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SMOOTHING ALGEBRAIC CYCLES

BELOW THE MIDDLE DIMENSION

JÁNOS KOLLÁR

Abstract. Hironaka proved that the Chow groups CHd(X) are generated by

smooth subvarieties if d < 1
2
dimX and d ≤ 3. Recently [KV23] extended this

to all d < 1
2
dimX. The aim of this lecture is to explain the methods and

sketch the proof.
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Representing homology classes by smooth submanifolds was considered by Hopf
for H2 in [Hop42], and then studied systematically by Thom, who gave a positive
answer up to dimension 8, and also established obstructions involving Steenrod
powers in [Tho54, Chap.II].

On a smooth algebraic variety over C, homology classes of algebraic subvarieties
form a cone. So the right question, as formulated by Borel and Haefliger, is whether
homology classes of smooth algebraic subvarieties generate the group of algebraic
homology classes; see [BH61, 5.17]. For a smooth variety X over an arbitrary field,
one should ask whether the classes of smooth algebraic subvarieties generate the
Chow group CHd(X) of d-dimensional cycles.

In this form, the question was considered by Hironaka and Kleiman. [Hir68]
gave a positive answer if d ≤ 3 and d < 1

2 dimX, and [Kle69, 5.8] showed that the
subgroup generated by Chern classes contains (c− 1)! CHc(X) for every c.

The first negative result is in [HRT74], for codimension 2 cycles in Grassmanni-
ans. [Deb95] considers codimension 2 cycles on Jacobians; related higher codimen-
sion examples are in [BD23]. A large series of counterexamples is given by Benoist,
including many satisfying d = 1

2 dimX; see [Ben22, 4.17]. Thus the following is
likely optimal.

Theorem 1. [KV23, 1.2] Let X be a smooth, projective variety over a field of
characteristic 0. Then, for every d < 1

2 dimX, the classes of smooth subvarieties
generate CHd(X).
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2 JÁNOS KOLLÁR

See Corollaries 33–34 for d ≥ 1
2 dimX, and Theorem 39 for positive characteris-

tic. We prove Theorem 1 in Paragraph 32, as a consequence of the following, to be
established in Paragraph 26.

Theorem 2. Let X be a smooth projective variety over a field of characteristic 0,
and ZX ⊂ X an irreducible subvariety. Then there are

(1) a smooth, projective variety Y ,
(2) a flat morphism g : Y → X, and
(3) a smooth, complete intersection subvariety ZY ⊂ Y ,

such that g|ZY
: ZY → ZX is birational.

Complement 3. The g : Y → X we construct is birational to π : XN × PM → X
for some (quite large) N,M , where π is a coordinate projection.

A positive characteristic version is given in Theorem 37.
Although the statement of Theorem 2 is stronger than [KV23, 1.6]—which asserts

only that the Chow groups are generated by such images of complete intersections—
the proofs are actually the same.

Acknowledgments. All the main results are taken from [KV23]. The positive
characteristic variants in Section 6 were also developed in discussions while we
worked on [KV23]. Partial financial support was provided by the NSF under grant
number DMS-1901855.

1. Outline of the proof of Theorem 2

4 (Hironaka’s method for Theorem 1). Let Zd
X ⊂ Xn be an irreducible subvariety.

As explained in [Hir68, pp.1–2], the method starts with a resolution of singularities
Z ′
X → ZX and an embedding Z ′

X ↪→ PN for some N . Let Z ⊂ X × PN be the
image of the diagonal embedding of Z ′

X , and π : X×PN → X the projection. Then
Z ∼= Z ′

X and π|Z : Z → ZX is birational.
Next we try to move Z into ‘general position.’ Let |H| be a sufficiently ample

linear system on X×PN , and Z ∪R a general d-dimensional, complete intersection
of members of |H| that contain Z. Let S be a general d-dimensional, complete
intersection of members of |H|. Then ZX is rationally equivalent to π∗(S)−π∗(R).
S is smooth by Bertini, and so is π∗(S) if d < 1

2n.
Hironaka shows that R and π∗(R) are smooth for d ≤ 3, but always singular for

d ≥ 4; see Example 9. It is impossible to achieve smoothness for d ≥ 4 by repeating
the above linkage trick.

We can resolve the singularities of R, but that does not change its image in
X × PN . We would need to find an embedded resolution of Z ∪ R, where the
birational transform of R can be moved into general position.

5 (Change to Theorem 2). More generally, let ZY = D1 ∩ · · · ∩ Dm ⊂ Y be a
complete imtersection. Then ZY is rationally equivalent to

(−1)m
∑

ei∈{0,1}(−1)
∑

ei
(
(H1 + e1D1) · · · (Hm + emDm)

)
, (5.1)

for any divisors Hi. If the Hi are sufficiently ample, then so are the Hi+ eiDi, and
all summands in (5.1) can be moved into ‘general position.’

Combining with the first step of Hironaka’s method, we see that, after replacing
X by X × PN , it is enough to prove Theorem 2 for smooth subvarieties Z ⊂ X.
The singularities of the original ZX play no role from now on.
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6 (Voisin’s method). [Voi23] shows that it is enough to prove Theorem 2 after a
sequence of blow-ups of smooth, complete intersection subvarieties.

This is conceptually very surprising, since, given a blow-up X ′ → X and an
equidimensional morphism Y ′ → X ′, there does not seem to be any natural way
to construct an equidimensional morphism Y → X out of them. Nonetheless, the
proof, in a series of Lemmas 13–16, is short.

Now the plan is to start with a smooth Zd ⊂ Xn, choose a general, d-dimensional,
complete intersection Z∪R ⊂ X, and try to find a sequence of blow-ups of smooth,
complete intersection subvarieties X∗ → X, such that the birational transform
Z∗ ∪R∗ ⊂ X∗ is a smooth, complete intersection.

An easy argument (as in the proof of Corollary 25) shows that Theorem 2 holds
for Z∗ ⊂ X∗, hence, as we noted above, it also holds for Z ⊂ X.

For dimZ ≤ 7 the singularities of Z ∪ R are quite simple, and a subtle explicit
construction [Voi23, Sec.3] gives the needed blow-ups X∗ → X. It is possible that
one can push this approach beyond dimension 7, but the singularities of Z ∪ R
do get more and more complicated as the dimension increases. This leads to the
following.

Question 6.1. Can one resolve singularities by blowing up smooth, complete
intersection subvarieties only?

The usual embedded resolution methods blow up smooth (hence local complete
intersection) subvarieties, but these are almost never global complete intersections.
So this may be delicate.

Another twist is that usually Z∗ ∪ R∗ ⊂ X∗ is not a complete intersection, but
the zero set of a section of a vector bundle. We call these complete bundle-sections—
abbreviated as cbs—and work with these; see Definition 14 and Lemma 22.

To get the result for every d, we focus on the process of the construction of the
complete intersection Z ∪R.

7 (Keeping singularities simple). More generally, let Z ⊂ Y be smooth varieties.
Let Z ⊂ W ⊂ Y be a smallest dimensional, smooth, complete bundle-section
(possibly W = Y ).

Take a sufficiently ample linear system |H| and a general divisor H ∈ |H| that
contains Z. Then W ∩H has only ordinary quadratic singularities, locally of the
form

(∑r
i=1 xixr+i = 0

)
. In particular, Sing(W ∩H) ⊊ Z is smooth; see Lemma 21.

By induction on the dimension of Z, after further blow-ups Sing(W∩H) becomes
an irreducible component of a complete bundle-section, at which point we can blow
it up. We get Y ′ → Y and birational transforms Z ′ ⊂ (W ∩H)′ ⊂ Y ′. We check
in Lemma 22 that (W ∩ H)′ ⊂ Y ′ is a smooth, complete bundle-section, whose
dimension is dimW − 1.

Now we choose a new sufficiently ample linear system |H ′| on Y ′, and repeat the
process. Eventually the birational transform of Z becomes an irreducible compo-
nent of a smooth, complete bundle-section Z∗.

An inconvenient feature is that we have limited control over the other compo-
nents of Z∗. This is a problem in the induction since having only ordinary quadratic
singularities is not preserved by all blow-ups; see Example 19. This issue needs extra
considerations in Section 4.

This approach is reminiscent of the observation in [Kol11], that a similar class
of singularities was easier to resolve starting with the largest dimensional stratum.
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For illustration, let us see how the method works for a point on a surface (which
would be simpler using Chern classes as in [Kle69]).

Example 8. Let S be a smooth projective surface and s ∈ S a point. We construct
a smooth 5-fold Y , a flat morphism π : Y → S and 5 divisors Di ⊂ Y such that
sY := D1 ∩ · · · ∩D5 is a single point (scheme theoretically), and π(sY ) = s.

Choose smooth projective curves C1, C2 ⊂ S intersecting transversally, such that
s ∈ C1 ∩ C2. Set

Y1 := BC1∩C2
S × PS

(
OS(−C1) +OS(−C2)

)
,

and letG ⊂ Y1 be the graph of the natural embedding j : BC1∩C2
S ↪→ PS

(
OS(−C1)+

OS(−C2)
)
, induced by the surjection OS(−C1) +OS(−C2) ↠ IC1∩C2 .

Let πG : Y → Y1 be the blow-up of G with exceptional divisor EG ⊂ Y .
To get the 5 divisors, let Es ⊂ BC1∩C2

S be the exceptional curve over s, and
C ′

1 ⊂ BC1∩C2
S the birational transform of C1. Using the coordinate projection

p1 : X → BC1∩C2
S, take

D1 := (p1 ◦ πG)
∗Es, D2 := (p1 ◦ πG)

∗C ′
1, D3 := EG.

Finally, choose a sufficiently ample divisor H on Y1 such that |π∗
GH −EG| restricts

to a very ample divisor on EG, and let D4, D5 ∈ |π∗
GH−EG| be general members.

In general, we need to iterate a similar construction many times. A consequence
is that Y in Theorem 2 has much larger dimension than X.

The following is an illustrative example showing why singularities appear in
Hironaka’s method 4.

Example 9. Start with Z := (x1 = x2 = 0) ⊂ An. A general Z ∪ R is then given
by g11x1 − g12x2 = g21x1 − g22x2 = 0. We see that

R :=

(
rank

(
g11 g12 x2

g21 g22 x1

)
≤ 1

)
.

This is singular at the common zeros of the gij on Z. For generic gij this happens
iff dimZ ≥ 4.

2. Complete intersection images

In this section we work over a field of characteristic 0; see Paragraph 36 for
positive characteristic.

Definition 10. Let X be a projective variety over a field of characteristic 0, and
ZX ⊂ X an irreducible subvariety. We say that ZX is a smooth, complete intersec-
tion image, abbreviated as sci-image, if there are

(1) a smooth, projective variety Y ,
(2) an equidimensional morphism g : Y → X, and
(3) a smooth, complete intersection ZY ⊂ Y ,

such that g|ZY
: ZY → ZX is birational.

Remark 10.4. For our purposes, singular complete intersections ZY ⊂ Y would
also work. In characteristic 0 our proofs give smoothness of ZY for free. Over finite
fields it may be convenient to allow singular, complete intersections; see (36.2).

There are 2 obvious lemmas (11 and 12) and 3 subtle ones (13, 15 and 16).
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Lemma 11. Let π : X ′ → X be a smooth morphism and Z ′ ⊂ X ′ a sci-image. If
π|Z′ : Z ′ → Z is birational, then Z is also a sci-image. □

Lemma 12. Let π : P → X be a Pn-bundle and Z ⊂ X a subvariety that is a sci-
image. Then there is a sci-image ZP ⊂ P such that π|ZP

: ZP → Z is birational.

Sketch of proof. By assumption we have g : Y → X and ZY . Let H1, . . . ,Hn be
general members of a very ample OP (1) on P . We have Y ×X P with projections
p1, p2. Then p∗1(ZY ) ∩ p∗2H1 ∩ · · · ∩ p∗2Hn shows that we can take ZP := π∗(Z) ∩
H1 ∩ · · · ∩Hn. □

Lemma 13. [KV23, 3.7] Let j : H ↪→ X be a smooth hypersurface and Z ⊂ H a
subvariety that is a sci-image. Then j∗Z ⊂ X is also a sci-image.

Sketch of proof. Let G ⊂ H ×X be the graph of j, and τ : X ′ := BG(H ×X) →
H ×X its blow-up with exceptional divisor E. Note that p1 : X ′ → H ×X → H
is smooth and p2 : X ′ → H ×X → X is equidimensional.

Choose a sufficiently ample divisor A on H ×X such that |τ∗A−E| restricts to
a very ample divisor on E, and take general members A1, . . . , An−1 ∈ |τ∗A− E|.

By assumption we have g : YH → H and ZY a ci in YH . Set Y := YH ×H X ′

with projections q1 : Y → YH and q2 : Y → X ′. We can now take

q∗1ZY ∩ q∗2E ∩ q∗2A1 ∩ · · · ∩ q∗2An−1. □

Remark 13.1. H needs to have codimension 1 in X for p2 : X ′ → X to be equidi-
mensional. For smooth, complete intersections j : W ↪→ X one can use induction,
but Lemma 13 is not (yet) proved for inclusions of smooth subvarieties.

We also need the following generalization of complete intersections.

Definition 14. Let E be a locally free sheaf of rank r on X, and s a global section
of E. If C := (s = 0) has pure codimension r, we call it a complete bundle-
section subscheme, abbreviated as cbs. We are mostly interested in cases where C
is smooth.

The next 2 lemmas are proved together.

Lemma 15. [KV23, 3.9] Let j : C ↪→ X be the inclusion of a smooth complete
bundle-section, and Z ⊂ C a sci-image. Then j∗Z ⊂ X is a sci-image.

Lemma 16. [KV23, 3.11] Let C ⊂ X be a smooth complet bundle-section and
Z ′ ⊂ BCX a sci-image. If π|Z′ : Z ′ → Z is birational, then Z ⊂ X is also a
sci-image.

Sketch of proof. Let C be the zero set of s : OX → E. Dually we have a
surjection E∗ → IC ⊂ OX , which gives an embedding iB : BCX ↪→ P (E∗) :=
ProjX Sym(E∗). The projections are denoted by πE : P (E∗) → X, πB : BCX → X
and πF : F → C, where iF : F ⊂ BCX is the πB-exceptional divisor

Let π∗
EE → Q be the universal quotient bundle. The composite of π∗

Es with
π∗
EE → Q gives a section sQ of Q whose zero set is BCX. We use induction on

r := codim(C ⊂ X) = 1 + codim
(
BCX ⊂ P (E∗)

)
.

The r = 1 case of Lemma 15 is Lemma 13. We have a commutative diagram

F
iF−→ BCX

iB−→ P (E∗)
πC ↓ πB ↓ ↓ πE

C
iC−→ X = X.
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If Z ⊂ BCX is a sci-image, then so is (iB)∗Z by induction on r, hence also
(πE)∗(iB)∗Z by Lemma 11, proving Lemma 16.

If ZC ⊂ C is a sci-image, lift it to ZF ⊂ F using Lemma 12. Now (iF )∗ZF is a sci-
image by Lemma 13, hence so is j∗Z = (πE)∗(iB)∗(iF )∗ZF , proving Lemma 15. □

3. Blow-up sequences

In this section we work over an infinite perfect field. All varieties are allowed to
be reducible, but assumed pure dimensional.

17 (Blow-up sequences). A blow-up sequence is a sequence of morphisms

Yr
πr−1−→ Yr−1

πr−2−→ · · · π0−→ Y0, (17.1)

where each πi : Yi+1 → Yi is the blow up of a subscheme Ci ⊂ Yi, called the center
of the blow-up.

Let W0 ⊂ Y0 be a subscheme. If the images of the centers Ci are nowhere dense
in W0, then we let Wi ⊂ Yi denote the birational transforms of W0. (Also called
proper transform.)

Here we only deal with blow-up sequences where Y0 is smooth, and the Ci are
smooth. In this case all the Yi are smooth.

Following Definition 14, we say that (17.1) is a complete bundle-section blow-up
sequence (abbreviated as cbs blow-up sequence), if the Ci ⊂ Yi are all complete
bundle-sections.

18 (Blow-up lemmas). Let Y be a smooth variety and Z,C reduced, pure dimen-
sional, closed subsets and C smooth. Let π : Y ′ := BCY → Y be the blow-up and
Z ′ ⊂ Y ′ the birational transform.

(1) If Z and Z ∩ C are smooth, then so is Z ′.
(2) If Z is a smooth cbs and C ⊊ Z, then Z ′ is a smooth cbs.
(3) If Z is a cbs and codimY C = codimZ(Z ∩ C), then Z ′ is a cbs.
(4) Let H ⊂ Y be a hypersurface that has only ordinary double points along

some smooth D ⊊ H. If C = D then H ′ is smooth, and if C ⊊ D, then H ′

has only ordinary double points, necessarily along D′.

Example 19 (Blow-ups to avoid). Consider the cone H := (xy + z2) ⊂ A3 and
blow-up the line L := (x = y = 0). In one chart we get the equation H ′ =
(x2

1y1 + z2 = 0), so H ′ does not have ordinary double points.
This leads to the following definition.

Definition 20 (Full intersection property). Let Z ⊂ Y be schemes. A closed subset
W ⊂ Y has full intersection with Z, if Z ∩W is a union of connected components
of W . A blow-up sequence Yr → · · · → Y0 = Y has full intersection with Z if
the birational transforms Zi ⊂ Yi are defined, and each blow-up center Ci has full
intersection with Zi.

We also need a Bertini-type theorem for linear systems with basepoints; see
[Kol97, Sec.4] for similar results.

Lemma 21. Let W ⊂ Y be smooth varieties, H a sufficiently ample linear system
on Y , and H ∈ |H| a general member that contains W . Then

(1) H is smooth if dimW < 1
2 dimY .
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(2) If dimW ≥ 1
2 dimY , then SingH is smooth, of dimension 2 dimW−dimY ,

contained in W , and H has only ordinary quadratic singularities.

Sketch of proof. These are local questions. If W ⊂ Y is defined by the equations
g1 = · · · = gr = 0, then H is defined by an equation

∑r
i=1 figi = 0, where the fi

can be chosen general in a linear system whose restriction to W is very ample. The
singular set is then (g1 = · · · = gr = f1 = · · · = fr = 0). □

Next we show that blowing up such ordinary quadratic singularities preserves
complete bundle-sections. This is the step in the proof where going from complete
intersections to complete bundle-sections becomes necessary.

Lemma 22. [KV23, 4.5] Let Y be a smooth variety, E a vector bundle on Y , and
W ⊂ Y a cbs subvariety given by a section s ∈ H0(Y,E). Assume that W has only
ordinary double points along some smooth D ⊊ W .

Let π : Y ′ := BDY → Y be the blow-up. Then W ′ ⊂ Y ′, the birational transform
of W , is a smooth cbs.

Sketch of proof. Locally at a point p ∈ D we can choose coordinates yi such that

W =
(
y1 = · · · = yr = Q(yr+1, . . . , yr+s) = 0

)
,

Let F denote the exceptional divisor of π. Then, locally over a neighborhood of p,
W ′ is the complete intersection of the hypersurfaces

(y1 ◦ π = 0)− F, . . . , (yr ◦ π = 0)− F, and (Q ◦ π = 0)− 2F.

One needs to check that these local charts give a well defined subsheaf E′ ⊂
π∗E(−F ), which is locally free.

Note that E′ is not a subbundle of π∗E(−F ), and, even if E is a direct sum of
line bundles, usually E′ is not. □

Remark 23. The proof suggests that if W ⊂ Y is an arbitrary cbs subvariety and
D ⊊ W is a smooth subvariety, then the birational transform W ′ of W on BDY is
a cbs subvariety if W is normally flat along D [Hir64, p.136], but not in general.

4. Creating complete bundle-sections

In this section we work over an infinite perfect field. As before, all varieties are
allowed to be reducible, but assumed pure dimensional.

As we noted in Paragraph 7, our aim is to turn subvarieties into complete in-
tersections, using only complete bundle-section blow-ups. We can not do it in full
generality, but the following version is sufficient for the current purposes.

Theorem 24. [KV23, 1.8] Let Z ⊂ Y be smooth, projective varieties such that
dimZ < 1

4 dimY . Then there is complete bundle-section blow-up sequence Yr →
· · · → Y0 := Y with centers Ci ⊂ Yi, such that dimCi < dimZ for every i, and
Zr ⊂ Yr is a union of irreducible components of a smooth, complete bundle-section
Z∗
r ⊂ Yr.

We discuss the assumption dimZ < 1
4 dimY during the proof. We did not try

to optimize the constant 1
4 .

Sketch of proof. We start as in Paragraph 7. Let Z ⊂ X ⊂ Y be the smallest,
smooth, complete bundle-section that contains Z. We are done if dimZ = dimX.
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Otherwise, take a sufficiently ample linear system |H| and a general divisor
H ∈ |H| that contains Z. Since H ∩X is a smaller dimensional, complete bundle-
section, it must be singular. However, by Lemma 21, H ∩ X has only ordinary
quadratic singularities, and W := Sing(H ∩X) ⊊ Z is smooth.

By induction on d, after further blow-ups W becomes (a union of irreducible
components of) a complete bundle-section, at which point we can blow it up. The
birational transform of H ∩ X is then smooth by (18.4) and a complete bundle-
section by Lemma 22.

The birational transform of Z is now contained in the the birational transform of
H∩X, which is a smooth, complete bundle-section, and its dimension is dimX−1.
Repeating this dimX − dimZ times, we get the theorem.

So what is the problem?
In the above process we would like to blow up certain subvarieties V ⊂ W .

By dimension induction we can arrange that V is an irreducible component of a
complete bundle-section V ∗, but we have to blow up V ∗, not V . As in Example 19,
we need to make sure that V ∗ has full intersection (Definition 20) withW . When the
codimension of Z ⊂ Y is small, this is impossible for dimension reasons. However,
even if dimV ∗ is small, we would need to show that V ∗ \ V is in ‘general position’
on Y .

So let us see how do we get these other components V ∗ \ V . They arise when
Z ⊂ X is a hypersurface. Then we find a general R ∈ |H − Z|. Now Z ∩ R is a
complete intersection in X, but need not be one in Y . So we need to make some
blow-ups. Eventually we can blow up (the birational transform of) Z∩R, and then
(the birational transform of) Z ∪R becomes a smooth, complete bundle-section.

The difficulty is that, although we can guarantee that R itself is in ‘general
position’ on X, its birational transform may not be in ‘general position,’ since the
sequence of blow-ups depends on the choice of R.

This is where the assumption dimZ < 1
4 dimY comes handy. We start with a

Z ⊂ X ⊂ Y such that dimX < 1
2 dimY . It is now reasonable to hope that we

can use the extra > 1
2 dimY dimensions to achieve that all these extra componets

V ∗ \ V are disjoint from X. Once this is achieved, they do not cause any further
trouble.

In practice we use a double induction on 2 assertions similar to Theorem 24. One
is used to push the extra componets V ∗ \V away from X, the other is basically the
argument above. □

Corollary 25. [KV23, 1.9] Let Z ⊂ Y be smooth, projective varieties such that
dimZ < 1

4 dimY . Then there is complete bundle-section blow-up sequence Π :
Yr+1 → Yr → · · · → Y0 := Y , and a complete intersection subvariety Zr+1 ⊂ Yr+1

such that Π∗(Zr+1) = Z.

Proof. Let Yr → · · · → Y0 := Y be as in Theorem 24, and πr : Yr+1 → Yr the
blow-up of Z∗

r . Let Er+1 be the πr-exceptional divisor lying over Zr.
Choose Hr sufficiently ample on Yr such that |π∗

rHr − Er+1| restricts to a very
ample divisor on Er+1. Then we can choose general members Di ∈ |π∗

rHr − Er+1|
to obtain a complete intersection subvariety Zr+1 :=

(
Er+1 ∩D1 ∩ · · · ∩Dc

)
, where

c = dimY − dimZ − 1. □
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26 (Proof of Theorem 2). Following Hironaka’s method 4, first we choose a smooth
subvariety Z ⊂ X × PN whose first projection is birational onto ZX . We may
choose N > 3 dimX.

Now apply Corollary 25 to Z ⊂ Y := X × PN to get a complete bundle-section
blow-up sequence Π : Yr+1 → Yr → · · · → Y0 := Y , and a complete intersection
subvariety Zr+1 ⊂ Yr+1 such that Π∗Zr+1 = Z.

Here Zr+1 is a sci-image (using the identity map Yr+1 → Yr+1), hence Z ⊂ Y
is a sci-image by applying Lemma 16 to each Yi+1 → Yi. Thus ZX ⊂ X is also a
sci-image by Lemma 11. □

5. Pushing forward complete intersections

In this section we work over infinite fields.

27. Using (5.1) we see that on a smooth projective variety, any complete intersec-
tion is rationally equivalent to a linear combination of smooth, complete intersec-
tions of ample divisors.

To be precise, below we work with very ample linear systems |Ai| that separate
dimY points, and the conclusions hold for all complete intersections W = A1 ∩
· · · ∩Am ⊂ Y for a dense open subset of |A1| × · · · × |Am|.

Lemma 28. Let g : Y → X be an equidimensional morphism, and W ⊂ Y a
general, complete intersection of dimension < dimX. Then the set of points x ∈
g(W ) with ≥ s preimages in W , has codimension ≥ (s − 1)(dimX − dimW ) in
g(W ).

Proof. Let W parametrize all complete intersections, and (W, s) all s-pointed,
complete intersections {W,w1, . . . , ws : g(wi) = g(wj)}.

Note that s points in the same fiber of g are parametrized by the s-fold fiber
product of g : Y → X with itself; this has dimension dimX + s(dimY − dimX).
It is s(dimY − dimW ) conditions for W to pass through s points. This gives that
dim(W, s)− dimW = sdimW − (s− 1) dimX. □

Corollary 29. Let g : Y → X be an equidimensional morphism, and W ⊂ Y a
general, complete intersection of dimension < dimX. Then

(1) g|W : W → g(W ) is finite and generically injective,
(2) g|W : W → g(W ) is injective if dimW < 1

2 dimX, and

(3) g(W ) has finitely many points with 2 preimages if dimW = 1
2 dimX. □

If g is smooth, then g|W : W → X is an immersion for dimW ≤ 1
2 dimX by

[Hir68]. [KV23, 2.1] shows that the same holds for equidimensional morphisms
between smooth varieties in characteristic 0. In general, we need a definition.

Definition 30. We call a morphism π : Y → X piecewise smooth, if there are
finite, locally closed decompositions X = ∪iXi and π−1(Xi) = ∪jYij , such that
each πij := π|Yij

: Yij → Xi is smooth.
In characteristic 0 every morphism is piecewise smooth, so this notion is of

interest in positive characteristic only.
Being piecewise smooth is preserved by fiber products and compositions.

Lemma 31. Let g : Y → X be an equidimensional and piecewise smooth morphism
between smooth, projective varieties.
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Let W ⊂ Y be a general, complete intersection of dimension ≤ 1
2 dimX. Then

g|W : W → X is an immersion.

Proof. Let rij be the rank of Tg on Yij → Xi as in Definition 30. Then dimXi ≤
rij , so dimYij ≤ rij + (dimY − dimX).

If rij + dimW < dimX then W is disjoint from Yij . Otherwise rij ≥ dimW .
It is dimY − dimW conditions for W to pass through a point p ∈ Yij , and

rij − dimW + 1 condition for TpW to have postitive dimensional intersection with
the kernel of TpY → Tg(p)X, since the latter has rank rij . Thus the set of W for
which g|W is not an immersion at some point of Yij has codimension

≥ (dimY − dimW ) + (rij − dimW + 1)− dimYij

≥ (dimY − dimW ) + (rij − dimW + 1)− (rij + dimY − dimX)
= 1 + dimX − 2 dimW.

This is positive whenever dimW ≤ 1
2 dimX. □

32 (Proof of Theorem 1). Let ZX ⊂ X be a d-dimensional subvariety. By The-
orem 2, it is a sci-image of some complete intersection ZY ⊂ Y . As we noted in
Paragraph 27, ZY is rationally equivalent to a linear combination of complete inter-
sections Wj in ‘general position.’ If d < 1

2 dimX, then each g|Wj : Wj → X is injec-
tive by Corollary 29.2 and an immersion by Lemma 31. Thus each g|Wj

: Wj → X
is an embedding. □

For d ≥ 1
2 dimX, the proof gives the following.

Corollary 33. [KV23, 2.1] Let X be a smooth, projective variety of dimension
n = 2d over a field of characteristic 0. Then CHd(X) is generated by immersed
subvarieties Z ⊂ X, with finitely many transverse, self-intersection points. □

Corollary 34. Let X be a smooth, projective variety over a field of characteristic 0.
Then every CHd(X) is generated by subvarieties Z ⊂ X such that the normalization
τZ : Zn → Z is smooth, and each fiber of τZ contains at most 1

2 dimX points. □

6. Positive characteristic

The positive characteristic version of Theorem 2 is not strong enough to imply
the positive characteristic version of Theorem 1. We need an improved variant.

Definition 35. Let X be a projective variety over a perfect field, and ZX ⊂ X an
irreducible subvariety. We say that ZX is a complete intersection image if there are
g : Y → X and a complete intersection ZY ⊂ Y such that g∗(ZY ) = ZX , where g
is piecewise smooth (Definition 30) and (10.1–2) also hold.

36 (Section 2 in positive characteristic). With these definitions, the results of Sec-
tion 2 hold over any perfect field. There are 2 points that deserve some comments.

(36.1) In the proof of Lemma 13, we need to show that the morphism p2 : X ′ →
H ×X → X is piecewise smooth.

Indeed, on the exceptional divisor E, the restriction of p2 is a Pn−1-bundle over
H, hence smooth. On X ′ \E ∼= (H ×X) \G, it is the coordinate projection, which
is smooth since H is smooth. (Note that [KV23, 3.7] is about finite morphisms
H → X. Then p2 : X ′ → H ×X → X is piecewise smooth iff H → X is piecewise
smooth.)
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(36.2) In the proofs of Lemmas 12–13, we choose general divisors. If the field is
infinite, this is not a problem. Over finite fields, elementary arguments show that
we can choose ZY to be irreducible. Most likely, the methods of [CP16] can be used
to show that, even over finite fields, we can choose ZY to be smooth.

If we try to follow the proof of Theorem 2 given in Paragraph 26, everything
works, except at the very first step we need to have a resolution Z ′

X → ZX . Thus
we get the following.

Theorem 37. Let X be a smooth projective variety over a prefect field k, and
ZX ⊂ X an irreducible subvariety. Assume that there is a projective resolution
Z ′
X → ZX . Then ZX is a complete intersection image.
If k is infinite, then ZX is a smooth complete intersection image. □

When resolution is not known, there are alterations pi : Z
′
i → ZX such that the

greatest common divisor of their degrees is a power of char k; see [dJ96, ILO14]. Let
c denote the codimension. By [Kle69], (c−1)!ZX is rationally equivalent to a linear
combination of subvarieties that are Chern classes, equivalently, Segre classes. By
their definition [Ful98, Sec.3.1], the later are sci-images. So, as in Paragraph 27,
(c− 1)!ZX is rationally equivalent to a linear combination of subvarieties that are
images of smooth varieties Wj .

We can now choose disjoint embeddings Z ′
i ↪→ PN and Wj ↪→ PN . If char k >

c − 1, then there is a suitable linear combination Z of the diagonal images, such
that the projection of Z is rationally equivalent to ZX .

Thus we proved the following variant of Theorem 2.

Theorem 38. Let X be a smooth, projective variety over a perfect field k. If
char k ≥ c then CHc(X) is generated by complete intersection images. □

We obtain the following version of Theorem 1. Again, the methods of [CP16]
should settle the finite field cases.

Theorem 39. Let X be a smooth projective variety over an infinite, prefect field
k. Fix d < 1

2 dimX. Then the classes of smooth subvarieties generate CHd(X) if
either d ≤ 3 or char k ≥ n− d. □

Remark 40. If p = char k < n − d, then the proof shows that the classes of
smooth subvarieties generate pm CHd(X), where pm is the largest p-power dividing
(n− d− 1)!.

7. Open problems

Question 41. [Voi23] In Theorem 26, can one choose g : Y → X smooth?
Homogeneous spaces are discussed in [Voi23, Sec.4]; see also [KV23, Sec.5].

Question 42. What can one say for d > 1
2 dimX?

Corollary 34 gives generators Z with smooth normalization Zn → Z. However,
the local structure of Zn → Z is not clear from the proof; see [Laz04, 7.2.17–20]
and [BE10] for closely related results. Note that, in the topological setting, an
unbounded set of singularities must appear by [GSz13].

Question 43. What is the subgring of CH(X) generated by Chern classes of alge-
braic vector bundles?

We get all if dimX ≤ 2, but not for dimX = 3, as the next example shows.
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Example 44. [KV23, 3.5] Let X be a smooth, proper 3-fold and E a vector bundle
of rank r with Chern classes ci. From Riemann-Roch we get that

χ
(
X,E

)
− χ

(
X,Or−1

X ⊕ detE
)
= 1

2 (KX − c1)c2 +
1
2c3.

So, if (KX − c1)c2 is even, then so is c3. To get such example, let S ⊂ P3 be a very
general surface of even degree ̸= 2, and X ⊂ S × S an ample divisor. Then every
curve-divisor intersection number is even.

Question 45. When is CHn(X
2n) generated by smooth subvarieties?

This holds for n = 1, and also for n = 2 by [Kle69]. [Ben22] gives counterexam-
ples whenever a(n+1) ≥ 3, where a(m) is the number of 1s in the binary expansion
of m.

Question 46. Let X be a smooth, projective variety. Is CHd(X)Q generated by
classes of smooth subvarieties for every d?

This is almost completely open for d ≥ 1
2 dimX. [Kle69] shows that CHd(X)Q

is generated by classes of subvarieties that have determinantal singularities only.
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[GSz13] Mark Grant and András Szűcs, On realizing homology classes by maps of restricted
complexity, Bull. Lond. Math. Soc. 45 (2013), no. 2, 329–340. MR 3064418

[Hir64] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of

characteristic zero. I, II Ann. of Math. (2) 79 (1964), 109–326.
[Hir68] , Smoothing of algebraic cycles of small dimensions, Amer. J. Math. 90 (1968),

1–54. MR MR0224611 (37 #210)
[Hop42] Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv.

14 (1942), 257–309. MR 6510
[HRT74] Robin Hartshorne, Elmer Rees, and Emery Thomas, Nonsmoothing of algebraic cycles

on Grassmann varieties, Bull. Amer. Math. Soc. 80 (1974), 847–851.

[ILO14] Luc Illusie, Yves Laszlo, and Fabrice Orgogozo, Travaux de Gabber sur l’uniformisation
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[Tho54] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math.
Helv. 28 (1954), 17–86. MR 61823

[Voi23] Claire Voisin, Flat pushforwards of Chern classes and the smoothing problem for cycles

in the Whitney range, 2023.


	1. Outline of the proof of Theorem 2
	2. Complete intersection images
	3. Blow-up sequences
	4. Creating complete bundle-sections
	5. Pushing forward complete intersections
	6. Positive characteristic
	7. Open problems
	References

