¢*(x)dz — ([ g(x)dx)?

The O(1/+/n) rate is the best we can hope for.

However, Var(g) can be very large in high dimension. That's why variance reduction is
important!
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Mathematical theory of machine learning

Estimating the generalization gap

" Generalization gap’ = R(é) — Rn(é) =1(9) — I.(9), ¢g(x)=(f(x,0)— f*(x))

@ For fixed g = h, we have

@ For Lipschitz functions (Wasserstein distance)

sup |I(h) — L(h)] ~ —

1/d
i<l nl/

@ For functions in Barron space, to be defined later

1
sup [I(h) — I,(h)] ~ —=
Ihfp<1 Vn
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Mathematical theory of machine learning

Rademacher complexity

Let H be a set of functions, and S = (x1, @9, ..., ;) be a set of data points. Then, the
Rademacher complexity of H with respect to .S is defined as

where {&;}"; are i.i.d. random variables taking values 1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

Given a function class H, for any 6 € (0, 1), with probability at least 1 — § over the random
samples S = (x1,- -+ ,x,),

= - log(2/4)
sup |Eg [h(ax)| — — h(x;)| < 2Rs(H) + sup ||| .
o Ex 4(2)] = 3w < 2R() + sup ] /2557

1 — | log(2/9)
sup |Eg |h(ax)| — — h(x;)| > =Rs(H) — sup ||| .
o [Ex (2] = 3 h(wo)| > 5As(7) —sup [l /255
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o If 7 = unit ball in Barron space: Rg(H) ~ O(1/+/n)
o If H = unit ball in Lipschitz space: Rg(H) ~ O(1/n'/?)
o If 7 = unit ball in C% Rs(H) ~ O(1)
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Two types of machine learning models

(1). Models that suffer from the curse of dimensionality:

generalization error = O(m /4 4+ n~7/4)

@ piecewise polynomial approximation
@ wavelets with fixed wavelet basis

(2). Models that don't suffer from the curse of dimensionality:

generalization error = O(y1(f™)/m + % (f*)/v/n)

@ random feature models: {¢(:,w),w € €1} is the set of “features”. Given any realization
1

{w; Ly, iid. with distribution m, H,,({w;}) = { fu(®, @) = - > 71, a;j0(x; w;). }.
@ two layer neural networks H,,, = {% Z;n:l aja(b]T:I: +¢j)}
@ residual neural networks H; = {f(-,0) = « - ZL,L(')}

1
zim (@) =z (x) + EUZO' o (Wizir(x)), =zorlx)=Vx
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Example 1: Random feature model

{&(-;w)}: collection of random features. 7: prob distribution of the random variable w.

Hypothesis space: Given any realization {w;}'/.,, i.i.d. with distribution 7

Hulfeos}) = (@) =

iBwj
m

nMs

Looking for the right function space: Consider functions of the form

He={f: flz) = / @z w)dr@)}, [FIZ = Earlla(w)]?

This is related to the reproducing kernel Hilbert space (RKHS) with kernel:

k(x, ') = Eyon|d(x; w)d(x'; w)]
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A priori estimates of the regularized model

. log(2d A
L,(0) =R,.(0)+ A Og; >H9H%, 0, = argmin L,(0)
where
1/2
l o=, o
olle = { = la
j=1

Theorem

Assume that the target function f* : [0,1]% — [0, 1] € Hy. There exist constants Cyy, C', Cs,
such that for any 6 > 0, if A\ > C)y, then with probability at least 1 — 0 over the choice of
training set, we have

+ 1L [l

2
£ 13,
m

R(6,) < C, ( 10g722d)> N 02\/109;(402/5) + log(n)

n
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Example 2: Two-layer neural networks

1 m
={—2 aolbjz+c)}

j=1

Consider functions f : X = [~1,1]? — R of the following form

flx) = / ac(b'x + c)p(da,db,dc), x € X
0
Q) =R!' x RY x R!, pis a probability distribution on €.
1
| £lls, = int (Ey[lal”([[]l1 + [e])"]) 4

={f eS8 |fls, < oo}
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What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If [, ||w]|3 |f(w)]dw < 00, where f is the
Fourier transform of f, then f can be represented as

Fl@) = f(@) — (F(0) + 2 - V(0)) = /Q a0 (b7 + )p(da, db, de)

where o(x) = max(0, z). Moreover f € B.,. Furthermore, we have

Iflee <2 [ ol fwlds
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Direct and inverse approximation theorems

Theorem (Direct Approximation Theorem)
There exists an absolute constant Cy such that

Collfls,

1f = Fall2x) < Jm

Theorem (Inverse Approximation Theorem)
Forp > 1, let

m m 1/p
1 1
Noc={= aro(biz+cp): (m > lawl(llbell + ck)p> <C,meN'}.

Let f* be a continuous function. Assume there exists a constant C' and a sequence of
functions f,, € N, ¢ such that

fm(@) = f*(z)

for all x € X. Then there exists a probability distribution p on (), such that

fx) = / ac(b'x + ¢)p(da, db, dc),

forall x € X.
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Complexity estimates

Theorem

Let Fo ={f € By, ||fllp, < Q}. Then we have

Ra(Fo) < 2Q 2In(2d)

n
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A priori estimates for regularized mode

where the path norm is defined by:

. log(2d .
Ln(0) = R (6) + A o8 >||9|\p, 6, = argmin L,(0)
mn

61l = — S laxl (el +lexl) (= 117 6)]ls,)
k=1

Theorem (Weinan E, Chao Ma, Lei Wu, submitted)

Assume that the target function f* : [0,1]% + [0, 1] € B,. There exist constants Cyy, C, Cs,
such that for any 0 > 0, if A\ > C)y, then with probability at least 1 — 0 over the choice of
training set, we have

R(é ) < <||f H32 . log7(7/2d)> _|_C2\/log(402/5) +log(n).

n
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Traditional results: A posteriori estimates

RI6) — Rul6)] < ol ] +1)y/ 2D 1 gy [2BICL WD)

where |||6||| is some norm of 6 (see e.g. Behnam Neyshabur, Zhiyuan Li, et al. Towards
Understanding the Role of Over-Parametrization in Generalization of Neural Networks

(2018)).

capacity
|_I
<

#hidden units
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Deep residual networks

1
Z11.0(x) z0(x) + ZUZU o (Wizir(x)),

zop(x) = Ve, f(x,0)=a-z;(x)

@ compositional law of large numbers (express target function as a compositional
expectation)

@ compositional function spaces (Barron space is embedded in compositional function
spaces)

@ direct and inverse approximation theorem

@ optimal scaling for the Rademacher complexity

@ optimal a priori estimates for the regularized model
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Conclusion

We are at the verge of a new scientific revolution that will impact mathematics and applied
mathematics in fundamental ways.

@ Integrating machine learning (Keplerian paradigm) with first principle based physical
modeling (Newtonian paradigm) opens up a new (and powerful) paradigm for scientific
research.

Applied mathematics is the most natural platform for this integration.

@ Theoretical foundation of machine learning = high dimensional numerical analysis
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MSML 2020

A new NIPS or ICML style annual conference, which also serves as a venue for publications:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

@ Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)
e Time: July 15-17, 2020

@ Location: Princeton

@ Submission deadline: November 30, 2019

@ website: http://msml-conf.org
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