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Abstract. Computerized Tomography (CT) is a standard method for obtaining internal struc-
ture of objects from their projection images. While CT reconstruction requires the knowledge of
the imaging directions, there are some situations in which the imaging directions are unknown, for
example, when imaging a moving object. It is therefore desirable to design a reconstruction method
from projection images taken at unknown directions. Recently, it was shown that the imaging direc-
tions can be obtained by the diffusion map framework. Another difficulty arises from the fact that
projections are often contaminated by noise, practically limiting all current methods, including the
diffusion map approach. In this paper, we introduce two denoising steps that allow reconstructions at
much lower signal-to-noise ratios (SNR) when combined with the diffusion map framework. The first
denoising step consists of using the singular value decomposition (SVD) in order to find an adaptive
basis for the projection data set, leading to improved similarities between different projections. In
the second step, we denoise the graph of similarities using the Jaccard index, which is a widely used
measure in network analysis. Using this combination of SVD, Jaccard index and diffusion map, we
are able to reconstruct the 2-D Shepp-Logan phantom from simulative noisy projections at SNRs
well below their currently reported threshold values. Although the focus of this paper is the 2-D CT
reconstruction problem, we believe that the combination of SVD, Jaccard index graph denoising and
diffusion maps is potentially useful in other signal processing and image analysis applications.
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1. Introduction. Transmission Computerized Tomography (CT) nowadays is
a standard method to obtain internal structures non-destructively, routinely used in
medical imaging [7, 13, 18, 17]. The classical two-dimensional CT problem is the
recovery of a function f : R2 → R from its Radon transform. In the parallel beam
model, the Radon transform of f is given by the line integral

Rθ(f)(r) =

∫

x·θ=r

f(x)dx,

where θ ∈ S1 is perpendicular to the beaming direction (S1 is the unit circle), and
r ∈ R. The reconstruction of f from its Radon transform Rθ(f) is made possible due

to the Fourier-projection slice theorem that relates the 1-D Fourier transform R̂θ(f) of

the Radon transform with the 2-D Fourier transform f̂ of the function [7, 13, 18, 17]:

R̂θ(f)(ξ) = f̂(ξθ), for all ξ ∈ R.

In other words, the 1-D Fourier transform of each projection is the restriction of the
2-D Fourier transform to the central line in the θ direction. Thus, the collection of the
discrete 1-D Fourier transforms of all projections corresponds to the Fourier transform
of the function f sampled on a polar grid. Therefore, the function f can be recovered
by a suitable 2-D Fourier inversion. This reconstruction requires the knowledge of the
beaming direction θ of each and every projection Rθ(f).

There are cases, however, in which the beaming directions are unknown, for ex-
ample, when imaging certain biological proteins or other moving objects. In such
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cases, one is given samples of the Radon transform Rθi
f(r) for a finite but unknown

set of N directions {θi}Ni=1, and the problem at hand is to estimate the underlying
function f without knowing the directions. The sampling set for the parameter r
is usually known and dictated by the physical setting of the acquisition process; for
example, if the detectors are equally spaced then the values of r correspond to the
location of the detectors along the detectors line, while the origin may be set at the
center of mass. An alternative method for estimating the shifts will be discussed in
the Summary section.

In this paper we address the reconstruction problem for the 2D parallel-beam
model with unknown acquisition directions. Formally, we consider the following
problem: Given N projection vectors (Rθi

f(r1), Rθi
f(r2), . . . , Rθi

f(rn)) taken at

unknown directions {θi}Ni=1 that were randomly drawn from the uniform distribution
over S1 and r1, r2, . . . , rn are fixed n equally spaced pixels in r, find the underlying
density function f(x) of the object.

This 2D reconstruction problem from unknown directions was previously consid-
ered by Basu and Bresler in [2, 1]. In particular, [2] derives conditions for the existence
of unique reconstruction from unknown directions and shifts. The recovery problem is
formulated as a non-linear system using the Helgason-Ludwig consistency conditions,
that is used to derive uniqueness conditions. Stability conditions for the angle recov-
ery problem under deterministic and stochastic perturbation models are derived in
[1], where Cramér-Rao lower bounds on the variance of direction estimators for noisy
projections are also given. An algorithm for estimating the directions is introduced
in [1], and it consists of three steps: 1) Initial direction estimation; 2) Direction or-
dering; 3) Joint maximum likelihood refinement of the directions and shifts. Step 2
uses a simple symmetric nearest neighbor algorithm for projection ordering. Once the
ordering is determined, the projection directions are estimated to be equally spaced
on the unit circle, as follows from the properties of the order statistics of the uniform
distribution. Thus, the problem boils down to sorting the projections with respect to
their directions.

A different approach to sorting the projections with respect to their directions
was employed in [6], where the ordering was obtained by a proper application of the
diffusion map framework [5, 14]. Specifically, the method of [6] consists of construct-
ing an N × N matrix whose entries are obtained from similarities between pairs of
projections, followed by a computation of the first few eigenvectors of the similar-
ity matrix. This method was demonstrated to be successful at relatively low SNRs,
especially when the projections were first denoised using wavelet spin-cycling [4].

In this paper, we combine the diffusion map approach of [6] with two other de-
noising techniques that together allow reconstructions at much lower SNRs. The first
denoising step consists of using the singular value decomposition (SVD) in order to
find a basis for the projection data set. The advantage of the basis found by the SVD
over the wavelet basis that was used in [6] is in its adaptivity to the data. A few
singular vectors capture most of the data variability, and projecting the data projec-
tions onto this basis diminish the noise while capturing most of the signal features.
We use the denoised projections to construct a similarity matrix between denoised
projection pairs. Note that the only difference between the SVD procedure that we
apply here and principal component analysis (PCA) is that the projections are not
being centered by the removal of their average prior to the computation of the SVD.

Our second denoising technique consists of further denoising the similarity matrix
using the Jaccard index (see, e.g. [8], where the Jaccard index was used to denoise
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protein interaction maps). When two projections share a similar beaming direction,
then it is expected that not only the similarity between the two of them would be
significant, but also their similarity with all other projections of nearby beaming
directions would be large. Fixing a pair of projections, the Jaccard index is a way of
measuring the number of projections that are similar to both of them. The similarity
measure between projections is often sensitive to noise: when the SNR is too low,
we may assign a large similarity to projection pairs of completely different beaming
directions. We use the Jaccard index to identify such false matchings of projections,
because we do not expect a pair of projections of different beaming directions to have
many projections that are similar to both of them. The denoised similarity matrix
obtained by Jaccard index thresholding is then used as an input to the diffusion map
method.

We performed extensive numerical experiments testing this combination of SVD,
Jaccard index and diffusion map, and were able to reconstruct the 2-D Shepp-Logan
phantom from simulative noisy projections at SNRs well below their currently re-
ported threshold values [6]. Although the focus of this paper is the 2-D CT recon-
struction problem, we believe that such combination of SVD, Jaccard index graph
denoising and diffusion maps has the potential to become a useful tool for other
signal processing and image analysis applications.

2. Background. In this section we provide the mathematical framework and
tools that we use to solve the reconstruction problem. We first discuss the underlying
geometry of the data as a one-dimensional closed curve in a high dimensional ambient
space. This discussion is followed by a brief introduction to the diffusion map method
and the way it provides intrinsic coordinates for the data. We also review SVD and the
Jaccard index that will be later used for denoising the projections and their pairwise
similarity matrix.

2.1. Underlying geometry. Every projection vector (Rθf(r1), Rθf(r2), . . . , Rθf(rn))
can be viewed as a point in Rn. When varying the beaming direction θ over S1, the
projection vectors traverse a closed curve in Rn. This curve can intersect itself, for
example, when the function f has some axis of symmetry. The collection of N projec-
tion vectors (Rθi

f(r1), . . . , Rθi
f(rn)) (i = 1, . . . , N) are therefore N sampling points

on this closed curve. Noise contamination leads to deviation of these points from their
underlying curve.

In the limit of infinitely large number of discretization points n → ∞, we get a
closed curve C in L2(R) whenever f ∈ L2(R2) has a compact support. Indeed, from
the dominant convergence theorem we have that
∫

R

|R(sin(t+h),cos(t+h))(f)−R(sin t,cos t)(f)|2ds

≤
∫

R

∫

R2

|f(x)δ(s − x · (sin(t+ h), cos(t+ h)))− f(x)δ(s− x · (sin t, cos t))|2dxds→ 0,

as h → 0, where we have used the following parametrization of the unit circle S1 =
{(cos t, sin t) |t ∈ [0, 2π)}. This means that Rθ(f) is a continuous function from S1 to
L2(R), and its image is a compact and connected continuous curve in L2(R). Hereafter
we will assume that the curve C does not intersect itself, in particular, this assumption
implies that the object has no axis of symmetry.

2.2. Diffusion Map. Diffusion map is a non-linear dimensionality reduction
technique [5, 14] whose application to the reconstruction problem at hand was studied
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in [6]. As discussed above, although the sampled projections are points in a high
dimensional Euclidean space, they are restricted to a one-dimensional closed curve.
This curve may have a complicated non-linear structure that may not be captured by
projecting it linearly onto a low-dimensional subspace. Unlike linear methods such as
SVD, diffusion map successfully finds the correct parametrization of the non-linear
curve. In this subsection, we give a brief description of the diffusion map technique
and discuss some of its properties and limitations.

We now outline the steps of the diffusion map algorithm. Suppose x1, . . . , xN ∈
Rn is a collection of N data points to be embedded in a lower dimensional space. The
first step is to construct an N ×N matrix W of similarities between the data points.
The similarities are defined using the Euclidean distances between the data points
and a kernel function k : R→ R scaled by a parameter ǫ > 0 in the following way

Wij = k

(‖xi − xj‖√
2ǫ

)

, for i, j = 1, . . . , N.

The second step is to normalize W into a probability transition matrix A of a random
walk on the data points by letting

A = D
−1

W ,

where D is a diagonal matrix whose entries are given by

Dii =

N
∑

j=1

Wij , for i = 1, . . . , N.

We then define the normalized graph Laplacian L as

L = I −A.

where I is the N×N identity matrix. The matrix A has a complete set of eigenvectors
φ0, φ1, . . . , φN−1 with corresponding eigenvalues 1 = λ0 ≥ λ1 ≥ · · · ≥ λN−1 ≥ 0,
where φ0 = (1, 1 . . . , 1)T . Moreover, for positive kernels such as the Gaussian kernel
k(u) = exp{−u2/2}, all resulting eigenvalues are non-negative. In the last step, the
data points are embedded in a k-dimensional Euclidean space using the diffusion map
defined by

xi 7→ (λt
1φ1(i), . . . , λ

t
kφk(i)), for i = 1, . . . , N,

where t > 0 is a parameter.
Whenever the data points are sampled from a low dimensional Riemannian mani-

fold, the discrete random walk over the data points converges to a continuous diffusion
process over that manifold in the limit ofN →∞ and ǫ→ 0. This convergence implies
that the eigenvectors of L converge to the eigenfunctions of the continuous Laplace-
Beltrami operator on the manifold when the data points are uniformly sampled over
the manifold [5, 19, 3, 10]. If the sampling is non-uniform then the limiting operator
is the backward Fokker-Planck operator rather than the Laplace-Beltrami [16], but
we can still get the Laplace-Beltrami operator by using a different normalization of
the similarity matrix [5].

In our case, the data points are the projections which are restricted to the closed-
curve C. Although the beaming directions are uniformly distributed over S1, the
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projections are not necessarily uniformly distributed over C, due to the non-trivial
Jacobian of the transformation θ 7→ Rθ(f). The eigenvectors of L computed by
the diffusion map will therefore be discrete approximations of the eigenfunctions
of the Fokker-Planck operator over C. If instead we apply the normalization that
leads to the Laplace-Beltrami operator, then the computed eigenvectors will be dis-
crete approximations of the eigenfunctions of the Laplace-Beltrami operator over C
which are nothing but the trigonometric functions of the arclength s given by 1,
sin(2πms/L), cos(2πms/L), m = 1, 2, . . ., where L is the length of C. In particular,
the first two non-trivial eigenfunctions sin(2πs/L) and cos(2πs/L) provide a good
parametrization of C, as they embed C onto the unit circle S1 in R2.

This embedding solves the problem. In fact, after assigning to each projection

its relative beaming direction θi by the monotonic function θi ← arctan φ1(i)
φ2(i)

, we

reconstruct the correct ordering of the projections.
However, like other methods, diffusion map also has its limitations: noise will

cause the data points to deviate from the curve. The perturbation of the data points
by noise may distort the topology of the data set from being a non-intersecting closed
curve (see, for example, Figure 2.1). We show below that the application of SVD and
Jaccard index denoising helps the diffusion map to overcome these limitations.

Fig. 2.1. Upper row: The data (blue points) sampled from a circle (red line) at different noise
levels. Lower row: The data (blue points) sampled from a closed curve (red line) at different noise
levels.

2.3. Denoising by SVD. Clearly, noise perturbs the topology through making
the distances between projections (data points) less meaningful. It is therefore desir-
able to denoise the projections prior to computing the similarity matrix W . A good
denoising procedure will retain most characteristic features of the true signal while
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diminishing the contribution of the noise. Thus, it is more beneficial to construct a
similarity matrix W from the properly denoised projections and compute the eigen-
vectors of its corresponding random walk matrix. For example, in [6], denoising the
projections using wavelet spin-cycling significantly improved the noise tolerance of
the diffusion map algorithm. A possible limitation of the wavelet denoising approach
is that the pre-chosen wavelet basis is not adaptive to the data, and it is reason-
able to believe that an adaptive basis will lead to improved denoising. One way of
constructing such an adaptive basis is using the SVD.

Suppose we have a data set {x1, . . . , xN} ⊂ Rn stored in an n×N data matrix X .
The SVD factorization of X is given by X = ΨΣΦT where Ψ is an n× n orthogonal
matrix, Σ is an n×N diagonal matrix with decreasing singular values σ1 ≥ σ2 ≥ . . . ≥
σmin(n,N) on its diagonal, and Φ is an N × N orthogonal matrix (see, e.g., [9]). By
the Eckart-Young theorem, the best rank-k approximation X∗

k of X that minimizes
the Frobenius norm, that is, X∗

k = argminrank(Xk)≤k ‖X −Xk‖F is given in terms of

the SVD by X∗
k = UΣkV

T , where Σk is a diagonal matrix with the top k dominant
singular values σ1, . . . , σk on its diagonal while the other diagonal elements are set to
zero.

In other words, for every fixed dimension k, SVD finds the linear subspace of
that dimension that retains most of the energy the data upon projecting it onto that
subspace. The left-singular vectors ψ1, ψ2, . . . , ψn ∈ Rn (the columns of Ψ) define an
orthogonal basis of Rn. Note that the left singular vectors are also the eigenvectors of
the n× n semi-definite positive matrix XXT = ΨΣ2ΨT whose eigenvalues λ1, . . . , λn

are related to the singular values through λi = σ2
i , for i = 1, . . . , n. Denoising

by SVD is obtained by projecting the data onto the subspace spanned by the first
few singular vectors. More precisely, we project the dataset onto the k-dimensional
subspace spanned by ψ1, . . . , ψk, for some choice of k < n. We later describe how to
choose k based on the empirical distribution of the singular values σ1, . . . , σn and its
connection to the quarter circle law for the distribution of the eigenvalues of random
matrices that are drawn from the Wishart distribution [12, 15].

2.4. Denoising by the Jaccard index. As mentioned above, the diffusion map
method is limited by the presence of noise, as the latter may change the topology of
the underlying manifold. In our case, noise can, for example, “shortcut” the curve
(see, e.g., Figure 2.1). It is therefore desirable to detect such shortcut edges in advance
and remove them from the similarity matrix W .

After their introduction by Watts and Strogatz [23], small-world graphs were
extensively used to describe many natural phenomena [11]. We briefly describe the
small-world graph model. A d-regular ring graph is a graph whose vertices can be
viewed as equally spaced points on the circle, and whose edges connect every point to
its d nearest neighbors. The small-world network is constructed from the ring graph
by randomly perturbing its edges: with probability p each ring edge is rewired to a
random vertex, and with probability 1 − p it remains untouched. We refer to the
rewired edges as “shortcuts”.

The small-world graph obtained by rewiring the edges of the ring graph has the
following useful property: the number of common neighbors for the vertices v and
w with a “shortcut” edge e = (v, w) between them is expected to be much smaller
than the number of common neighbors of two nearby vertices. Thus, the number of
common neighbors can be used as a measure for detecting shortcut edges from the
edges of the original ring graph. One of the many possible measures for this detection
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is the Jaccard index, defined by

J(v, w) =
|Nv ∩Nw|
|Nv ∪Nw|

,

where Nv is the set of vertices connecting to the vertex v. It is therefore expected
that the Jaccard index of shortcut edges will be smaller than that of the original ring
edges.

Using the Jaccard index we can therefore detect the shortcut edges in the graph
and further remove them in order to reveal the structure of the original graph. This
observation was used in [8] to reveal the underlying structure of protein interaction
maps. In our case, noise can fool us to believe that two projections of entirely different
beaming directions correspond to two similar beaming directions. Such a confusion
is realized by shortcut edges of our graph that change its topology and also the long
time behavior of the random walk on the graph. Indeed, it was observed in [23] that
the mixing time of the random walk on a small-world graph having a relatively small
number of shortcut edges is significantly shorter compared to the mixing time of the
random walk on the ring graph. It is therefore desirable to detect and remove the
shortcut edges prior to applying the diffusion map technique. We use the Jaccard
coefficient J(v, w) in order to detect and remove such shortcut edges. Specifically, we
set the similarity Wij to zero for all edges (i, j) for which the Jaccard index J(i, j) is
below some threshold.

Put all the above together, the benefit we get can be summarized by the viewpoint
of the Heisenberg Principle. Indeed, the top eigenvectors used by diffusion map to
embed the data correspond to the long time behavior of the random walk over the
data points. For example, the top trivial all-ones eigenvector corresponds to the
steady state and the following top eigenvectors characterize the approach to steady
state. The correspondence between the top eigenvectors and the long time behavior
of the random walk can also be realized by considering their numerical computation
using the iterative subspace power method, in which the transition matrix A is applied
several times on a subset of initial vectors until convergence. Thus, the diffusion map
is looking at high-orders powers of A. On the other hand, the computation of the
Jaccard index involves only the common neighbors, which is similar to looking at
the diffusion process at a short time scale, corresponding to at most two steps of
the random walk. Indeed, one way of computing the Jaccard index is by simply
multiplying the adjacency matrix of the graph by itself. In this spirit, a weighted
version Jw of the Jaccard index can also be defined as Jw(i, j) =

(

A
2
)

ij
, which

unravels the connection of the Jaccard index and the short time diffusion. It is also
possible to define a new similarity matrix for the diffusion map framework based on
this weighted Jaccard index, or even use a different Jaccard index based on other
small powers, like the third or fourth power of A. In any case, with the combination
of the Jaccard index denoising and the diffusion map framework we benefit from both
worlds of different time scales: the short time scale (Jaccard) and the long time scale
(diffusion map).

3. Algorithm. In this section we detail the steps of our reconstruction algorithm
from noisy projections at unknown directions. The input to the algorithm are N
noisy projections x1, . . . , xN , each of which is a vector in Rn corresponding to the
discretization of the n uniformly spaced detectors.

Step 1: SVD. We apply SVD to the projections x1, . . . , xN to get the first k
left-singular vectors ψ1, . . . , ψk and their corresponding singular values σ1 ≥ σ2 ≥
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. . . ≥ σk. We further apply soft-thresholding wavelet denoising to the left singular
vectors ψ1, . . . , ψk in order to obtain a smoother version of them, denoted ψ̃1, . . . , ψ̃k.
The denoised projections x̃i are obtained by the linear operation

x̃i =
k

∑

j=1

〈xi, ψ̃j〉ψ̃j , (3.1)

where 〈, 〉 is the inner product of Rn. Note that although the singular vectors {ψj}kj=1

are orthonormal, the denoised set {ψ̃j}kj=1 need not be orthonormal, and the linear
operation (3.1) is not necessarily a linear projection. To facilitate further computation,
we compress the denoised projections x̃i ∈ Rn and represent them as vectors in Rk

given by x̂i = (〈xi, ψ̃1〉, . . . , 〈xi, ψ̃k〉)T (for i = 1, . . . , N).
Since the top singular vectors capture the main characteristic features of the data,

we bring the spirit of soft-thresholding to enhance the importance of these vectors,
by defining a weighted dot product and a corresponding weighted norm ‖ · ‖ℓ2(Rk,w)

in Rk using a vector w = (w1, w2, . . . , wk) of positively decreasing weights (that is,
w1 ≥ w2 ≥ . . . ≥ wk > 0).

Step 2: Nearest Neighbors Search. For each of the N denoised projections
we search for its kNN nearest neighbors with distances implied by the weighted norm
‖ · ‖ℓ2(Rk,w).

Step 3: Jaccard index denoising. From the results of the nearest neighbors
search we construct an undirected graph G = (V,E) with N vertices corresponding
to the projections, and where we put an edge between (i, j) iff either projection i is
one of the kNN nearest neighbors of projection j or projection j is one of the kNN
nearest neighbors of projection i. We compute the Jaccard index for every edge in
the graph. We use several different threshold values and produce the corresponding
denoised graphs, such that every edge whose Jaccard index is below the threshold
is deleted from G. We also remove the isolated vertices of degree 0 and vertices of
degree 1. The remaining steps of the algorithm are performed on each of the denoised
graphs, until Step 6 where we automatically detect the threshold value that performed
better than all others. We denote the denoised graph as G̃ = (Ṽ , Ẽ), where Ṽ ⊂ V
and Ẽ ⊂ E.

Step 4: Diffusion map embedding. We construct an |Ṽ | × |Ṽ | similarity
matrix W whose entries Wij are defined by

Wij =











exp

{

−
‖x̂i − x̂j‖2ℓ2(w)

2ǫ

}

for (i, j) ∈ Ẽ,

0 for (i, j) 6∈ Ẽ
. (3.2)

We compute the top two non-trivial eigenvectors of L = I −D
−1

W denoted φ1 and
φ2. The embedding xi 7→ (φ1(i), φ2(i)) reveals the ordering of the beaming directions.
We estimate the beaming direction as equally spaced points on S1 according to their
ordering.

Step 5: 2-D Reconstruction. Inverse Radon transform is performed to re-
construct the 2-D image from the noisy projections and their estimated beaming
directions.
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Step 6: Automatic threshold detection using SVD. At this stage we get
several different 2-D image reconstructions corresponding to the different choices of
the threshold value of Step 3, and perhaps to different choices of other parameters
such as ǫ in Step 4. Out of all available reconstructions we automatically choose the
one of best quality, a measure we now define.

For each reconstructed image we compute its Radon transform and produce a
series of projections at different beaming directions. We apply SVD to these projec-
tions and analyze the eigenvalues (squared singular values). Our empirical studies
showed that the spectrum of eigenvalues of high quality reconstructions often has the
following characteristics: the top first and second eigenvalues tend to be larger, while
the small eigenvalues tend to get more concentrated near the origin, compared to
all other reconstructions. The concentration of the small eigenvalues near the origin
stems from the quarter circle law in random matrix theory (see, e.g., [12, 15]), which
characterizes the non-uniform distribution of the eigenvalues of a random covariance
matrix. The larger the noise level, the wider the distribution. We understand this
phenomenon by viewing the data we have at hand as a superposition of the clean data
with a random matrix due to noise, where in our case, the “noise” comes not only
from the noise added to the projections but also from the wrong assignment of the
angles. Based on these observations we apply an ad hoc quality measure that takes
into account the values of the top first and second eigenvalues as well as the width of
the quarter-circle.

4. Numerical results. We performed several numerical simulations in order to
test our algorithm and its tolerance to noise. In all of our simulations the underlying
2-D object was the Shepp-Logan phantom, the number of projections was N = 1024,
and the number of discretization points was n = 512. In each simulation, we added
to the clean projections a Gaussian zero-mean white noise of a fixed variance σ2. We
define the SNR (measured in dB) by

SNR [dB] = 10 log10

(

VarS

σ2

)

,

where S is the array of the noiseless projections. As a reference to later reconstruc-
tions, Figure 4.1(a) shows the original Shepp-Logan phantom, while Figures 4.1(b)
and 4.1(c) show reconstructions of the Shepp-Logan phantom from noisy projections
with SNR = −2dB and SNR = −3dB, respectively, for which the beaming directions
are fully known.

(a) clean phantom (b) SNR=-2dB (c) SNR=-3dB

Fig. 4.1. Reconstruction of the Shepp-Logan phantom image from projections with known
beaming directions at different levels of noise: (a) no noise; (b) SNR = −2dB; (c) SNR = −3dB.

The results of applying the algorithm described in Section 3 to noisy projections
of the same level of noise (SNR = −2dB and SNR = −3dB) but without knowledge of
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the beaming directions are illustrated in Figure 4.2. Obviously, the reconstructions in
Figures 4.1(b)-(c) have better quality compared to the reconstructions in Figure 4.2(a)
and Figure 4.2(d), that are missing the extra knowledge of the beaming directions.
Still, our algorithm succeeds to provide similar reconstructions (up to the unavoidable
degrees of freedom of rotation and reflection) even when the beaming directions are
unknown. The main features of the original Shepp-Logan phantom are visible in our
reconstructions even at such low SNRs. Figure 4.2(b) and Figure 4.2(e) demonstrate
that the beaming directions are estimated successfully and mostly follow their true
ordering. The different scaling of the x-axis between Figure 4.2(b) and Figure 4.2(e)
is due to Step 3 of our algorithm in which vertices (projections) of degree 0 and 1 are
removed without any further consideration.
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Fig. 4.2. Reconstruction from noisy projections at unknown directions using the algorithm
described in Section 3 for SNR = −2dB (top row) and SNR = −3dB (bottom row). (a) and (d)
Reconstructed image; (b) and (e) Estimated beaming directions (y-axis) against their correct ordering
(x-axis); (c) and (f) Histogram of the eigenvalues that are calculated in the final stage (Step 6) of
our algorithm.

Figure 4.3(a) and Figure 4.3(d) show reconstructions obtained by applying the
method described in [6] to the same sets of noisy projections. Unlike the reconstruc-
tions provided by our algorithm, these reconstructions are blurry, and the estimated
beaming directions do not follow their ground truth, as illustrated in Figure 4.3(b) and
Figure 4.3(e). In the final stage of our algorithm (Step 6) we apply SVD to the projec-
tions obtained from the reconstructed image. Comparing the eigenvalue histograms,
we see that the top eigenvalue in Figure 4.2(c) and Figure 4.2(f) is approximately 60,
while the top eigenvalue in Figure 4.3(c) and Figure 4.3(f) is much smaller with a
value near 10. The top eigenvalue thus provides yet another characterization for the
quality of the reconstruction.
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Fig. 4.3. Reconstruction from noisy projections at unknown directions using the algorithm de-
scribed in [6] for SNR = −2dB (top row) and SNR = −3dB (bottom row). (a) and (d) Reconstructed
image; (b) and (e) Estimated beaming directions (y-axis) against their correct ordering (x-axis); (c)
and (f) Histogram of the eigenvalues that are calculated in the final stage (Step 6) of our algorithm.

In the following we describe the numerical results of the different steps of the
algorithm and the specific choice of parameters in more detail. We start with Step 1
of the algorithm in which we compute the SVD of the 512× 1024 data matrix X in
order to denoise the projections. In all experiments the top left-singular vector was the
constant vector ψ1 = 1√

n
(1, 1, . . . , 1)T . From the Fourier slice theorem it follows that

all clean projections share the same DC term, that is,
∫

Rθ1
(f)(r) dr =

∫

Rθ2
(f)(r) dr

for all θ1, θ2 ∈ S1. Therefore, deviations in the dot product 〈xi, ψ1〉 from one data
projection to the other are the result of different realizations of noise, dominating
the much smaller discretization errors. Since the trivial singular vector ψ1 does not
differentiate between clean projections at different directions, we set its weight to zero,
that is, w1 = 0. The other non-zero weights were chosen as w2 = w3 = w4 = 2 and
w5 = w6 = w7 = 1. That is, the data is denoised by projecting it onto the subspace
spanned by the top k = 7 singular vectors, with the exception of the trivial vector.

To justify this particular choice of k and w, we first applied SVD to different sets
of noisy projections at different SNRs and examined the distribution of eigenvalues
(squared singular values). The histograms and bar plots of the non-trivial eigenval-
ues are shown in Figure 4.4 (the eigenvalue λ1 corresponding to ψ1 is not shown).
From the bar plot corresponding to the clean projections shown in Figure 4.4(f) it is
possible to distinguish about 6 dominant eigenvalues, while the remaining eigenval-
ues are significantly smaller. Figure 4.4(g) and 4.4(h) illustrate that it is possible to
distinguish the top 6 eigenvalues also at SNR = 2dB. These feature eigenvalues also
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appear in the histogram plots in Figures 4.4(a)-(e), but they are hardly noticeable
there due to the large number of small (near zero) eigenvalues. The small eigenvalues
are attributed to noise, and as the noise increases the small eigenvalues get larger,
as indicated in both histograms and bar plots. While the feature eigenvalues remain
roughly the same (e.g., 300, 130, 35, 25), the eigenvalues corresponding to noise get
larger as the level of noise increases. At SNR = −2dB and SNR = −5dB it is still
possible to distinguish the top 4 feature eigenvalues, while at SNR = −10dB only the
top 2 feature eigenvalue prevails. The small eigenvalues corresponding to noise follow
the quarter circle law whose support increases as the level of noise increases until it
swallows the feature eigenvalues as illustrated in the series of histograms 4.4(a)-(e).
Our choice of k = 7 is thus simply motivated by the fact that we want to project the
data onto the subspace of singular vectors that correspond to signal features rather
than noise, and the eigenvalues attached to these feature singular vectors correspond
to the discrete part of the spectrum rather than to the continuum (quarter circle)
part of the distribution.
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Fig. 4.4. Distribution of the eigenvalues of XXT (or equivalently, squared singular values of
X) corresponding to noisy projections at different levels of noise. Top: Histograms; Bottom: Bar
plots.

Examining the top left singular vectors reveals that they somewhat resemble the
shape of wavelets, though they are not really wavelet functions. Figures 4.5 and 4.6
show the first few left singular vectors obtained from clean projections and from noisy
projections at SNR = −2dB, respectively. The resemblance between the two sets of
singular vectors is striking, with the singular vectors in Figure 4.6 being the noisy
versions of the clean singular vectors of Figure 4.5. The robustness of the top singular
vectors to noise, as indicated by Figures 4.5 and 4.6 is explained by random matrix
theory [12], that suggests that the singular vectors whose corresponding eigenvalues
are above the support of the quarter circle distribution are highly correlated with the
singular vectors of the clean projections data matrix.

Note that the clean projections are compactly supported due to the compactness
of the Shepp-Logan phantom. Outside this support, the noisy projections are just
made of noise. This leads to the wild oscillatory behavior of the noisy singular vectors
outside the support (Figure 4.6). Loosely speaking, the SNR outside the support is
−∞ as the variance of the signal vanishes there. The local variations in the singular
vectors may be explained by the local SNR, but we do not pursuit in this direction
any further.

The purpose of the wavelet soft-thresholding denoising in Step 1 of the algorithm,
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given symbolically by ψj → ψ̃j (j = 1, . . . , k), is simply to smooth out the wild
oscillations of the noisy singular vectors outside the compact support, as well as to
smooth the singular vectors inside the support in a way that makes them resemble
the (unknown) singular vectors of the clean data matrix even better.

We also performed experiments with PCA. However, while the top singular vectors
of both the clean and noisy data matrices are well-behaved functions inside the support
(Figures 4.5-4.6), the top principal components (eigenvectors of the sample covariance
matrix where all projections are first centered by removing their average) have large
oscillations both inside and outside the support. This lead us to believe that the SVD
is more appropriate than PCA for denoising our data.
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Fig. 4.5. Singular vectors of the data matrix for clean projections.
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Fig. 4.6. Singular vectors of the data matrix for noisy projections with SNR = −2dB.

A comparison between denoising the projections using SVD and wavelet denoising
is illustrated in Figure 4.7 and Figure 4.8. While denoising by SVD makes use of just
the top 6 non-trivial singular vectors, the wavelet denoising procedure consists of using
the full spin-cycle algorithm [4] with hard thresholding the Daubechies db2 wavelet
coefficients, following the same denoising procedure used in [6]. The comparison shows
that both denoising methods do relatively well for SNR = 2dB (Figure 4.7), but the
SVD is doing a much better job for SNR = −2dB (Figure 4.8). One may conclude
that denoising by SVD succeeds at relatively low SNRs due to the adaptivity of the
singular vectors to the data.

In Step 2 of the algorithm, we computed the kNN = 50 nearest neighbors of each
denoised projection and constructed the graph of nearest neighbors. This corresponds
to linking each projection with a fraction of 50

1024 ≈ 5% of all other projections. The
edges of the resulting adjacency matrix were then denoised in Step 3 by Jaccard
index thresholding, whose effectiveness is demonstrated in Figure 4.9. The vertices
are arranged on a circle according to the beaming directions of the projections they
represent, while edges are represented by chords. Figure 4.9(a) is a drawing of the
graph prior to denoising by the Jaccard index, while Figure 4.9(b) is a drawing of
the denoised graph for a particular threshold value. A large portion of the “shortcut”
edges were successfully removed. We attribute the seemingly non-random behavior
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Fig. 4.7. Comparison between SVD denoising and wavelet denoising for four different noisy
projections with SNR = 2dB taken at θ = 0, π

4
, π

2
, and 3π

4
. (a) clean projection (Blue) and the SVD

denoising of the noisy projection (Red); (b) noisy projection (Blue) and the SVD denoising of the
noisy projection (Red); (c) clean projection (Blue) and the wavelet denoising of the noisy projection
(Red); (d) noisy projection (Blue) and the wavelet denoising of the noisy projection (Red).

of the shortcut edges that are left in the denoised graph shown in Figure 4.9(b) to
the particular shape of the Shepp-Logan phantom, that give rise to somewhat similar
projections that are taken at particular different beaming directions.

In Step 4 we computed several diffusion map embeddings corresponding to differ-
ent values of ǫ chosen in the following way. We first make a histogram of all pairwise
distances between the denoised projections. We then look for the “cutoff” distances
that separate the smallest 0.5%, 1%, 2% and 4% from all other larger distances. The
values of ǫ are chosen as the squared cutoff distances corresponding to the different
smallest percentiles. This choice is motivated by viewing ǫ as the squared radius
of the ball that contains similar projections for which the similarities in (3.2) are
non-negligible.

All in all, the results of our algorithm are summarized in Figures 4.2 showing
successful reconstructions at SNR = −2dB and SNR = −3dB. For higher levels of
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Fig. 4.8. Comparison between SVD denoising and wavelet denoising for four different noisy
projections with SNR = −2dB taken at θ = 0, π
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denoising of the noisy projection (Red); (b) noisy projection (Blue) and the SVD denoising of the
noisy projection (Red); (c) clean projection (Blue) and the wavelet denoising of the noisy projection
(Red); (d) noisy projection (Blue) and the wavelet denoising of the noisy projection (Red).

noise with SNR below −3dB the algorithm sometimes breaks down and fails to recover
the correct ordering of the beaming directions. Of course, the lower the SNR the more
likely the algorithm would fail. In particular, the algorithm seems to fail consistently
at SNR = −4dB.

5. Summary and Discussion. In this paper we introduced a reconstruction
method of 2-D objects from noisy tomographic projections taken at unknown beaming
directions. The method combines diffusion maps for finding the unknown beaming
directions with two preliminary denoising steps. The first denoising step consists
of applying the SVD to the data matrix of noisy projections and projecting them
onto the subspace spanned by the top left singular vectors, while the second de-
noising step is based on the Jaccard index and is applied to denoise the edges of
the graph of similarities between denoised projections. The additional two denoising
steps significantly improve the noise tolerance of the reconstruction method from a
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(a) Before Jaccard denoising (b) After Jaccard denoising

Fig. 4.9. The effect of denoising by the Jaccard index at SNR = −3dB and thresholding edges
with Jaccard index below 0.598. (a) The graph G = (V, E) prior to denoising, and (b) Graph
G̃ = (Ṽ , Ẽ) after denoising.

benchmark of SNR = 2dB reported in [6] using diffusion maps and wavelet denoising,
to SNR = −3dB obtained here.

We expect the combination of the three tools, namely, SVD, Jaccard index and
diffusion maps, to be useful in many other applications that require the organization
of high-dimensional data with an underlying non-linear low-dimensional structure.
While the diffusion map framework is well adjusted to study and analyze complex
data sets, it is somewhat limited by noise that may change both the dimensionality
and the topology of the underlying data.

The role of the SVD in our procedure is to denoise the noisy projections by
projecting them onto a low-dimensional subspace that captures most of the variability
of the data and is adaptive to the data in that sense. By examining the distribution
of the singular values, we use only the top singular vectors whose squared singular
values reside outside the support of the numerically observed deformed quarter circle
distribution. Our numerical experiments show that denoising by SVD outperforms
denoising by a pre-chosen basis such as a wavelet basis and we attribute this success to
the data adaptivity of the basis of left singular vectors as well as to choosing the correct
number of singular vectors as suggested by the eigenvalue histogram. While SVD and
PCA are often used as methods for dimensionality reduction, the usage here is merely
as a denoising method. Although we use SVD to reduce the data from n = 512
dimensions to 6 dimensions, the underlying manifold of the data is one-dimensional,
and this non-linear structure is revealed by the diffusion map, which is a non-linear
dimensionality reduction method. We comment that in the case of sufficiently large
sample size it may also be possible to perform many local SVDs instead of one global
SVD and to detect different features for different beaming directions. The combination
of SVD with the diffusion map can be recognized as independent component analysis
(ICA) [20], while the combination of many local SVDs with the diffusion map can be
regarded as non-linear ICA [21].

The second denoising step in our procedure consists of denoising the similarity
graph by removing all edges whose Jaccard index is below a certain threshold. The
objective in this denoising step is to restore the correct topology of the data by
removing falsely edges that shortcut the underlying manifold. The Jaccard index
examines whether the short-time diffusion neighborhoods of two vertices are alike,
and we remove edges whose endpoints have dissimilar neighborhoods. In that sense,
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this denoising step is complimentary to the diffusion map that embeds the data points
based on their long time diffusion properties.

Finally, we remark that in this paper we assumed that the projections are cen-
tered. In [2, 1], the shift problem was considered to handle the uncertain nature of
the imaging system, that can be formulated as follows. During the imaging process,
suppose the image was shifted by h in the direction θ, that is, the imaged object is
g(x) = f(x + hθ), then the projection we get is Rθ(g)(r) = Rθ(f)(r + h), which is
also equivalent to a shift by −h of the camera. We can still use the diffusion map
framework by computing the translational-invariant distances that are given by

dij = min
h∈R

‖Ri − ThRj‖ℓ2 ,

where Th is the translation operator over R satisfying Thf(x) = f(x + h), and Ri

denotes Rθi
f . These distances factor out the one degree of freedom of translation, so

that diffusion map should recover the correct parameterizations of the closed curve as
before. However, due to noise, the translational alignment of two projections taken
at dissimilar beaming directions can have a small translational-invariant distance.
In order to detect such outliers, we can apply a similar technique to the angular
synchronization technique that we recently suggested for the class averaging problem
in cryo-EM [22]. Specifically, if the shift of projection Ri is hi ∈ R, then the relative
shift of projections Ri and Rj is hi − hj and we can estimate this relative shift by
computing

hij = argmin
h∈R

‖Ri − ThRj‖ℓ2 .

Note that the hij ’s can take values over the non-compact group R, which we therefore
compactify by the many-to-one mapping from R → S1 given by x 7→ eıx/δ, where δ
is a parameter to be carefully chosen. As explained in [22], from the top eigenvectors

of the Hermitian matrix H whose entries are given by Hij = e−d2

ij/2ǫeihij/δ we can
reveal the shifts of all projections as well as the parametrization of the closed curve.
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