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Abstract

We prove that for every 3-edge-connected graph G there exists a partition of E(G)

into at most nine sets {X1, X2, . . . , Xm} so that G \ Xi is 2-edge-connected for every

1 ≤ i ≤ m. We then generalize this result, proving that for every (2k+1)-edge-

connected graph G there is a partition of E(G) into a bounded number (depending

only on k) of sets {X1, X2, . . . , Xm} so that G \ Xi is 2k-edge-connected for every

1 ≤ i ≤ m.

In the third section of the paper, we apply our theorem to prove that for every 3-

edge-connected graph G and every map p : E(G) → {84, 86}, there exists a multiset of

circuits of G so that every edge e ∈ E(G) is contained in exactly p(e) of these circuits.

This resolves a question of Goddyn. This result is then bootstrapped to a more general

theorem on circuit covers.

If G = (V,E) is a directed graph, a flow φ : E → Z of G is called an antisymmetric

flow if φ(E) ∩ −φ(E) = ∅. In the fourth section of the paper, we apply our theo-

rem to show that every directed graph with no directed edge-cuts of size ≤ 2 has an

antisymmetric flow of bounded size. This resolves a question of Nešetřil and Raspaud.
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1 Introduction

Throughout the paper, we consider only finite graphs, which may have multiple edges and

loops. For any finite set S, we define a coloring of S to be a partition of S. The size of a

coloring is the size of the partition. A t-coloring is a coloring of size ≤ t. If G is a graph, a

vertex coloring (edge coloring) of G is a coloring of V (G) (E(G)). A vertex coloring Ω of G is

proper if every X ∈ Ω is an independent set of G. If G is a directed graph and A ⊆ V (G), we

define δ+(A) to be the set of all edges with initial vertex in A and terminal vertex in V (G)\A.

We define δ−(A) = δ+(V (G) \ A). If A = {v}, we will simplify this notation to δ+(v) and

δ−(v) respectively. We will use Z to denote the set of integers and Z+ to denote the set of

nonnegative integers. If X, Y ⊆ Z, then we define X + Y = {x + y | x ∈ X and y ∈ Y }. For

any k ∈ Z+, we define kX = {0} if k = 0, and kX = X + (k − 1)X otherwise. A multiset

T with ground set S is formally a map T : S → Z+. We think of T as a set in which an

element may occur many times. For instance, if P : S → {0, 1} is a property, we say that k

members of T satisfy P if
∑

s∈S T (s)P (s) = k.

If G is a graph, we define an edge coloring Ω of G to be k-courteous if G \ X is k-edge-

connected for every X ∈ Ω. Our main theorem is as follows.

Theorem 1.1 Every (2k + 1)-edge-connected graph has a 2k-courteous edge coloring of size

at most 81k2

.

For graphs of even edge-connectivity, the analogous property does not hold. More pre-

cisely, for every pair of positive integers k and t, there is a 2k-edge-connected graph Gk,t

which has no (2k − 1)-courteous edge-coloring of size ≤ t. The construction is simple: Let

Gk,t be the graph obtained from a circuit of length t+1 by replacing each edge by k parallel

edges. This graph is 2k-edge-connected, but any t-coloring of E(Gk,t) must have a color class

X of size ≥ 2. Since every pair of edges is in an edge-cut of size 2k, the removal of X will

drop the edge-connectivity of the resulting graph to at most 2k − 2.

Planar duality exchanges minimal edge-cuts and circuits. Thus, by Theorem 1.1, the

edges of any planar graph of girth ≥ 2k + 1 can be colored with at most 81k2

colors so that

for any circuit C and any color class X, we have that |E(C) \X| ≥ 2k. For arbitrary graphs

and fixed g, h ∈ Z+, one may ask whether there is a bounded size coloring of every girth
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g graph so that |E(C) \ X| ≥ h for any color class X and any circuit C. However, this

question has a negative answer. Indeed, every t-coloring of E(G) where G is a girth g graph

with chromatic number > 2t contains a monochromatic circuit of odd length. To see this,

note that if E(G) can partitioned into {X1, X2, . . . , Xt} so that (V (G), Xi) is bipartite for

1 ≤ i ≤ t, then χ(G) ≤ 2t.

It may be worth remarking that a similar sounding question has been studied for vertex

connectivity. Thomassen [22] and independently Szegedy proved that for every a, b > 0, there

exists an integer f(a, b), so that for every f(a, b)-connected graph G there is a partition of

V (G) into {A, B} with G[A] a-connected and G[B] b-connected. Thomassen has conjectured

that the smallest value is f(a, b) = a+b+1. Hajnal [9] has proved that f(a, b) = 4a+4b+13

is sufficient. These theorems when applied to a line graph L(G) do not give results about

courteous edge-colorings of G, since a set of edges S ⊆ E(G) may induce a highly connected

subgraph in L(G) while (V (G), S) is disconnected.

Let G be a 2-edge-connected graph and let p : E(G) → Z+ be a map. For a subset

S ⊆ E(G), we define p(S) to be
∑

e∈S p(e). A circuit cover C of (G, p) is a multiset of circuits

of G so that every edge e ∈ E(G) is contained in exactly p(e) circuits of C. Seymour [18]

gave two obviously necessary conditions on p for (G, p) to have a circuit cover.

(i) p(C) is even for every edge cut C of G.

(ii) p(e) ≤ p(C \ e) for every edge cut C and every edge e ∈ C

We will say that p is admissable if p satisfies both of the above criteria. For any set S and

integer k, we will let kS : S → Z be the map given by the rule kS(s) = k for every s ∈ S.

The celebrated cycle double cover conjecture is precisely the statement that (G, 2E(G)) has a

circuit cover. If G has no Petersen minor, Alspach, Goddyn, and Zhang [3] proved that (G, p)

has a circuit cover for every admissable map p. For general graphs, Bermond, Jackson, and

Jaeger [4] proved that (G, 4E(G)) has a circuit cover, and Fan [6] proved that (G, 6E(G)) has

a circuit cover. However, considerably less is known about circuit covers for non-constant

weight functions. In this direction, Goddyn put forth the following conjecture.

Conjecture 1.2 (Goddyn [8]) There exists an integer k so that for every 2-edge-connected

graph G and every admissable map p : E(G) → {k, k + 2}, there is a circuit cover of (G, p).
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In the third section of this paper, we apply a special case of the main theorem to achieve

the following result.

Theorem 1.3 For every 2-edge-connected graph G, every i, j, k, l ≥ 0, and every admissable

map p : E(G) → i{4} + j{6} + k{32, 36} + l{48, 54} + {0, 1}, there exists a circuit cover of

(G, p).

The m = 0 case of the following corollary of Theorem 1.3 resolves Conjecture 1.2 for the

value k = 84.

Corollary 1.4 For every 2-edge-connected graph G, every integer m ≥ 0, and every admiss-

able map p : E(G) → [32m + 84, 36m + 87] ∩ Z, there exists a circuit cover of (G, p).

Proof: Observe that {84, 85, 86, 87} ⊆ {32, 36}+ {48, 54}+ {0, 1}. It follows from this that

[32m + 84, 36m + 87] ∩ Z ⊆ (m + 1){32, 36}+ {48, 54} + {0, 1}. Thus, the corollary follows

by applying theorem 1.3 with i = j = 0, k = m + 1, and l = 1. 2

Let G be a directed graph, let Γ be an abelian group, and let φ : E(G) → Γ be a map.

We will say that φ is a flow (or a Γ-flow) if for every v ∈ V (G) we have that:

∑

e∈δ+(v)

φ(e) =
∑

e∈δ−(v)

φ(e). (1)

It follows that if φ is a flow and A ⊆ V (G) then

∑

e∈δ+(A)

φ(e) =
∑

e∈δ−(A)

φ(e). (2)

A flow φ is said to be nowhere-zero if φ(e) 6= 0 for every e ∈ E(G). For an integer k, we call

φ a k-flow if Γ = Z and |φ(e)| < k for every e ∈ E(G). Following [16], we define φ to be

an antisymmetric flow (or antiflow) if φ(E(G)) ∩ −φ(E(G)) = ∅. Note that an antiflow is

necessarily a nowhere-zero flow.

Let G be a directed graph, let {C0, C1, . . . , Ct} be the set of all circuits of the underlying

undirected graph, and let φi be a 2-flow of G with supp(φi) = E(Ci) for 0 ≤ i ≤ t. It follows

from equation (2) that if G has a cut-edge, then G does not have a nowhere-zero Z-flow.

Conversely, if G has no cut-edge, then
∑t

i=0 2iφi is a nowhere-zero Z-flow of G. Thus, G
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has a nowhere-zero Z-flow if and only if G has no cut-edge. Actually, there is a universal

upper bound k such that every graph with no cut-edge has a nowhere-zero k-flow. This was

first conjectured by Tutte [23] (who also conjectured that k = 5 is true). Jaeger [10] and

independently Kilpatrick [13] resolved the weak form of Tutte’s conjecture, showing that it

is true for k = 8. This was subsequently improved by Seymour [19] who showed that it is

true for k = 6. The case k = 5 is still open.

Since every antiflow is also a nowhere-zero flow, if G has a one-edge cut, then G does not

have a Z-antiflow. It also follows from equation (2) that, if G has a directed two-edge cut,

then G does not have a Z-antiflow. Conversely, if G has no directed edge cuts of size ≤ 2, it

is not difficult to verify that
∑t

i=0 3iφi is a Z-antiflow of G. Thus, G has a Z-antiflow if and

only if G has no directed cut of size ≤ 2. In analogy with the case of nowhere-zero flows,

Nešetřil and Raspaud asked the following question.

Problem 1.5 (Nešetřil, Raspaud [16]) Is there a fixed integer k so that every directed

graph with no directed edge-cut of size ≤ 2 has a k-antiflow?

In the third section of the paper, we apply a special case of our theorem to prove the

following theorem, which resolves the above problem.

Theorem 1.6 Every directed graph with no directed edge-cut of size ≤ 2 has a 1012-antiflow.

There does not seem to be a natural candidate for the best possible value of k in problem

1.5. Nešetřil and Raspaud [16] have remarked that there are planar graphs which give a

lower bound of 16.

In the final section of the paper, we will discuss a couple of related edge-coloring problems.

Here we mention two open questions.

Conjecture 1.7 (DeVos) If a, b are positive integers and G = (V, E) is an (a + b + 2)-

edge-connected graph, then there exists a partition of E into {A, B} so that (V, A) is a-edge-

connected and (V, B) is b-edge-connected.

Problem 1.8 Does there exist a fixed integer k so that for every k-edge-connected graph G

there is a subset A ⊆ E(G) so that for every edge-cut C we have that 1/3 ≤ |C ∩ A|/|C| ≤

2/3?
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The above problem is similar in nature to some questions asked by Goddyn. It should

be noted that the values 1/3 and 2/3 are of no special importance in the above question.

Indeed, an affirmative answer to the same problem with 1/3 and 2/3 replaced by ε and 1− ε

for any 1 > ε > 0 would still imply the following conjecture of Jaeger.

Conjecture 1.9 (Jaeger [11]) There is a fixed integer k so that every k-edge-connected

graph has a nowhere-zero 3-flow.

2 Finding Courteous Edge-Colorings

Our main goal in this paper is to provide a simple proof of the existence of bounded size

courteous colorings, so we will do fairly little to optimize the size of our bound. At the end

of this section we will give some indication of how our bound can be improved. We start

the section by proving a lemma concerning a partition problem for a family of subpaths of

a tree. We will use a consequence of this lemma, Proposition 2.3, to prove a color splitting

lemma, and then the main theorem.

If S = {Si}i∈I is a family indexed by I and J ⊆ I, we let S[J ] denote the family {Sj}j∈J .

If G is a graph and H = {Hi}i∈I is a finite family of subgraphs of G, we define the weight

function wH : E(G) → Z+ as follows: wH(e) = |{i ∈ I | e ∈ E(Hi)}| for every e ∈ E(G). If

µ : E(G) → Z+, we call a partition Ω of I a µ-resistive partition (with respect to G and H)

if wH[I\X](e) ≥ µ(e) for every X ∈ Ω and every e ∈ E(G). If µ(e) = k for every e ∈ E(G), a

µ-resistive partition is called a k-resistive partition.

If T is a tree and v ∈ V (T ) is a vertex of degree one, we call v a leaf vertex. If e ∈ E(T )

is incident with a leaf vertex, we call e a leaf edge. If G is a graph and e ∈ E(G), we let G/e

denote the graph obtained from G by contracting the edge e. The following lemma is the

key tool needed for the proof of our main theorem.

Lemma 2.1 Let T be a tree and let P = {Pi}i∈I be a finite family of subpaths of T with

wP(e) ≥ 2 for every e ∈ E(G). Then there is a 1-resistive partition Ω of I of size ≤ 3.

Proof: We proceed by induction on |V (T )| + |I|. The theorem is trivial if |V (T )| ≤ 2 so

we may assume that |V (T )| ≥ 3. Further, we may assume by induction that E(Pi) 6= ∅ for

every i ∈ I.
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If T contains a non-leaf edge e with wP(e) = 2, then let A1, A2 be the components

of T \ e, and let T1, T2 be the trees A1 ∪ e and A2 ∪ e respectively. For k = 1, 2, let

Ik = {i ∈ I | E(Pi) ∩ E(Tk) 6= ∅} and let Pk = {Pi ∩ Tk}i∈Ik
. For k = 1, 2, apply the lemma

inductively to the tree Tk and the family of paths Pk to obtain a 1-resistive partition Ωk of

Ik. Let I1 ∩ I2 = {x, y} and for k = 1, 2 let Xk ∈ Ωk be the set with x ∈ Xk and let Yk ∈ Ωk

be the set with y ∈ Yk (note that Xk 6= Yk). Let Z = I \ (X1 ∪ X2 ∪ Y1 ∪ Y2). If Z 6= ∅

then {X1 ∪ X2, Y1 ∪ Y2, Z} is a 1-resistive partition of I. Otherwise, {X1 ∪ X2, Y1 ∪ Y2} is a

1-resistive partition of I. Thus, we may assume that wP(e) ≥ 3 for every non-leaf edge e of

T .

Choose i ∈ I and let U ⊆ V (G) be the set of ends of Pi which are leaf vertices of T

and are incident with an edge e ∈ E(T ) with wP(e) = 2. Let P ′ = {Pj \ U}j∈I\{i} and let

T ′ = T \ U . Applying the lemma inductively to the tree T ′ and the family of paths P ′ we

obtain a 1-resistive partition Ω′ of I \ {i} (with respect to T ′ and P ′). If |Ω′| < 3, then

Ω = Ω′ ∪ {{i}} is a 1-resistive partition of I as required. Otherwise, for every u ∈ U , choose

iu ∈ I \ {i} so that u ∈ V (Piu) and choose Z ∈ Ω′ so that iu 6∈ Z for every u ∈ U . Now

by construction, Ω = (Ω′ \ Z) ∪ {Z ∪ {i}} is a 1-resistive partition of I. This completes the

proof. 2

A straightforward iteration of this argument gives us the following proposition.

Proposition 2.2 Let T be a tree with |E(T )| > 0, let P = {Pi}i∈I be a finite family of

subpaths of T and let µ : E(T ) → Z+ be a map with M = maxe∈E(T ) µ(e). If wP(e) > µ(e)

for every e ∈ E(G) with µ(e) > 0, then there is a µ-resistive partition Ω of I with size at

most 3M .

Proof: We proceed inductively on M + |E(T )|. If M = 0 then Ω = {I} satisfies the

proposition. If T contains an edge e with µ(e) = 0, then let

P ′
i =







Pi/e if e ∈ E(Pi)

Pi otherwise

and apply the lemma inductively to the tree T/e and the family of paths {P ′
i}i∈I . The

resulting partition of I satisfies the proposition. Thus, we may assume that µ(e) > 0 for

every e ∈ E(G) and thus that wP(e) ≥ 2 for every e ∈ E(G). By the above lemma, we may
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choose a 1-resistive partition Υ of I of size ≤ 3. For every Y ∈ Υ, let µY : E(T ) → Z+ be

given by the rule µY (e) = max{0, µ − wP [I\Y ]} and apply the proposition inductively to T

for the map µY and the family of paths {Pi}i∈Y to obtain a partition ΩY of Y (note that

maxe∈E(T ) µY < M so this is possible). Let Ω = ∪Y ∈ΥΩY . Now, |Ω| ≤ 3M by construction.

Furthermore, for every e ∈ E(T ) and X ∈ Ω, if X ∈ ΩY for Y ∈ Υ, then

wP [I\X](e) = wP [I\Y ](e) + wP [Y \X](e)

≥ wP [I\Y ](e) + µY (e)

≥ wP [I\Y ](e) + µ − wP [I\Y ](e)

= µ(e)

This completes the proof. 2

If T is a spanning tree of G and Ω is a coloring of E(G) \ E(T ), we will say that Ω is

k-courteous for T if for every fundamental cocircuit C of T and for every X ∈ Ω, we have

that |C \ X| ≥ k. Note that C \ X will always contain exactly one edge of T .

Proposition 2.3 Let T be a spanning tree of a graph G. If every fundamental cocircuit of

T has size ≥ k + 1, then there is a coloring Ω of E(G) \ E(T ) of size at most 3k−1 which is

k-courteous for T .

Proof: For every edge e ∈ E(G)\E(T ), let Pe ⊆ T be the unique subpath of T so that Pe∪e

is a circuit. Let P = {Pe}e∈E(G)\E(T ) and let µ : E(T ) → Z be the constant function k − 1.

Now, apply the previous proposition to T , P and µ. This gives us a (k−1)-resistive partition

Ω of E(G) \E(T ) of size at most 3k−1. Now, an edge e ∈ E(G) \E(T ) is in the fundamental

cocircuit of an edge f ∈ E(T ) if and only if f ∈ E(P (e)). Since every fundamental cocircuit

of T also contains an edge of T , it follows that Ω is a k-courteous coloring for T . 2

Let G be a graph and let T be a tree. For every vertex v ∈ V (T ), let S(v) be a subset of

V (G) so that {S(v)}v∈V (T ) is a family of pairwise disjoint subsets of V (G) with union equal

to V (G) (note that S(v) = ∅ is possible for one or more vertices v ∈ V (T )). If H ⊆ T , we

will let S(H) = ∪v∈V (H)S(v). For every edge e ∈ E(T ), if the components of T \ e are A, B,

then let C(e) = {xy ∈ E(G) | x ∈ S(A) and y ∈ S(B)}. Thus, each edge of T is associated

with an edge-cut of G. We will say that (T, S) is a k-edge-cut tree for G if {C(e) | e ∈ E(T )}
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is precisely the set of all edge-cuts of G of size k. The following well-known proposition

follows easily from the fact that minimum edge-cuts of odd size cannot cross.

Proposition 2.4 If G is a (2k + 1)-edge-connected graph, then G has a (2k + 1)-edge-cut

tree.

With this proposition, we are ready to prove the following lemma.

Lemma 2.5 Let G be a k-edge-connected graph and let Ω be a j-courteous edge-coloring of

G of size t. If j is odd and k ≥ j + 2, then we may refine Ω to obtain a (j + 1)-courteous

edge-coloring Ω′ of size at most 3t.

Proof: Let X ∈ Ω be given. It will suffice to show that there exists a 3-coloring Υ of X

so that G \ Y is (j + 1)-edge-connected for every Y ∈ Υ. Consider the graph G′ = G \ X.

This graph is j-edge-connected, and j is odd, so by the previous proposition we may choose

a j-edge-cut tree (T, S) for G′. Now, starting from T , we will construct a new graph H as

follows. For every edge e = xy ∈ X, add a new edge e′ = x′y′ to H so that x ∈ S(x′) and

y ∈ S(y′). Let X ′ = E(H) \ E(T ). The fundamental cocircuits of T in the graph H are in

one-to-one correspondence with the edge-cuts of size j in G′. Since G is k-edge-connected,

and k ≥ j + 2, it follows that every fundamental cocircuit of T in the graph H contains ≥ 3

edges (including the one in T ). Therefore, by proposition 2.3 applied to the graph H, we may

choose a 3-coloring Υ′ of X ′ which is 2-courteous for the tree T . Let Υ be the corresponding

3-coloring of X. We claim that G \ Y is (j + 1)-edge-connected for every Y ∈ Υ. To prove

this, let C be a cocircuit of G. If C is an edge-cut corresponding to a fundamental cocircuit

of T , then (C ∩X) \ Y 6= ∅ by construction, so |C \ Y | = |C \X|+ |(C ∩X) \ Y | ≥ j + 1 as

desired. Otherwise, |C \ Y | ≥ |C \ X| ≥ j + 1. This completes the proof. 2

The following proposition is a simple but useful consequence of the Tutte/Nash-Williams

disjoint trees theorem.

Proposition 2.6 If G is a (2k + 1)-edge-connected graph, then G has 2k + 1 spanning trees

T1, T2, . . . , T2k+1 so that every edge of G is in at most two of these trees.

Proof: Let G′ be obtained from G by taking an additional copy of each edge. Now, G′

is (4k + 2)-edge-connected, so by a theorem of Tutte [24] and Nash-Williams [15], we may
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choose 2k + 1 edge-disjoint spanning trees of G′. In the original graph, this gives us 2k + 1

spanning trees using every edge at most twice, as desired. 2

With the help of Proposition 2.6 and Lemma 2.5, we can already show that 3-edge-

connected graphs have 2-courteous edge-colorings of size ≤ 9. We include this proposition

here since this bound is better than the one achieved by the main theorem.

Proposition 2.7 If G is a 3-edge-connected graph, then G has a 2-courteous edge-coloring

of size ≤ 9.

Proof: By Lemma 2.5, it will suffice to prove that G has a 1-courteous edge-coloring of size

3. By proposition 2.6 we may choose T1, T2, T3 ⊆ G so that E(T1) ∩E(T2)∩E(T3) = ∅. Let

Ai = E(G) \ E(Ti) for 1 ≤ i ≤ 3, and let A = {A′
1, A

′
2, A

′
3} be a partition of E(G) so that

A′
i ⊆ Ai for every 1 ≤ i ≤ 3. Now, A is a 1-courteous coloring of E(G) as required. 2

We are now ready to prove Theorem 1.1.

Theorem 1.1 Every (2k + 1)-edge-connected graph has a 2k-courteous edge coloring of size

at most 81k2

.

Proof: Let G be a (2k + 1)-edge-connected graph. If k = 0, then the theorem is trivial.

Otherwise, 3(32k−2 + 1)2k+1 ≤ 81k2

, so by Lemma 2.5 it will suffice to prove that G has

a (2k − 1)-courteous edge-coloring of size at most (32k−2 + 1)2k+1. By proposition 2.6 we

may choose 2k + 1 spanning trees T1, T2, . . . , T2k+1 of G so that every edge e ∈ E(G) is in

at most two of the trees. By Proposition 2.3, for every 1 ≤ i ≤ 2k + 1, we may choose a

(2k− 1)-courteous coloring Ωi of E(G) \E(Ti) for the tree Ti of size at most 32k−2 (we could

get a 2k-courteous coloring, but this is unnecessary). Let Ω′
i = Ωi ∪ {E(Ti)} and let Ω be

the coloring obtained by taking the common refinement of the colorings Ω′
1, Ω

′
2, . . . , Ω

′
2k+1.

Note that for every X ∈ Ω, all of the edges in X are contained in exactly the same set

of trees T1, T2, . . . , T2k+1. Now, Ω has size at most (32k−2 + 1)2k+1. We claim that Ω is

(2k − 1)-courteous. Let X ∈ Ω and let C be an edge-cut of G. By construction, X is

disjoint from at least 2k − 1 of the trees T1, T2, . . . , T2k+1. If every tree Ti disjoint from X

contains ≥ 2 edges of C, then |C \ X| ≥ 2k − 1 as desired. Otherwise, X is disjoint from

a tree Ti that has C as a fundamental cocircuit. Since X ⊆ X ′ for some X ′ ∈ Ωi, we have
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that |C \ X| ≥ |C \ X ′| ≥ 2k − 1. Since X and C were arbitrary, it follows that Ω is

(2k − 1)-courteous. 2

We now define a function g : Z+×Z+ → Z∪{∞} given by the rule g(a, b) is the smallest

integer t so that every a-edge-connected graph has a b-courteous edge-coloring of size t (or

∞ if no such integer exists). We have proved that g(a, b) = ∞ if and only if b ≥ a, or a

is even and b = a − 1. The existence of k-regular k-edge-connected graphs which are not

k-edge-colorable implies that g(k, k− 1) ≥ k +1. Our proof shows that g(2k +1, 2k) ≤ 81k2

.

Actually, one may improve the bounds in our construction significantly. We can prove by

means of a considerably more complicated argument that if Ω is a j-courteous t-edge-coloring

of a k-edge-connected graph and j is even and k ≥ j + 3, then it is possible to refine Ω to

obtain a 30t-edge-coloring which is j + 1-courteous. With the help of this fact and Lemma

2.5 one may easily show that g(2k +1, 2k) ≤ Ck for some constant C. These are the tightest

bounds we know. In addition to the argument earlier in this section that g(3, 2) ≤ 9, we

have some more specialized arguments which prove that g(4, 2) ≤ 4 and g(5, 4) ≤ 30.

3 Circuit Covers

If A, B are multisets with ground set S, we define A + B to be the multiset with ground

set S given by the map (A + B)(s) = A(s) + B(s) for every s ∈ S. We define a finite set

S ⊆ Z to be coverable if for every graph G and every admissable map p : E(G) → S, (G, p)

has a circuit cover. If in addition, S ⊆ 2Z, and 2 min(S) ≥ max(S), we will say that S is

conveniently coverable. Note that every map p : E(G) → S is admissable (and thus (G, p)

has a circuit cover) for every 3-edge-connected graph G and every conveniently coverable set

S.

We define a set C ⊆ E(G) to be a cycle if every vertex of (V (G), C) has even degree. We

say that a list C = C1, C2, . . . , Ck is a k-cycle cover of (G, p) if every edge e ∈ E(G) appears

in exactly p(e) cycles of C (for convenience, we have used lists instead of multisets in the

definition of cycle covers). The goal of this section is to prove the following two theorems on

circuit and cycle covers. Theorem 1.3 is restated here in terms of coverable sets.

Theorem 1.3 For every i, j, k, l ≥ 0, the set i{4} + j{6} + k{32, 36}+ l{48, 54}+ {0, 1} is

coverable.
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Theorem 3.1 If G is 4k-edge-connected, and p : E(G) → {1, 2, . . . , 2k} is admissable, then

(G, p) has a (2k + 1)-cycle cover.

Theorem 1.3 will require three simple propositions and one lemma.

Proposition 3.2 Let S ⊆ Z be a finite set. If there is a circuit cover of (G, p) for every

3-edge-connected graph G and every admissable map p : E(G) → S, then S is coverable.

Proof: Let G be a 2-edge-connected graph and let p : E(G) → S be an admissable map. We

will prove by induction on |E(G)| that (G, p) has a circuit cover. If G is 3-edge-connected,

then we are finished by our assumption. Thus, we may assume that G has a 2-edge-cut

{e, f}. Now, p|E(G)\e is an admissable map for G/e, so inductively we may choose a circuit

cover C ′ of (G/e, p|E(G)\e). Since p(e) = p(f), the corresponding multiset C of circuits of G

is now a circuit cover of (G, p). This completes the proof. 2

Proposition 3.3 If S, T are conveniently coverable, then S + T is conveniently coverable.

Proof: Let G be a 3-edge-connected graph and let p : E(G) → S + T . It will suffice to

show that (G, p) has a circuit cover. Choose ps : E(G) → S and pt : E(G) → T so that

ps + pt = p. Next, choose a circuit cover Cs of (G, ps) and a circuit cover Ct of (G, pt). Now

Cs + Ct is a circuit cover of (G, p) as required. 2

Proposition 3.4 If S is conveniently coverable, then S + {0, 1} is coverable.

Proof: Let G be a 3-edge-connected graph and let p : E(G) → S + {0, 1} be an admissable

map. By Proposition 3.2, it will suffice to show that (G, p) has a circuit cover. Let X =

{e ∈ E(G) | p(e) is odd}. Since p is admissable, (V, X) is eulerian, so we may choose a set

of circuits C1 of the graph (V, X) so that every edge in X is contained in exactly one circuit

of C1. We define p2 : E(G) → Z as follows:

p2(e) =







p(e) − 1 if p(e) is odd

p(e) if p(e) is even

Since p2(E(G)) ⊆ S, we may choose a circuit cover C2 of (G, p2). Now C1 + C2 is a circuit

cover of (G, p) as required. 2

Lemma 3.5 If {2t} is coverable, then {16t, 18t} is conveniently coverable.
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Proof: Let G be a 3-edge-connected graph and let p : E(G) → {16t, 18t}. By proposition

3.2, it will suffice to show that (G, p) has a circuit cover. By proposition 2.7, we may choose

a 2-courteous edge-coloring {X1, X2, . . . , X9} of G. For every 1 ≤ i ≤ 9, let Ai = {e ∈ Xi |

p(e) = 16t}. Now, for every 1 ≤ i ≤ 9, the graph G \ Ai is 2-edge-connected, so we may

choose a circuit cover Ci of (G \ Ai, 2t). Then C1 + C2 + . . . + C9 is a circuit cover of (G, p)

as required. 2

Finally, we are ready to prove theorem 1.3.

Proof of Theorem 1.3: Bermond, Jackson, and Jaeger [4] proved that {4} is coverable,

and Fan [6] proved that {6} is coverable. Thus, by Lemma 3.5 we have that {32, 36} and

{48, 54} are conveniently coverable. Since {4} and {6} are also conveniently coverable, by

Proposition 3.3 we have that for every i, j, k, l ≥ 0 the set i{4}+ j{6}+k{32, 36}+ l{48, 54}

is conveniently coverable. By Proposition 3.4 we have that for every i, j, k, l ≥ 0 the set

i{4} + j{6} + k{32, 36} + l{48, 54} + {0, 1} is coverable as required. 2

The proof of Theorem 3.1 will require two propositions.

Proposition 3.6 If T is a spanning tree of G, and Y ⊆ E(G) \ E(T ), then there exists a

cycle C ⊆ G with E(C) \ E(T ) = Y .

Proof: For every edge e ∈ E(G) \E(T ), let C(e) be the edge set of the fundamental circuit

of e with respect to T . Then C = 4e∈Y C(e) is a cycle of G with E(C) \ E(T ) = Y as

required. 2

Proposition 3.7 Let G be a 4k-edge-connected graph, and let p : E(G) → {2, 4, 6, . . . , 2k}.

Then there is a list C = C1, C2, . . . , C2k of cycles of G so that every edge e ∈ E(G) appears

in either p(e) or p(e) − 1 cycles of C.

Proof: By the Tutte/Nash-Williams spanning trees theorem, we may partition E(G) into

{X1, X2, . . . , X2k} so that each set Xi contains the edge set of a spanning tree Ti of G.

Now, for every 1 ≤ i ≤ 2k and every e ∈ Xi, choose a subset U(e) ⊆ {1, 2, . . . , 2k} so that

|U(e)| = p(e)−1 and so that i 6∈ U(e). For 1 ≤ i ≤ 2k, let Yi = {e ∈ E(G) | i ∈ U(e)}. Now,

by the previous proposition, for every 1 ≤ i ≤ 2k we may choose a cycle Ci of G so that

E(G) \ E(Ti) = Yi. By construction, C = C1, C2, . . . , C2k satisfies the proposition. 2
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Proof of Theorem 3.1 Let G be a 4k-edge-connected graph, let p : E(G) → {1, 2, . . . , 2k}

be an admissable map, and let S = {e ∈ E(G) | p(e) is odd }. Define p′ : E(G) → Z by the

following rule:

p′(e) =







2k + 1 − p(e) if e ∈ S

p(e) otherwise

By the above proposition, we may choose a list C = C1, C2, . . . , C2k of 2k cycles of G so

that every edge e ∈ E(G) is in either p′(e) or p′(e) − 1 cycles of C. Let T = {e ∈ E(G) |

e is in p′(e) − 1 cycles of C} Since T is the set of edges covered an odd number of times by

C, we find that T is a cycle. Thus, setting C2k+1 = T , we have that C1, C2, . . . , C2k, C2k+1 is

a (2k+1)-cycle cover of (G, p′). Since p is an admissable map, S is also a cycle of G. Thus,

the list S4C1, S4C2, . . . , S4C2k+1 is a (2k+1)-cycle cover of (G, p) as required. 2

4 Antisymmetric Flows

The study of nowhere-zero flows began with Tutte’s observation that for a planar graph G

and the geometric dual G∗ of G, G has a nowhere-zero k-flow if and only if G∗ has a proper

k-coloring. In a similar (but less tight) sense (see [16]), antisymmetric flows are dual to

oriented graph colorings. The main theorem of this section is as follows.

Theorem 1.6 Every directed graph with no directed cut of size ≤ 2 has a 1012-antiflow.

We define a directed graph to be k-edge-connected if the underlying undirected graph

is k-edge-connected. Now, we will proceed with the proofs of this section. After a simple

proposition, we will prove that every graph with no directed cut of size ≤ 2 has a Γ-antiflow

in an appropriate fixed group Γ. We will then use this to establish Theorem 1.6.

Proposition 4.1 Let Γ be an abelian group. If every 3-edge-connected directed graph has

Γ-antiflow, then every graph with no directed cuts of size ≤ 2 has a Γ-antiflow.

Proof: We will proceed by induction on |E(G)|. If G is 3-edge-connected, we are finished

by assumption. Otherwise, we may choose a 2-edge-cut {e1, e2} of G. Let G′ = G/e1.

Inductively, we may choose a Γ-antiflow f ′ of G′. Let f : E(G) → Γ be given by the rule.

f(e) =







f ′(e2) if e = e1

f ′(e) otherwise
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Now, f is a Γ-antiflow of G as required. 2

We are now ready to prove the existence of bounded size group-valued antiflows. For a

positive integer k, we will use Zk to denote the group Z/kZ. The following theorem is an

improvement on the authors’ original argument suggested by Nešetřil and Raspaud.

Theorem 4.2 If G is a directed graph with no directed edge-cuts of size ≤ 2, then G has a

(Z6)
8 × (Z3)

9-antiflow.

Proof: By proposition 4.1, it will suffice to prove the theorem in the case when G is 3-edge-

connected. By Proposition 2.7, we may choose a 2-courteous 9-coloring Ω = {X1, X2, . . . , X9}

of E(G). By Seymour’s 6-flow theorem, we may choose for every 1 ≤ i ≤ 8 a nowhere-zero

Z6-flow of G \ Xi. Let φ1 : E(G) → Z8
6 be the direct product of these flows. Now, for every

1 ≤ i ≤ 9, since G \ Xi is spanning, we may choose a Z3-flow which takes the value 1 on

every edge in Xi. Let φ2 : E(G) → Z9
3 be the direct product of these flows. We claim that

φ1 × φ2 is an antiflow. Let e, f ∈ E(G). If e and f are in different color classes of Ω, then

there is a coordinate of φ1 in which exactly one of e, f has the value zero. Otherwise, there

is a coordinate of φ2 in which both e and f have the value 1. In either case, φ(e) 6= −φ(f).

2

To convert this group-valued antiflow into an integer antiflow, we will need one easy

proposition and a well known theorem of Tutte.

Proposition 4.3 Let (a0, a1, . . . , an), (b0, b1, . . . , bn) ∈ Zn+1, and assume that |ai| ≤ k and

|bi| ≤ k for every 0 ≤ i ≤ n − 1. If
∑n

i=0(2k + 1)iai = −
∑n

i=0(2k + 1)ibi, then ai = −bi for

every 0 ≤ i ≤ n.

Proof: Since
∑n

i=0(2k +1)i(ai + bi) = 0, then since |ai + bi| ≤ 2k for 0 ≤ i ≤ n−1, it follows

that ai = −bi for every 0 ≤ i ≤ n. 2

Theorem 4.4 (Tutte) If f : E(G) → Zk is a flow, then there is a k-flow f ′ : E(G) → Z

so that f ′(e) ∼= f(e) (mod k) for every e ∈ E(G).

Now we are ready to prove the main theorem of this section.
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Proof of Theorem 1.6: By Theorem 4.2, we may choose Z2-flows f0, f1, . . . , f7 and Z3-

flows f8, f9, . . . , f24 of G so that f0 × f1 × . . . × f24 is an antiflow. By Theorem 4.4 we may

choose 2-flows f ′
0, f

′
1, . . . , f

′
7 so that f ′

i(e)
∼= fi(e) (mod 2) and 3-flows f ′

8, f
′
9, . . . , f

′
24 so that

f ′
i(e)

∼= fi(e) (mod 3). By construction, f ′
0×f ′

1×. . .×f ′
24 is a Z25-antiflow. Let h1 =

∑7
i=0 3if ′

i

and let h2 =
∑24

i=8 5i−8f ′
i . By Proposition 4.3 we have that h1 × h2 is a Z2-antiflow. Since

|h1(e)| ≤ (38 − 1)/2 for every e ∈ E(G), it follows from Proposition 4.3 that h1 + 38h2 is a

1012-antiflow of G as required. 2

5 Related Questions

One way to produce a k-courteous edge-coloring is to find an edge-coloring so that every

cut contains edges of at least k + 1 different colors. One may ask if every a-edge-connected

graph has a bounded size edge-coloring so that every cut contains edges of at least b distinct

colors for a pair of fixed positive integers a, b. As in the case of courteous edge-coloring, we

will define a function h : Z+×Z+ → Z∪{∞} given by the rule h(a, b) is the smallest integer

t so that every a-edge-connected graph has a t-edge-coloring so that every edge-cut contains

edges of at least b different colors (or ∞ if no such integer exists). If b ≤ a/2, then h(a, b) = b

follows immediately from the Tutte/Nash-Williams disjoint spanning trees theorem. We will

show that h(a, b) < ∞ if and only if b ≤ da/2e.

Essentially the same example as given in the introduction can be used to prove that there

is no bounded size coloring of every 2k-edge-connected graph so that every edge-cut contains

edges of at least k + 1 distinct colors. To show this, we will exhibit for any pair of positive

integers k, t, a 2k-edge-connected graph Gk,t so that for every t-edge-coloring of G, there is

an edge-cut of G containing at most k colors. We let Gk,t be the graph obtained from a

circuit of length tk + 1 by replacing each edge by k parallel edges. Now, any t-coloring of

the edges of Gk,t must give the same set of colors to two different parallel classes of edges.

There is an edge-cut X containing only the edges in these two parallel classes, and it follows

that X contains edges of at most k distinct colors.

The positive direction is given by the following proposition.

Proposition 5.1 If G is 2k + 1-edge-connected, then there is a
(

2k+1
2

)

-coloring of E(G) so

that every edge-cut of G has edges of at least k + 1 distinct colors.
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Proof: By proposition 2.6 we may choose 2k+1 spanning trees T1, T2, . . . T2k+1 of G so that

every edge is in at most two of these trees. Now, we may choose a partition Ω = {Xi,j |

1 ≤ i < j ≤ 2k + 1} of E(G) so that for every edge e ∈ E(G), if e ∈ Xi,j, then e 6∈ E(Th)

for every i 6= h 6= j. Since every color class contains edges from at most two of the trees

T1, T2, . . . T2k+1 and every tree contains an edge from every edge-cut, it follows that every

edge-cut of G has edges of at least k + 1 colors. 2

As mentioned in the introduction, for any g > 0, there is no fixed integer t so that

every graph of girth g has a t-edge-coloring so that no circuit is monochromatic. However,

there are other questions (based on different graph parameters) concerning edge colorings of

graphs with requirements on the number of colors appearing in each circuit. The following

conjecture of Alon is particularly interesting.

Conjecture 5.2 (Alon) Let G be a graph with maximum degree d. Then G has a proper

(d + 2)-edge-coloring so that every circuit contains edges of ≥ 3 different colors.

We will close this paper with an edge-coloring theorem of a flavor similar to our previous

results. Although the proof is a very simple application of a matroid packing theorem, we

find the result somewhat surprising.

Proposition 5.3 If G is a (2k + 1)-edge-connected graph, then there is a (2k + 1)-coloring

Ω of E(G) so that G \ X contains k edge-disjoint spanning trees for every X ∈ Ω.

In a sense, graphs which contain k edge disjoint spanning trees are similar to graphs which

are 2k-edge-connected. Indeed a graph G is 2k-edge-connected if and only if G \X contains

k edge-disjoint spanning trees for any set X ⊆ E(G) with |X| ≤ k. The above proposition

is interesting because the corresponding statement with “contains k edge-disjoint spanning

trees” replaced by “is 2k-edge-connected” is false. In particular, this statement would imply

that every (2k+1)-edge-connected (2k+1)-regular graph has a proper (2k+1)-edge coloring.

The proof of proposition 5.3 will follow easily from the following proposition on matroids.

We will assume that the reader is familiar with Edmonds’ matroid union theorem (see [25]

or [17] for a good introduction).
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Proposition 5.4 Let M be a matroid on the ground set E, let a, b be positive integers, and

assume that M contains a bases using every element at most b times. Then for any integer

i such that a > bi, there is an a-coloring Ω of E such that M \ X contains i disjoint bases

for every X ∈ Ω.

Proof: Let the matroid M i be obtained by taking the union of M with itself i times. We

will use ρ to denote the rank function of M and ρi to denote the rank function of M i. By

the assumption, for every S ⊆ E, we have that aρ(S) + b|E \ S| ≥ aρ(E). It follows from

this that |E \S| ≥ a/b(ρ(E)− ρ(S)) ≥ i(ρ(E)− ρ(S)). Thus, ρi(E) = iρ(E), and every base

of M i can be partitioned into i pairwise disjoint bases of M .

If M i contains a bases B1, B2, . . . , Ba using every element at most a − 1 times, then we

may choose a coloring Ω = {X1, X2, . . . , Xa} of E so that Xi ∩ Bi = ∅ for every 1 ≤ i ≤ a.

Thus, by Edmonds’ matroid partitioning theorem ([5]), it will suffice to prove that for every

A ⊆ E we have that aρi(A) + (a − 1)|E \ A| ≥ aρi(E).

aρi(A) + (a − 1)|E \ A| = a min
B⊆A

(iρ(B) + |A \ B|) + (a − 1)|E \ A|

≥ i min
B⊆A

(aρ(B) + b|E \ B|)

≥ iaρ(E)

= aρi(E)

This completes the proof. 2

Proof of Proposition 5.3: Apply proposition 5.4 to M(G) with a = 2k + 1, b = 2, and

i = k. 2

As a final note, we observe that Proposition 5.3 implies that for every 5-edge-connected

graph G and every map p : E(G) → {8, 10}, there is a circuit cover of (G, p). Simply apply

the above proposition to partition E(G) into {X1, . . . , X5} and let Ai = {e ∈ Xi | p(e) = 8}.

For 1 ≤ i ≤ 5, the graph G \Ai contains two edge-disjoint spanning trees, so it has a double

cover by circuits. Together these five circuit covers give a circuit cover of (G, p).
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